1
|
Dimai HP, Muschitz C, Amrein K, Bauer R, Cejka D, Gasser RW, Gruber R, Haschka J, Hasenöhrl T, Kainberger F, Kerschan-Schindl K, Kocijan R, König J, Kroißenbrunner N, Kuchler U, Oberforcher C, Ott J, Pfeiler G, Pietschmann P, Puchwein P, Schmidt-Ilsinger A, Zwick RH, Fahrleitner-Pammer A. [Osteoporosis-Definition, risk assessment, diagnosis, prevention and treatment (update 2024) : Guidelines of the Austrian Society for Bone and Mineral Research]. Wien Klin Wochenschr 2024; 136:599-668. [PMID: 39356323 PMCID: PMC11447007 DOI: 10.1007/s00508-024-02441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Austria is among the countries with the highest incidence and prevalence of osteoporotic fractures worldwide. Guidelines for the prevention and management of osteoporosis were first published in 2010 under the auspices of the then Federation of Austrian Social Security Institutions and updated in 2017. The present comprehensively updated guidelines of the Austrian Society for Bone and Mineral Research are aimed at physicians of all specialties as well as decision makers and institutions in the Austrian healthcare system. The aim of these guidelines is to strengthen and improve the quality of medical care of patients with osteoporosis and osteoporotic fractures in Austria. METHODS These evidence-based recommendations were compiled taking randomized controlled trials, systematic reviews and meta-analyses as well as European and international reference guidelines published before 1 June 2023 into consideration. The grading of recommendations used ("conditional" and "strong") are based on the strength of the evidence. The evidence levels used mutual conversions of SIGN (1++ to 3) to NOGG criteria (Ia to IV). RESULTS The guidelines include all aspects associated with osteoporosis and osteoporotic fractures, such as secondary causes, prevention, diagnosis, estimation of the 10-year fracture risk using FRAX®, determination of Austria-specific FRAX®-based intervention thresholds, drug-based and non-drug-based treatment options and treatment monitoring. Recommendations for the office-based setting and decision makers and institutions in the Austrian healthcare system consider structured care models and options for osteoporosis-specific screening. CONCLUSION The guidelines present comprehensive, evidence-based information and instructions for the treatment of osteoporosis. It is expected that the quality of medical care for patients with this clinical picture will be substantially improved at all levels of the Austrian healthcare system.
Collapse
Affiliation(s)
- Hans Peter Dimai
- Klinische Abteilung für Endokrinologie und Diabetologie, Universitätsklinik für Innere Medizin, Medizinische Universität Graz, Graz, Österreich
| | - Christian Muschitz
- healthPi Medical Center, Medizinische Universität Wien, Wollzeile 1-3, 1010, Wien, Österreich.
- Medizinische Universität Wien, Währinger Gürtel 18-20, 1090, Wien, Österreich.
| | - Karin Amrein
- Klinische Abteilung für Endokrinologie und Diabetologie, Universitätsklinik für Innere Medizin, Medizinische Universität Graz, Graz, Österreich
| | | | - Daniel Cejka
- Interne 3 - Nieren- und Hochdruckerkrankungen, Transplantationsmedizin, Rheumatologie, Ordensklinikum Linz Elisabethinen, Linz, Österreich
| | - Rudolf Wolfgang Gasser
- Universitätsklinik für Innere Medizin, Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - Reinhard Gruber
- Universitätszahnklinik, Medizinische Universität Wien, Wien, Österreich
| | - Judith Haschka
- Hanusch Krankenhaus Wien, 1. Medizinische Abteilung, Ludwig Boltzmann Institut für Osteologie, Wien, Österreich
- Rheuma-Zentrum Wien-Oberlaa, Wien, Österreich
| | - Timothy Hasenöhrl
- Universitätsklinik für Physikalische Medizin, Rehabilitation und Arbeitsmedizin, Medizinische Universität Wien, Wien, Österreich
| | - Franz Kainberger
- Klinische Abteilung für Biomedizinische Bildgebung und Bildgeführte Therapie, Universitätsklinik für Radiologie und Nuklearmedizin, Medizinische Universität Wien, Wien, Österreich
| | - Katharina Kerschan-Schindl
- Universitätsklinik für Physikalische Medizin, Rehabilitation und Arbeitsmedizin, Medizinische Universität Wien, Wien, Österreich
| | - Roland Kocijan
- Hanusch Krankenhaus Wien, 1. Medizinische Abteilung, Ludwig Boltzmann Institut für Osteologie, Wien, Österreich
| | - Jürgen König
- Department für Ernährungswissenschaften, Universität Wien, Wien, Österreich
| | | | - Ulrike Kuchler
- Universitätszahnklinik, Medizinische Universität Wien, Wien, Österreich
| | | | - Johannes Ott
- Klinische Abteilung für gynäkologische Endokrinologie und Reproduktionsmedizin, Universitätsklinik für Frauenheilkunde, Medizinische Universität Wien, Wien, Österreich
| | - Georg Pfeiler
- Klinische Abteilung für Gynäkologie und Gynäkologische Onkologie, Universitätsklinik für Frauenheilkunde, Medizinische Universität Wien, Wien, Österreich
| | - Peter Pietschmann
- Institut für Pathophysiologie und Allergieforschung, Zentrum für Pathophysiologie, Infektiologie und Immunologie (CEPII), Medizinische Universität Wien, Wien, Österreich
| | - Paul Puchwein
- Universitätsklinik für Orthopädie und Traumatologie, Medizinische Universität Graz, Graz, Österreich
| | | | - Ralf Harun Zwick
- Ludwig Boltzmann Institut für Rehabilitation Research, Therme Wien Med, Wien, Österreich
| | - Astrid Fahrleitner-Pammer
- Privatordination Prof. Dr. Astrid Fahrleitner-Pammer
- Klinische Abteilung für Endokrinologie und Diabetes, Universitätsklinik für Innere Medizin, Medizinische Universität Graz, Graz, Österreich
| |
Collapse
|
2
|
Carbone M, Gerussi A, Cardinale V, Cazzagon N, Cossiga V, Lleo A, Marrone G, Marzioni M, Moschetta A, Muratori L, Rigamonti C, Vespasiani-Gentilucci U, Fraquelli M, Calvaruso V. Position paper of the Italian Association for the Study of the Liver (AISF): Management and treatment of primary biliary cholangitis. Dig Liver Dis 2024; 56:1461-1474. [PMID: 38902184 DOI: 10.1016/j.dld.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 06/22/2024]
|
3
|
Saeki C, Saito M, Tsubota A. Association of chronic liver disease with bone diseases and muscle weakness. J Bone Miner Metab 2024; 42:399-412. [PMID: 38302761 DOI: 10.1007/s00774-023-01488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/16/2023] [Indexed: 02/03/2024]
Abstract
The liver is a vital organ involved in nutrient metabolism, hormone regulation, immunity, cytokine production, and gut homeostasis. Impairment in liver function can result in malnutrition, chronic inflammation, decreased anabolic hormone levels, and dysbiosis. These conditions eventually cause an imbalance in osteoblast and osteoclast activities, resulting in bone loss. Osteoporosis is a frequent complication of chronic liver disease (CLD) that adversely affects quality of life and increases early mortality. Sarcopenia is another common complication of CLD characterized by progressive loss of skeletal muscle mass and function. Assessment criteria for sarcopenia specific to liver disease have been established, and sarcopenia has been reported to be associated with an increase in the risk of liver disease-related events and mortality in patients with CLD. Owing to their similar risk factors and underlying pathophysiological mechanisms, osteoporosis and sarcopenia often coexist (termed osteosarcopenia), progress in parallel, and further exacerbate the conditions mentioned above. Therefore, comprehensive management of these musculoskeletal disorders is imperative. This review summarizes the clinical implications and characteristics of osteoporosis, extending to sarcopenia and osteosarcopenia, in patients with CLD caused by different etiologies.
Collapse
Affiliation(s)
- Chisato Saeki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Mitsuru Saito
- Department of Orthopedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Akihito Tsubota
- Project Research Units, Research Center for Medical Science, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
| |
Collapse
|
4
|
Liang Y, Li J, Zhang Z, Jiang T, Yang Z. Extrahepatic conditions of primary biliary cholangitis: A systematic review and meta-analysis of prevalence and risk. Clin Res Hepatol Gastroenterol 2024; 48:102321. [PMID: 38518985 DOI: 10.1016/j.clinre.2024.102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/16/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND AND AIM Many studies reported the prevalence of extrahepatic conditions (EHC) of primary biliary cholangitis (PBC), but the great heterogeneity existed across different studies. Therefore, we conducted the systematic review and meta-analyses to determine EHC prevalence and association with PBC. METHODS We searched PUBMED and included observational, cross-sectional and case-controlled studies. A random or fixed effects model was used to estimate the pooled prevalence and odd ratio (OR) as appropriate. RESULTS Of 5370 identified publications, 129 publications with 133 studies met the inclusion criteria. Sjögren's syndrome had the highest prevalence (21.4 % vs. 3 % in non-PBC individuals), followed by Raynaud's syndrome (12.3 % vs. 1 %), rheumatoid arthritis-like arthritis (5 % vs. 3 %), systemic sclerosis (3.7 % vs. 0 %) and systemic lupus erythematosus (2 % vs. 0 %). The prevalence of overall thyroid diseases (11.3 %), autoimmune thyroid diseases (9.9 %), osteoporosis (21.1 %), celiac disease (1 %) and chronic bronchitis (4.6 %) was also increased among PBC patients. CONCLUSION This is the first exhaustive study on the old theme about EHC of PBC. Given increased prevalence of many EHCs in PBC patients, promptly recognizing these EHCs are of great importance for timely and precise diagnosis of PBC.
Collapse
Affiliation(s)
- Yan Liang
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai, PR China.
| | - Jie Li
- Department of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang, PR China
| | - Zhiyu Zhang
- Health Management Center, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| | - Tingwang Jiang
- Key Laboratory, Department of Science and Technology, The Second People's Hospital of Changshu, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, PR China
| | - Zaixing Yang
- Department of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang, PR China.
| |
Collapse
|
5
|
Lu Z, Li X, Qi Y, Li B, Chen L. Genetic evidence of the causal relationship between chronic liver diseases and musculoskeletal disorders. J Transl Med 2024; 22:138. [PMID: 38321551 PMCID: PMC10845502 DOI: 10.1186/s12967-024-04941-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Chronic liver diseases constitute a major global public health burden, posing a substantial threat to patients' daily lives and even survival due to the potential development of musculoskeletal disorders. Although the relationship between chronic liver diseases and musculoskeletal disorders has received extensive attention, their causal relationship has not been comprehensively and systematically investigated. METHODS This study aimed to assess the causal relationships between viral hepatitis, primary biliary cholangitis, primary sclerosing cholangitis (PSC), liver cirrhosis, and hepatocellular carcinoma (HCC) with osteoporosis, osteoarthritis, and sarcopenia through bidirectional Mendelian randomization (MR) research. The traits related to osteoporosis and osteoarthritis included both overall and site-specific phenotypes, and the traits linked to sarcopenia involved indicators of muscle mass and function. Random-effect inverse-variance weighted (IVW), weighted median, MR-Egger, and Causal Analysis Using the Summary Effect Estimates were used to evaluate causal effects, with IVW being the main analysis method. To enhance robustness, sensitivity analyses were performed using Cochran's Q test, MR-Egger intercept, MR-PRESSO global test, funnel plots, leave-one-out analyses, and latent causal variable model. RESULTS The forward MR analysis indicated that PSC can reduce forearm bone mineral density (beta = - 0.0454, 95% CI - 0.0798 to - 0.0110; P = 0.0098) and increase the risk of overall osteoarthritis (OR = 1.012, 95% CI 1.002-1.022; P = 0.0247), while HCC can decrease grip strength (beta = - 0.0053, 95% CI - 0.008 to - 0.0025; P = 0.0002). The reverse MR analysis did not find significant causal effects of musculoskeletal disorders on chronic liver diseases. Additionally, no heterogeneity or pleiotropy was detected. CONCLUSIONS These findings corroborate the causal effects of PSC on osteoporosis and osteoarthritis, as well as the causal impact of HCC on sarcopenia. Thus, the implementation of comprehensive preventive measures is imperative for PSC and HCC patients to mitigate the risk of musculoskeletal disorders, ultimately improving their quality of life.
Collapse
Affiliation(s)
- Zhengjie Lu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430000, China
| | - Xuefei Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yongjian Qi
- Department of Spine Surgery and Musculoskeletal Tumor, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Bin Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430000, China.
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
6
|
Chen JL, Liu Y, Bi YF, Wang XB. Prevalence and risk factors of osteoporosis detected by dual-energy X-ray absorptiometry among Chinese patients with primary biliary cholangitis. World J Gastroenterol 2023; 29:4580-4592. [PMID: 37621753 PMCID: PMC10445004 DOI: 10.3748/wjg.v29.i29.4580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/21/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Osteoporosis is an extrahepatic complication of primary biliary cholangitis (PBC) that increases the risk of fractures and mortality. However, Epidemiological studies of osteoporosis in patients with PBC in China and the Asia-Pacific region is lack. AIM To assess the prevalence and clinical characteristics of osteoporosis in Chinese patients with PBC. METHODS This retrospective analysis included consecutive patients with PBC from a tertiary care center in China who underwent bone mineral density (BMD) assessment using dual-energy X-ray absorptiometry between January 2013 and December 2021. We defined subjects with T-scores ≤ -2.5 in any sites (L1 to L4, femoral neck, or total hip) as having osteoporosis. Demographic, serological, clinical, and histological data were collected. Independent risk factors for osteoporosis were identified by multivariate logistic regression analysis. RESULTS A total of 268 patients with PBC [236 women (88.1%); mean age, 56.7 ± 10.6 years; 163 liver biopsies (60.8%)] were included. The overall prevalence of osteoporosis in patients with PBC was 45.5% (122/268), with the prevalence of osteoporosis in women and men being 47.0% and 34.4%, respectively. The prevalence of osteoporosis in postmenopausal women was significantly higher than that in premenopausal women (56.3% vs 21.0%, P < 0.001). Osteoporosis in patients with PBC is associated with age, fatigue, menopausal status, previous steroid therapy, body mass index (BMI), splenomegaly, gastroesophageal varices, ascites, Mayo risk score, histological stage, alanine aminotransferase, albumin, bilirubin, platelet and prothrombin activity. Multivariate regression analysis identified that older age, lower BMI, previous steroid therapy, higher Mayo risk score, and advanced histological stage as the main independent risk factors for osteoporosis in PBC. CONCLUSION Osteoporosis is very common in Chinese patients with PBC, allowing for prior screening of BMD in those PBC patients with older age, lower BMI, previous steroid therapy and advanced liver disease.
Collapse
Affiliation(s)
- Jia-Liang Chen
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yao Liu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yu-Fei Bi
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xian-Bo Wang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| |
Collapse
|
7
|
Serum Insulin-Like Growth Factor 1 Levels, Facture Risk Assessment Tool Scores and Bone Disorders in Patients with Primary Biliary Cholangitis. Diagnostics (Basel) 2022; 12:diagnostics12081957. [PMID: 36010307 PMCID: PMC9407172 DOI: 10.3390/diagnostics12081957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Insulin-like growth factor 1 (IGF-1) plays an important role in bone growth and maintenance, and its decreased levels are associated with bone disorders. This study aimed to evaluate the association of serum IGF-1 levels with osteoporosis, prevalent fractures and fracture risk based on the Fracture Risk Assessment Tool (FRAX) in patients with primary biliary cholangitis (PBC). This study included 127 consecutive patients with PBC. Based on the baseline serum IGF-1 levels, the participants were classified into the low (L)-, intermediate (I)- and high (H)-IGF-1 groups. According to the FRAX score, high fracture risk was defined as a 10-year major osteoporotic fracture probability (FRAX-MOF) ≥ 20% or a 10-year hip fracture probability (FRAX-HF) ≥ 3%. The serum IGF-1 levels were positively correlated with bone mineral density, and were negatively correlated with the FRAX-MOF/FRAX-HF. The L-IGF-1 group had the highest prevalence of osteoporosis (58.1%), prevalent fracture (48.4%) and high fracture risk (71.0%). Meanwhile, the H-IGF-1 group had the lowest prevalence of osteoporosis (9.7%), prevalent fracture (12.9%) and high fracture risk (9.7%). The prevalence of these events increased stepwise with decreasing serum IGF-1 levels. The cutoff values of IGF-1 for predicting osteoporosis, prevalent fracture and high fracture risk were 61.5 ng/mL (sensitivity/specificity, 0.545/0.894), 69.5 ng/mL (0.633/0.784) and 61.5 ng/mL (0.512/0.929), respectively. Serum IGF-1 levels were associated with bone disorders and the FRAX-derived fracture risk, and may be a useful indicator for initiating therapeutic intervention to prevent the incidence of fracture in patients with PBC.
Collapse
|
8
|
Sobh MM, Abdalbary M, Elnagar S, Nagy E, Elshabrawy N, Abdelsalam M, Asadipooya K, El-Husseini A. Secondary Osteoporosis and Metabolic Bone Diseases. J Clin Med 2022; 11:2382. [PMID: 35566509 PMCID: PMC9102221 DOI: 10.3390/jcm11092382] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Fragility fracture is a worldwide problem and a main cause of disability and impaired quality of life. It is primarily caused by osteoporosis, characterized by impaired bone quantity and or quality. Proper diagnosis of osteoporosis is essential for prevention of fragility fractures. Osteoporosis can be primary in postmenopausal women because of estrogen deficiency. Secondary forms of osteoporosis are not uncommon in both men and women. Most systemic illnesses and organ dysfunction can lead to osteoporosis. The kidney plays a crucial role in maintaining physiological bone homeostasis by controlling minerals, electrolytes, acid-base, vitamin D and parathyroid function. Chronic kidney disease with its uremic milieu disturbs this balance, leading to renal osteodystrophy. Diabetes mellitus represents the most common secondary cause of osteoporosis. Thyroid and parathyroid disorders can dysregulate the osteoblast/osteoclast functions. Gastrointestinal disorders, malnutrition and malabsorption can result in mineral and vitamin D deficiencies and bone loss. Patients with chronic liver disease have a higher risk of fracture due to hepatic osteodystrophy. Proinflammatory cytokines in infectious, autoimmune, and hematological disorders can stimulate osteoclastogenesis, leading to osteoporosis. Moreover, drug-induced osteoporosis is not uncommon. In this review, we focus on causes, pathogenesis, and management of secondary osteoporosis.
Collapse
Affiliation(s)
- Mahmoud M. Sobh
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Mohamed Abdalbary
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, KY 40506, USA
| | - Sherouk Elnagar
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Eman Nagy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Nehal Elshabrawy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Mostafa Abdelsalam
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Kamyar Asadipooya
- Division of Endocrinology, University of Kentucky, Lexington, KY 40506, USA;
| | - Amr El-Husseini
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
9
|
You H, Ma X, Efe C, Wang G, Jeong SH, Abe K, Duan W, Chen S, Kong Y, Zhang D, Wei L, Wang FS, Lin HC, Yang JM, Tanwandee T, Gani RA, Payawal DA, Sharma BC, Hou J, Yokosuka O, Dokmeci AK, Crawford D, Kao JH, Piratvisuth T, Suh DJ, Lesmana LA, Sollano J, Lau G, Sarin SK, Omata M, Tanaka A, Jia J. APASL clinical practice guidance: the diagnosis and management of patients with primary biliary cholangitis. Hepatol Int 2022; 16:1-23. [PMID: 35119627 PMCID: PMC8843914 DOI: 10.1007/s12072-021-10276-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Beijing, Mainland, China
| | - Xiong Ma
- Department of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, Mainland, China
| | - Cumali Efe
- Department of Gastroenterology, Gazi Yaşargil Education and Research Hospital, Diyarbakir, Turkey
| | - Guiqiang Wang
- Department of Infectious Diseases and Center for Liver Diseases, Peking University First Hospital, Beijing, Mainland, China
| | - Sook-Hyang Jeong
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Kazumichi Abe
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Weijia Duan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Beijing, Mainland, China
| | - Sha Chen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Beijing, Mainland, China
| | - Yuanyuan Kong
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, Mainland, China
| | - Dong Zhang
- Experimental and Translational Research Center, Beijing Clinical Research Institute, Beijing, Mainland, China
| | - Lai Wei
- Hepatobiliary Pancreatic Center, Tsinghua Changgung Hospital, Tsinghua University, Beijing, Mainland, China
| | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospial, Beijing, Mainland, China
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jin Mo Yang
- Division of Hepatology, Department of Internal Medicine, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, South Korea
| | - Tawesak Tanwandee
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rino A Gani
- Department of Internal Medicine, Cipto Mangunkusumo Hospital, University of Indonesia, Jakarta, Indonesia
| | - Diana A Payawal
- Department of Medicine, Fatima University Medical Center, Manila, Philippines
| | - Barjesh C Sharma
- Department of Gastroenterology, GB Pant Hospital, New Delhi, India
| | - Jinlin Hou
- Department of Infectious Disease and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Mainland, China
| | - Osamu Yokosuka
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - A Kadir Dokmeci
- Department of Medicine, Ankara University School of Medicine, Ankara, Turkey
| | - Darrell Crawford
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Jia-Horng Kao
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Teerha Piratvisuth
- NKC Institute of Gastroenterology and Hepatology, Faculty of Medicine, Prince of Songkla University, Hatyai, Thailand
| | - Dong Jin Suh
- Department of Gastroenterology, University of Ulsan College of Medicine, Seoul, South Korea
| | | | - Jose Sollano
- Department of Medicine, University of Santo Tomas, Manila, Philippines
| | - George Lau
- Humanity and Health Clinical Trial Center, Humanity and Health Medical Group, Hong Kong SAR, China
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi, India
| | - Masao Omata
- Department of Gastroenterology, Yamanashi Central Hospital, Yamanashi, Japan. .,University of Tokyo, Tokyo, Japan.
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan.
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Beijing, Mainland, China.
| |
Collapse
|
10
|
Measurement of Gamma Glutamyl Transferase to Determine Risk of Liver Transplantation or Death in Patients With Primary Biliary Cholangitis. Clin Gastroenterol Hepatol 2021; 19:1688-1697.e14. [PMID: 32777554 DOI: 10.1016/j.cgh.2020.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/14/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Gamma-glutamyltransferase (GGT) is a serum marker of cholestasis. We investigated whether serum level of GGT is a prognostic marker for patients with primary biliary cholangitis (PBC). METHODS We analyzed data from patients with PBC from the Global PBC Study Group, comprising 14 centers in Europe and North America. We obtained measurements of serum GGT at baseline and time points after treatment. We used Cox model hazard ratios to evaluate the association between GGT and clinical outcomes, including liver transplantation and liver-related death. RESULTS Of the 2129 patients included in our analysis, 281 (13%) had a liver-related clinical endpoint. Mean age at diagnosis was 53 years and 91% of patients were female patients. We found a correlation between serum levels of GGT and alkaline phosphatase (ALP) (r = 0.71). Based on data collected at baseline and yearly for up to 5 years, higher serum levels of GGT were associated with lower hazard for transplant-free survival. Serum level of GGT at 12 months after treatment higher than 3.2-fold the upper limit of normal (ULN) identified patients who required liver transplantation or with liver-related death at 10 years with an area under the receiver operating characteristic curve of 0.70. The risk of liver transplantation or liver-related death in patients with serum level of GGT above 3.2-fold the ULN, despite level of ALP lower than 1.5-fold the ULN, was higher compared to patients with level of GGT lower than 3.2-fold the ULN and level of ALP lower than 1.5-fold the ULN (P < .05). Including information on level of GGT increased the prognostic value of the Globe score. CONCLUSIONS Serum level of GGT can be used to identify patients with PBC at risk for liver transplantation or death, and increase the prognostic value of ALP measurement. Our findings support the use of GGT as primary clinical endpoint in clinical trials. In patients with low serum level of ALP, a high level of GGT identifies those who might require treatment of metabolic disorders or PBC treatment escalation.
Collapse
|
11
|
Clinical Management of Primary Biliary Cholangitis-Strategies and Evolving Trends. Clin Rev Allergy Immunol 2021; 59:175-194. [PMID: 31713023 DOI: 10.1007/s12016-019-08772-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PBC is a chronic progressive autoimmune disorder involving the destruction of intrahepatic small bile ducts, cholestasis, fibrosis, and ultimately cirrhosis if left untreated. It is largely driven by the autoimmune response, but bile acids and the intestinal microbiota are implicated in disease progression as well. The only drugs licensed for PBC are UDCA and OCA. UDCA as a first-line and OCA as a second-line therapy are safe and effective, but the lack of response in a significant portion of patients and inadequate control of symptoms such as fatigue and pruritus remain as concerns. Liver transplantation is an end-stage therapy for many patients refractory to UDCA, which gives excellent survival rates but also moderate to high recurrence rates. The limited options for FDA-approved PBC therapies necessitate the development of alternative approaches. Currently, a wide variety of experimental drugs exist targeting immunological and physiological aspects of PBC to suppress inflammation. Immunological therapies include drugs targeting immune molecules in the B cell and T cell response, and specific cytokines and chemokines implicated in inflammation. Drugs targeting bile acids are also noteworthy as bile acids can perpetuate hepatic inflammation and lead to fibrosis over time. These include FXR agonists, ASBT inhibitors, and PPAR agonists such as bezafibrate and fenofibrate. Nonetheless, many of these drugs can only delay disease progression and fail to enhance patients' quality of life. Nanomedicine shows great potential for treatment of autoimmune diseases, as it provides a new approach that focuses on tolerance induction rather than immunosuppression. Tolerogenic nanoparticles carrying immune-modifying agents can be engineered to safely and effectively target the antigen-specific immune response in autoimmune diseases. These may work well with PBC especially, given the anatomical features and immunological specificity of the disease. Nanobiological therapy is thus an area of highly promising research for future treatment of PBC.
Collapse
|
12
|
Hidalgo DF, Boonpheng B, Sikandar S, Nasr L, Hidalgo J. Chronic Liver Disease and the Risk of Osteoporotic Fractures: A Meta-Analysis. Cureus 2020; 12:e10483. [PMID: 33083184 PMCID: PMC7567329 DOI: 10.7759/cureus.10483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Introduction Chronic liver disease (CLD) causes more than 1 million deaths every year and remains a pandemic in the last decade affecting more than 600,000 patients in the United States. Previous studies found patients with CLD had increased risk of osteoporosis, so fractures were inferred to be complications of this condition. The aim of this meta-analysis is to summarize the best evidence that correlates CLD patients and the risk to develop osteoporotic fractures versus control patients without CLD. Methods A review of the literature using MEDLINE and EMBASE database was performed during December 2017. We included cross-sectional and cohort studies that reported relative risks (RR), odds ratios (OR) and hazard ratios (HR) comparing the risk of developing osteoporotic fractures among patients with CLD versus patients without CLD. Pooled OR and 95% confidence interval (CI) were calculated using generic inverse- variance method. The Newcastle-Ottawa scale was used to determine the quality of the studies. Effect estimates from the individual study were extracted and combined using the random-effect, generic inverse variance method of DerSimonian and Laird. Results After the review of the literature, seven studies fulfilled the eligibility criteria established during the analysis. Significant association was found between CLD and osteoporotic fractures with a pooled OR of 2.13 (95% CI, 1.79 - 2.52). High heterogeneity among the studies was found (I2=88.5). No publication bias was found using Egger regression test (p=0.44). Conclusion We found a significant association between CLD and the risk of developing osteoporotic fractures. The calculated risk was 2.13 times higher for patients with CLD when compared with controls. The results showed high heterogeneity but no publication bias. More prospective studies are needed to fully understand the mechanisms involved in loss of bone density and osteoporotic fractures in order to improve the morbidity associated with this disease.
Collapse
Affiliation(s)
- Diego F Hidalgo
- Geriatrics, Jackson Memorial Hospital, University of Miami, Miami, USA
| | | | - Sehrish Sikandar
- Geriatrics, Miami Geriatric Research Education and Clinical Center Veterans Successful Aging for Frail Elders (VSAFE), Miami, USA
| | - Lubna Nasr
- Geriatrics, University of Miami Miller School of Medicine, Miami, USA.,Geriatrics, Miami Geriatric Research Education and Clinical Center Veterans Successful Aging for Frail Elders (VSAFE), Miami, USA
| | - Jessica Hidalgo
- Internal Medicine, San Francisco de Quito University, Quito, ECU
| |
Collapse
|
13
|
Xu X, Wang R, Wu R, Yan W, Shi T, Jiang Q, Shi D. Trehalose reduces bone loss in experimental biliary cirrhosis rats via ERK phosphorylation regulation by enhancing autophagosome formation. FASEB J 2020; 34:8402-8415. [PMID: 32367591 DOI: 10.1096/fj.201902528rrr] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Xingquan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing P.R. China
- Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC) Nanjing University Nanjing P.R. China
| | - Rongliang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing P.R. China
- Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC) Nanjing University Nanjing P.R. China
| | - Rui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing P.R. China
- Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC) Nanjing University Nanjing P.R. China
| | - Wenjin Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing P.R. China
- Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC) Nanjing University Nanjing P.R. China
| | - Tianshu Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing P.R. China
- Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC) Nanjing University Nanjing P.R. China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing P.R. China
- Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC) Nanjing University Nanjing P.R. China
| | - Dongquan Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing P.R. China
- Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC) Nanjing University Nanjing P.R. China
| |
Collapse
|
14
|
Arase Y, Tsuruya K, Hirose S, Ogiwara N, Yokota M, Anzai K, Deguchi R, Shiraishi K, Shirai T, Kagawa T. Efficacy and Safety of 3-Year Denosumab Therapy for Osteoporosis in Patients With Autoimmune Liver Diseases. Hepatology 2020; 71:757-759. [PMID: 31429969 PMCID: PMC7028030 DOI: 10.1002/hep.30904] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/05/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Yoshitaka Arase
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokai University School of MedicineKanagawaJapan
- Division of Gastroenterology and HepatologyTokai University Oiso HospitalKanagawaJapan
| | - Kota Tsuruya
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokai University School of MedicineKanagawaJapan
| | - Shunji Hirose
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokai University School of MedicineKanagawaJapan
| | - Naoki Ogiwara
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokai University School of MedicineKanagawaJapan
- Division of Gastroenterology and HepatologyTokai University Oiso HospitalKanagawaJapan
| | - Masashi Yokota
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokai University School of MedicineKanagawaJapan
- Division of Gastroenterology and HepatologyTokai University Oiso HospitalKanagawaJapan
| | - Kazuya Anzai
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokai University School of MedicineKanagawaJapan
- Division of Gastroenterology and HepatologyTokai University Hachioji HospitalTokyoJapan
| | - Ryuzo Deguchi
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokai University School of MedicineKanagawaJapan
- Division of Gastroenterology and HepatologyTokai University Oiso HospitalKanagawaJapan
| | - Koichi Shiraishi
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokai University School of MedicineKanagawaJapan
- Division of Gastroenterology and HepatologyTokai University Tokyo HospitalTokyoJapan
| | - Takayuki Shirai
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokai University School of MedicineKanagawaJapan
- Division of Gastroenterology and HepatologyTokai University Oiso HospitalKanagawaJapan
| | - Tatehiro Kagawa
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokai University School of MedicineKanagawaJapan
| |
Collapse
|