1
|
Bergström B, Selldén T, Bollmann M, Svensson MND, Ekwall AKH. Methotrexate promotes the release of granulocyte-macrophage colony-stimulating factor from rheumatoid arthritis fibroblast-like synoviocytes via autocrine interleukin-1 signaling. Arthritis Res Ther 2024; 26:178. [PMID: 39394168 PMCID: PMC11468154 DOI: 10.1186/s13075-024-03406-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Activated fibroblast-like synoviocytes (FLS) are drivers of synovitis and structural joint damage in rheumatoid arthritis (RA). Despite the use of disease-modifying drugs, only about 50% of RA patients reach remission in real-world settings. We used an unbiased approach to investigate the effects of standard-of-care methotrexate (MTX) and a Janus kinase inhibitor, tofacitinib (TOFA), on gene expression in RA-FLS, in order to identify untargeted disease mediators. METHODS Primary RA-FLS were activated by stimulation with interleukin-1β (IL-1β) or platelet-derived growth factor + IL-1β in the presence or absence of MTX or TOFA, with or without additional inhibitors. Co-cultures of synovial cells were performed in direct and indirect systems. Cells were collected for RNA sequencing or qPCR, and supernatants were analyzed for protein concentrations. RESULTS Six thousand three hundred fifty genes were differentially expressed, the majority being upregulated, in MTX-treated activated RA-FLS and 970 genes, the majority being downregulated, in TOFA-treated samples. Pathway analysis showed that MTX had largest effects on 'Molecular mechanisms of cancer' and TOFA on 'Interferon signaling'. Targeted analysis of disease-associated genes revealed that MTX increased the expression of cell cycle-regulating genes but also of pro-inflammatory mediators like IL-1α (IL1A) and granulocyte-macrophage colony-stimulating factor, GM-CSF (CSF2). The MTX-promoted expression of CSF2 in activated RA-FLS peaked at 48 h, could be mediated via either NF-κB or AP-1 transcription factors, and was abrogated by IL-1 inhibitors (IRAK4 inhibitor and anakinra). In a co-culture setting, MTX-treatment of activated RA-FLS induced IL1B expression in macrophages. CONCLUSIONS MTX treatment induces secretion of IL-1 from activated RA-FLS which by autocrine signaling augments their release of GM-CSF. This unexpected effect of MTX might contribute to the persistence of synovitis.
Collapse
Affiliation(s)
- Beatrice Bergström
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tilia Selldén
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Miriam Bollmann
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- SciLifeLab, University of Gothenburg, Gothenburg, Sweden
| | - Mattias N D Svensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- SciLifeLab, University of Gothenburg, Gothenburg, Sweden
| | - Anna-Karin Hultgård Ekwall
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Rheumatology, Division 3, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
2
|
Kiełbowski K, Plewa P, Bratborska AW, Bakinowska E, Pawlik A. JAK Inhibitors in Rheumatoid Arthritis: Immunomodulatory Properties and Clinical Efficacy. Int J Mol Sci 2024; 25:8327. [PMID: 39125897 PMCID: PMC11311960 DOI: 10.3390/ijms25158327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Rheumatoid arthritis (RA) is a highly prevalent autoimmune disorder. The pathogenesis of the disease is complex and involves various cellular populations, including fibroblast-like synoviocytes, macrophages, and T cells, among others. Identification of signalling pathways and molecules that actively contribute to the development of the disease is crucial to understanding the mechanisms involved in the chronic inflammatory environment present in affected joints. Recent studies have demonstrated that the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway regulates the behaviour of immune cells and contributes to the progression of RA. Several JAK inhibitors, such as tofacitinib, baricitinib, upadacitinib, and filgocitinib, have been developed, and their efficacy and safety in patients with RA have been comprehensively investigated in a number of clinical trials. Consequently, JAK inhibitors have been approved and registered as a treatment for patients with RA. In this review, we discuss the involvement of JAK/STAT signalling in the pathogenesis of RA and summarise the potential beneficial effects of JAK inhibitors in cells implicated in the pathogenesis of the disease. Moreover, we present the most important phase 3 clinical trials that evaluated the use of these agents in patients.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| | - Paulina Plewa
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | | | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| |
Collapse
|
3
|
Hassan WM, Othman N, Daghestani M, Warsy A, Omair MA, Alqurtas E, Amin S, Ismail A, El-Ansary A, Bhat RS, Omair MA. The Fidelity of Rheumatoid Arthritis Multivariate Diagnostic Biomarkers Using Discriminant Analysis and Binary Logistic Regression. Biomolecules 2023; 13:1305. [PMID: 37759705 PMCID: PMC10526504 DOI: 10.3390/biom13091305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that causes multi-articular synovitis. The illness is characterized by worsening inflammatory synovitis, which causes joint swelling and pain. Synovitis erodes articular cartilage and marginal bone, resulting in joint deterioration. This bone injury is expected to be permanent. Cytokines play a prominent role in the etiology of RA and could be useful as early diagnostic biomarkers. This research was carried out at Riyadh's King Khalid University Hospital (KKUH). Patients were enrolled from the Rheumatology unit. Seventy-eight RA patients were recruited (67 (85.9%) females and 11 (14.1%) males). Patients were selected for participation by convenience sampling. Demographic data were collected, and disease activity measurements at 28 joints were recorded using the disease activity score (DAS-28). Age- and sex-matched controls from the general population were included in the study. A panel of 27 cytokines, chemokines, and growth factors was determined in patient and control sera. Binary logistic regression (BLR) and discriminant analysis (DA) were used to analyze the data. We show that multiple cytokine biomarker profiles successfully distinguished RA patients from healthy controls. IL-17, IL-4, and RANTES were among the most predictive variables and were the only biomarkers incorporated into both BLR and DA predictive models for pooled participants (men and women). In the women-only models, the significant cytokines incorporated in the model were IL-4, IL-17, MIP-1b, and RANTES for the BLR model and IL-4, IL-1Ra, GM-CSF, IL-17, and eotaxin for the DA model. The BLR and DA men-only models contained one cytokine each, eotaxin for BLR and platelet-derived growth factor-bb (PDGF-BB) for DA. We show that BLR has a higher fidelity in identifying RA patients than DA. We also found that the use of gender-specific models marginally improves detection fidelity, indicating a possible benefit in clinical diagnosis. More research is needed to determine whether this conclusion will hold true in various and larger patient populations.
Collapse
Affiliation(s)
- Wail M. Hassan
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA;
| | - Nashwa Othman
- Central Research Laboratory, Center for Science and Medical Studies for Girls, King Saud University, Riyadh 11495, Saudi Arabia; (N.O.); (A.W.)
| | - Maha Daghestani
- Department of Zoology, College of Science, Center for Science and Medical Studies for Girls, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Arjumand Warsy
- Central Research Laboratory, Center for Science and Medical Studies for Girls, King Saud University, Riyadh 11495, Saudi Arabia; (N.O.); (A.W.)
| | - Maha A. Omair
- Department of Statistics and Operations Research, College of Sciences, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Eman Alqurtas
- Rheumatology Unit, Department of Medicine, College of Medicine, King Saud University, Riyadh 11495, Saudi Arabia; (E.A.); (S.A.); (M.A.O.)
| | - Shireen Amin
- Rheumatology Unit, Department of Medicine, College of Medicine, King Saud University, Riyadh 11495, Saudi Arabia; (E.A.); (S.A.); (M.A.O.)
| | - Abdulaziz Ismail
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11495, Saudi Arabia;
| | - Afaf El-Ansary
- Central Research Laboratory, Center for Science and Medical Studies for Girls, King Saud University, Riyadh 11495, Saudi Arabia; (N.O.); (A.W.)
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Science, Center for Science and Medical Studies for Girls, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Mohammed A. Omair
- Rheumatology Unit, Department of Medicine, College of Medicine, King Saud University, Riyadh 11495, Saudi Arabia; (E.A.); (S.A.); (M.A.O.)
| |
Collapse
|
4
|
Aripova N, Duryee MJ, England BR, Hunter CD, Mordeson JE, Ryan EM, Daubach EC, Romberger DJ, Thiele GM, Mikuls TR. Citrullinated and malondialdehyde-acetaldehyde modified fibrinogen activates macrophages and promotes an aggressive synovial fibroblast phenotype in patients with rheumatoid arthritis. Front Immunol 2023; 14:1203548. [PMID: 37654483 PMCID: PMC10467288 DOI: 10.3389/fimmu.2023.1203548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/27/2023] [Indexed: 09/02/2023] Open
Abstract
Objective Post-translational protein modifications with malondialdehyde-acetaldehyde (MAA) and citrulline (CIT) are implicated in the pathogenesis of rheumatoid arthritis (RA). Although precise mechanisms have not been elucidated, macrophage-fibroblast interactions have been proposed to play a central role in the development and progression of RA. The purpose of our study was to evaluate the downstream effects of macrophage released soluble mediators, following stimulation with fibrinogen (FIB) modified antigens, on human fibroblast-like synoviocytes (HFLS). Methods PMA-treated U-937 monocytes (Mϕ) and macrophage-differentiated peripheral blood mononuclear cells (MP) were stimulated with FIB, FIB-MAA, FIB-CIT, or FIB-MAA-CIT. HFLS-RA cells were stimulated directly with FIB antigens or with supernatants (SN) from macrophages (Mϕ-SN or MP-SN) stimulated with FIB antigens. Genes associated with an aggressive HFLS phenotype, extracellular matrix proteins, and activated signaling pathways were evaluated. Results HFLS-RA cells treated with Mϕ-SNFIB-CIT and Mϕ-SNFIB-MAA-CIT demonstrated significant increases in mRNA expression of genes associated with an aggressive phenotype at 24-h as compared to direct stimulation with the same antigens. Similar results were obtained using MP-SN. Cellular morphology was altered and protein expression of vimentin (p<0.0001 vs. Mϕ-SNFIB) and type II collagen (p<0.0001) were significantly increased in HFLS-RA cells treated with any of the Mϕ-SN generated following stimulation with modified antigens. Phosphorylation of JNK, Erk1/2, and Akt were increased most substantially in HFLS-RA treated with Mϕ-SNFIB-MAA-CIT (p<0.05 vs Mϕ-SNFIB). These and other data suggested the presence of PDGF-BB in Mϕ-SN. Mϕ-SNFIB-MAA-CIT contained the highest concentration of PDGF-BB (p<0.0001 vs. Mϕ-SNFIB) followed by Mϕ-SNFIB-CIT then Mϕ-SNFIB-MAA. HFLS-RA cells treated with PDGF-BB showed similar cellular morphology to the Mϕ-SN generated following stimulation with modified FIB, as well as the increased expression of vimentin, type II collagen, and the phosphorylation of JNK, Erk1/2 and Akt signaling molecules. Conclusion Together, these findings support the hypothesis that in response to MAA-modified and/or citrullinated fibrinogen, macrophages release soluble factors including PDGF-BB that induce fibroblast activation and promote an aggressive fibroblast phenotype. These cellular responses were most robust following macrophage activation with dually modified fibrinogen, compared to single modification alone, providing novel insights into the combined role of multiple post-translational protein modifications in the development of RA.
Collapse
Affiliation(s)
- Nozima Aripova
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michael J. Duryee
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Research Services 151, Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | - Bryant R. England
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Research Services 151, Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | - Carlos D. Hunter
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Research Services 151, Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | - Jack E. Mordeson
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Evan M. Ryan
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Eric C. Daubach
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Debra J. Romberger
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Omaha, NE, United States
| | - Geoffrey M. Thiele
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Research Services 151, Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | - Ted R. Mikuls
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Research Services 151, Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| |
Collapse
|
5
|
Jiang SZ, To JL, Hughes MR, McNagny KM, Kim H. Platelet signaling at the nexus of innate immunity and rheumatoid arthritis. Front Immunol 2022; 13:977828. [PMID: 36505402 PMCID: PMC9732516 DOI: 10.3389/fimmu.2022.977828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022] Open
Abstract
Rheumatoid arthritis (RA) is a debilitating autoimmune disorder characterized by chronic inflammation of the synovial tissues and progressive destruction of bone and cartilage. The inflammatory response and subsequent tissue degradation are orchestrated by complex signaling networks between immune cells and their products in the blood, vascular endothelia and the connective tissue cells residing in the joints. Platelets are recognized as immune-competent cells with an important role in chronic inflammatory diseases such as RA. Here we review the specific aspects of platelet function relevant to arthritic disease, including current knowledge of the molecular crosstalk between platelets and other innate immune cells that modulate RA pathogenesis.
Collapse
Affiliation(s)
- Steven Z. Jiang
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey L. To
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Michael R. Hughes
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M. McNagny
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Association between the Platelet-Derived Growth Factor/Platelet-Derived Growth Factor Receptor System and Risk of Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6221673. [PMID: 35295202 PMCID: PMC8920641 DOI: 10.1155/2022/6221673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022]
Abstract
This research examines the association between the platelet-derived growth factor/platelet-derived growth factor receptor (PDGF/PDGFR) system and rheumatoid arthritis (RA) susceptibility through a comprehensive search of the PubMed database to study the expression of the PDGF/PDGFR system in RA. Review Manager software version 5.3 was used for statistical analysis. Six eligible studies published in the English language were included, including 108 rheumatoid arthritis cases and 85 controls with the corresponding 126 and 97 tests, respectively, relating the expression of the PDGF/PDGFR system to the risk of RA. The overall results indicated a significant association between the PDGF/PDGFR system expression and RA (OR = 5.25, 95% CI: 3.00-9.18, p < 00001), RA patients in Asian countries (OR = 4.13, 95% CI = 2.04-8.39, p < 0.0001) and in Western countries (OR = 9.18, 95% CI = 2.04-8.39, p = 0.03), and only PDGF expression in RA patients (OR = 5.28, 95% CI = 2.73-10.21, p < 0.00001). Thus, only the PDGFR expression was insignificantly associated with RA susceptibility (OR = 9.25, 95% CI = 0.63-136.30, p = 0.11). Hence, the PDGF/PDGFR system most likely contributes to susceptibility to RA.
Collapse
|