1
|
Liu Y, Duan H, Chen Y, Zhang C, Zhao J, Narbad A, Tian F, Zhai Q, Yu L, Chen W. Intraspecific difference of Latilactobacillus sakei in inflammatory bowel diseases: Insights into potential mechanisms through comparative genomics and metabolomics analyses. IMETA 2023; 2:e136. [PMID: 38868211 PMCID: PMC10989848 DOI: 10.1002/imt2.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 06/14/2024]
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory diseases of the gastrointestinal tract that have become a global health burden. Studies have revealed that Latilactobacillus sakei can effectively alleviate various immune diseases, including colitis, rheumatoid arthritis, and metabolic disorders. Here, we obtained 72 strains of L. sakei from 120 fermentation and fecal samples across China. In total, 16 strains from different sources were initially screened in an in vitro Caco-2 model induced by dextran sulfate sodium. Subsequently, six strains (four exhibiting effectiveness and two exhibiting ineffectiveness) were selected for further validation in an in vivo colitis mouse model. The results demonstrated that L. sakei strains exhibited varying degrees of amelioration of the colitis disease process. Notably, L. sakei CCFM1267, the most effective strain, significantly restored colon length and tight-junction protein expression, and reduced the levels of cytokines and associated inflammatory enzymes. Moreover, L. sakei CCFM1267 upregulated the abundance of Enterorhabdus, Alloprevotella, and Roseburia, leading to increased levels of acetic acid and propionic acid. Conversely, the other four strains (L. sakei QJSSZ1L4, QJSSZ4L10, QGZZYRHMT1L6, and QGZZYRHMT2L6) only exhibited a partial remission effect, while L. sakei QJSNT1L10 displayed minimal impact. Therefore, L. sakei CCFM1267 and QJSNT1L10 were selected for further exploration of the mechanisms underlying their differential mitigating effects. Comparative genomics analysis revealed significant variations between the two strains, particularly in genes associated with carbohydrate-active enzymes, such as the glycoside hydrolase family, which potentially contribute to the diverse profiles of short-chain fatty acids in vivo. Additionally, metabolome analysis demonstrated that acetylcholine and indole-3-acetic acid were the main differentiating metabolites of the two strains. Therefore, the strains of L. sakei exhibited varying degrees of effectiveness in alleviating IBD-related symptoms, and the possible reasons for these variations were attributed to discrepancies in the carbohydrate-active enzymes and metabolites among the strains.
Collapse
Affiliation(s)
- Yaru Liu
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Hui Duan
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Ying Chen
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Jianxin Zhao
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- National Engineering Research Center for Functional FoodJiangnan UniversityWuxiChina
- International Joint Research Laboratory for ProbioticsJiangnan UniversityWuxiChina
| | - Arjan Narbad
- International Joint Research Laboratory for ProbioticsJiangnan UniversityWuxiChina
- Gut Health and Microbiome Institute Strategic ProgrammeQuadram Institute BioscienceNorwichUK
| | - Fengwei Tian
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- International Joint Research Laboratory for ProbioticsJiangnan UniversityWuxiChina
| | - Qixiao Zhai
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- International Joint Research Laboratory for ProbioticsJiangnan UniversityWuxiChina
| | - Leilei Yu
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- International Joint Research Laboratory for ProbioticsJiangnan UniversityWuxiChina
| | - Wei Chen
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- National Engineering Research Center for Functional FoodJiangnan UniversityWuxiChina
- International Joint Research Laboratory for ProbioticsJiangnan UniversityWuxiChina
| |
Collapse
|
2
|
Ruenkoed S, Nontasan S, Phudkliang J, Phudinsai P, Pongtanalert P, Panprommin D, Mongkolwit K, Wangkahart E. Effect of dietary gamma aminobutyric acid (GABA) modulated the growth performance, immune and antioxidant capacity, digestive enzymes, intestinal histology and gene expression of Nile tilapia (Oreochromisniloticus). FISH & SHELLFISH IMMUNOLOGY 2023; 141:109056. [PMID: 37673386 DOI: 10.1016/j.fsi.2023.109056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Dietary GABA plays an important role in a variety of physiological functions in animals, but this has been rarely reported in fish. This study investigated the effects of dietary supplementation with GABA on growth, serum antioxidant indicators, digestive enzyme activities, intestinal morphology, and the gene expression of Nile tilapia. Diets containing three different GABA concentrations, 0 (control), 200 mg/kg (GABA200), and 500 mg/kg (GABA500), were fed to Nile tilapia (6.97 ± 0.34 g) for 56 days. The present study found that increasing dietary GABA content could increase the fish growth performance including final body weight, weight gain, specific growth rate, average daily gain, protein efficiency ratio, and feed efficiency compared to the control diet. Interestingly, the feed conversion ratio was improved by dietary GABA supplementation. The antioxidant enzyme activities against ammonia stress of fish fed the GABA diets were significantly higher than the corresponding control group throughout the 96-h ammonia exposure. Moreover, significant increases in digestive enzyme activities including protease, amylase and lipase were found in fish fed the GABA diets. Intestinal morphology analysis revealed increased heights and widths of intestinal villi as well as thickness of the intestinal muscularis in fish fed the GABA diets compared to the control diet. The supplementation of diets with GABA significantly increased the expression level of immune- and growth-related genes. The above results indicate that dietary GABA can modulate the growth, improve their immune response and antioxidant status, gut health and morphology and gene expression of Nile tilapia. Therefore, GABA is a promising feed additive for Nile tilapia aquaculture.
Collapse
Affiliation(s)
- Supranee Ruenkoed
- Research Institute, Pucheng Chia Tai Biochemistry Co., Ltd., Pucheng, Fujian, 353400, China
| | - Supap Nontasan
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-district, Kantarawichai, Maha Sarakham, 44150, Thailand; Faculty of Tourism and Hotel Management, Mahasarakham University, Talad Sub-district, Muang, Maha Sarakham, 44000, Thailand
| | - Janjira Phudkliang
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-district, Kantarawichai, Maha Sarakham, 44150, Thailand
| | - Piyachat Phudinsai
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-district, Kantarawichai, Maha Sarakham, 44150, Thailand
| | - Piyapong Pongtanalert
- Research Institute, Pucheng Chia Tai Biochemistry Co., Ltd., Pucheng, Fujian, 353400, China
| | - Dutrudi Panprommin
- School of Agriculture and Natural Resources, University of Phayao, Phayao, 56000, Thailand
| | | | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-district, Kantarawichai, Maha Sarakham, 44150, Thailand.
| |
Collapse
|
3
|
Zhong Y, Wang T, Luo R, Liu J, Jin R, Peng X. Recent advances and potentiality of postbiotics in the food industry: Composition, inactivation methods, current applications in metabolic syndrome, and future trends. Crit Rev Food Sci Nutr 2022; 64:5768-5792. [PMID: 36537328 DOI: 10.1080/10408398.2022.2158174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Postbiotics are defined as "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Postbiotics have unique advantages over probiotics, such as stability, safety, and wide application. Although postbiotics are research hotspots, the research on them is still very limited. This review provides comprehensive information on the scope of postbiotics, the preparation methods of inanimate microorganisms, and the application and mechanisms of postbiotics in metabolic syndrome (MetS). Furthermore, the application trends of postbiotics in the food industry are reviewed. It was found that postbiotics mainly include inactivated microorganisms, microbial lysates, cell components, and metabolites. Thermal treatments are the main methods to prepare inanimate microorganisms as postbiotics, while non-thermal treatments, such as ionizing radiation, ultraviolet light, ultrasound, and supercritical CO2, show great potential in postbiotic preparation. Postbiotics could ameliorate MetS through multiple pathways including the modulation of gut microbiota, the enhancement of intestinal barrier, the regulation of inflammation and immunity, and the modulation of hormone homeostasis. Additionally, postbiotics have great potential in the food industry as functional food supplements, food quality improvers, and food preservatives. In addition, the SWOT analyses showed that the development of postbiotics in the food industry exists both opportunities and challenges.
Collapse
Affiliation(s)
- Yujie Zhong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Ruilin Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiayu Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruyi Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Yu L, Chen Y, Duan H, Qiao N, Wang G, Zhao J, Zhai Q, Tian F, Chen W. Latilactobacillus sakei: a candidate probiotic with a key role in food fermentations and health promotion. Crit Rev Food Sci Nutr 2022; 64:978-995. [PMID: 35997270 DOI: 10.1080/10408398.2022.2111402] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Latilactobacillus sakei is used extensively in industrial production and food fermentations. The species is primarily derived from fermented meat and vegetable products and is also found in human feces. Genomics and metabolomics have revealed unique metabolic pathways in L. sakei and molecular mechanisms underlying its competitive advantages in different habitats, which are mostly attributed to its flexible carbohydrate metabolism, cold tolerance, acid and salt tolerance, ability to cope with oxygen changes, and heme uptake. In recent years, probiotic effects of L. sakei and its metabolites have been identified, including the ability to effectively alleviate metabolic syndrome, inflammatory bowel disease, and atopic dermatitis. This review summarizes the genomic and metabolic characteristics of L. sakei and its metabolites and describes their applications, laying a foundation for their expanded use across the food and healthcare industries.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Ying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Nanzhen Qiao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Genome Sequence of Lactobacillus plantarum KB1253, a Gamma-Aminobutyric Acid (GABA) Producer Used in GABA-Enriched Tomato Juice Production. Microbiol Resour Announc 2019; 8:8/29/e00158-19. [PMID: 31320423 PMCID: PMC6639602 DOI: 10.1128/mra.00158-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here, we present the draft genome sequence of Lactobacillus plantarum KB1253, isolated from a traditional Japanese pickle. Its genome comprises 3,097 genes and 3,305,456 nucleotides, with an average G+C content of 44.4%. Here, we present the draft genome sequence of Lactobacillus plantarum KB1253, isolated from a traditional Japanese pickle. Its genome comprises 3,097 genes and 3,305,456 nucleotides, with an average G+C content of 44.4%.
Collapse
|
6
|
Adefegha SA, Oboh G, Adefegha OM, Henle T. Alligator pepper/Grain of Paradise ( Aframomum melegueta ) modulates Angiotensin-I converting enzyme activity, lipid profile and oxidative imbalances in a rat model of hypercholesterolemia. PATHOPHYSIOLOGY 2016; 23:191-202. [DOI: 10.1016/j.pathophys.2016.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 12/31/2022] Open
|
7
|
Genome Sequence of Lactobacillus curieae CCTCC M 2011381T, a Novel Producer of Gamma-aminobutyric Acid. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00552-15. [PMID: 26021929 PMCID: PMC4447914 DOI: 10.1128/genomea.00552-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lactobacillus curieae CCTCC M 2011381(T) is a novel species of the genus Lactobacillus and a gamma-aminobutyric acid producer that was isolated from stinky tofu brine. Here, we present a 2.19-Mb assembly of its genome, which may provide further insights into the molecular mechanisms underlying its beneficial properties.
Collapse
|