1
|
Zheng T, Jiang T, Ma H, Zhu Y, Wang M. Targeting PI3K/Akt in Cerebral Ischemia Reperfusion Injury Alleviation: From Signaling Networks to Targeted Therapy. Mol Neurobiol 2024; 61:7930-7949. [PMID: 38441860 DOI: 10.1007/s12035-024-04039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/09/2024] [Indexed: 09/21/2024]
Abstract
Ischemia/reperfusion (I/R) injury is a pathological event that results in reperfusion due to low blood flow to an organ. Cerebral ischemia is a common cerebrovascular disease with high mortality, and reperfusion is the current standard intervention. However, reperfusion may further induce cellular damage and dysfunction known as cerebral ischemia/reperfusion injury (CIRI). Currently, strategies for the clinical management of CIRI are limited, necessitating the exploration of novel and efficacious treatment modalities for the benefit of patients. PI3K/Akt signaling pathway is an important cellular process associated with the disease. Stimulation of the PI3K/Akt pathway enhances I/R injury in multiple organs such as heart, brain, lung, and liver. It stands as a pivotal signaling pathway crucial for diminishing cerebral infarction size and safeguarding the functionality of brain tissue after CIRI. During CIRI, activation of the PI3K/Akt pathway exhibits a protective effect on CIRI. Furthermore, activation of the PI3K/Akt pathway has the potential to augment the activity of antioxidant enzymes, resulting in a decrease in reactive oxygen species (ROS) and the associated oxidative stress. Meanwhile, PI3K/Akt plays a neuroprotective role by inhibiting inflammatory responses and apoptosis. For example, PI3K/Akt interacts with NF-κB, Nrf2, and MAPK signaling pathways to mitigate CIRI. This article is aimed to explore the pivotal role and underlying mechanism of PI3K/Akt in ameliorating CIRI and investigate the influence of ischemic preconditioning and post-processing, as well as the impact of pertinent drugs or activators targeting the PI3K/Akt pathway on CIRI. The primary objective is to furnish compelling evidence supporting the activation of PI3K/Akt in the context of CIRI, elucidating its mechanistic intricacies. By doing so, the paper aims to underscore the critical contribution of PI3K/Akt in mitigating CIRI, providing a theoretical foundation for considering the PI3K/Akt pathway as a viable target for CIRI treatment.
Collapse
Affiliation(s)
- Ting Zheng
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Taotao Jiang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hongxiang Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yanping Zhu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Manxia Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
2
|
Restoring After Central Nervous System Injuries: Neural Mechanisms and Translational Applications of Motor Recovery. Neurosci Bull 2022; 38:1569-1587. [DOI: 10.1007/s12264-022-00959-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/29/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractCentral nervous system (CNS) injuries, including stroke, traumatic brain injury, and spinal cord injury, are leading causes of long-term disability. It is estimated that more than half of the survivors of severe unilateral injury are unable to use the denervated limb. Previous studies have focused on neuroprotective interventions in the affected hemisphere to limit brain lesions and neurorepair measures to promote recovery. However, the ability to increase plasticity in the injured brain is restricted and difficult to improve. Therefore, over several decades, researchers have been prompted to enhance the compensation by the unaffected hemisphere. Animal experiments have revealed that regrowth of ipsilateral descending fibers from the unaffected hemisphere to denervated motor neurons plays a significant role in the restoration of motor function. In addition, several clinical treatments have been designed to restore ipsilateral motor control, including brain stimulation, nerve transfer surgery, and brain–computer interface systems. Here, we comprehensively review the neural mechanisms as well as translational applications of ipsilateral motor control upon rehabilitation after CNS injuries.
Collapse
|
3
|
Porciatti V, Chou TH. Using Noninvasive Electrophysiology to Determine Time Windows of Neuroprotection in Optic Neuropathies. Int J Mol Sci 2022; 23:5751. [PMID: 35628564 PMCID: PMC9145583 DOI: 10.3390/ijms23105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
The goal of neuroprotection in optic neuropathies is to prevent loss of retinal ganglion cells (RGCs) and spare their function. The ideal time window for initiating neuroprotective treatments should be the preclinical period at which RGCs start losing their functional integrity before dying. Noninvasive electrophysiological tests such as the Pattern Electroretinogram (PERG) can assess the ability of RGCs to generate electrical signals under a protracted degenerative process in both clinical conditions and experimental models, which may have both diagnostic and prognostic values and provide the rationale for early treatment. The PERG can be used to longitudinally monitor the acute and chronic effects of neuroprotective treatments. User-friendly versions of the PERG technology are now commercially available for both clinical and experimental use.
Collapse
|
4
|
Li Y, Wu F, Zhou M, Zhou J, Cui S, Guo J, Wu J, He L. ProNGF/NGF Modulates Autophagy and Apoptosis through PI3K/Akt/mTOR and ERK Signaling Pathways following Cerebral Ischemia-Reperfusion in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6098191. [PMID: 35391929 PMCID: PMC8983267 DOI: 10.1155/2022/6098191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 02/05/2023]
Abstract
NGF is involved in the process of autophagy; however, the underlying mechanisms of proNGF/NGF on autophagy in cerebral ischemia-reperfusion (CIR) remain unclear. This study explored the potential pathway of proNGF/NGF in mediating autophagy and apoptosis and thereby contributed to poststroke neurological rehabilitation. In this study, PC12 cell lines and male SD rats were used to simulate CIR; it was found that within 24 h reperfusion, proNGF was the predominant form of Ngf while after 24 h NGF was produced by proNGF transformation. The mature NGF was found to protect neurons against autophagic and apoptotic damage caused by CIR, but proNGF can cause both autophagic and apoptotic neuronal damage. The protective effect of NGF is associated with the activation of the PI3K/Akt/mTOR and ERK pathway and, as well as the change of autophagy-related proteins. On the other hand, proNGF promoted the ERK pathway increasing autophagy and affected the apoptosis-related proteins in vivo and in vitro. These results were also verified in male SD rats with CIR that neurological deficit caused by CIR can be rescued by recombinant and wild-type NGF, and vice-versa by proNGF.
Collapse
Affiliation(s)
- Yanbo Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Fengbo Wu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Muke Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jie Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Shuhui Cui
- Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jian Guo
- Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Junhao Wu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li He
- Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
In Vitro Neuroprotective Effect of the Bovine Umbilical Vein Endothelial Cell Conditioned Medium Mediated by Downregulation of IL-1β, Caspase-3, and Caspase-9 Expression. Vet Sci 2022; 9:vetsci9020048. [PMID: 35202301 PMCID: PMC8878894 DOI: 10.3390/vetsci9020048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem cells (MSCs) and conditioned medium (CM) derived from human umbilical blood cord stem cells (HUBSC) are now being extensively utilized. Human umbilical vein endothelial cells (HUVECs) have the same ability as HUBSC as an option for autologous therapy. In addition, cell therapy using HUVECs may produce protective signals for cerebral vessels and promote neuronal survival after hypoxic–ischemic damage. HUVECs have the same anatomical and physiological structure as bovine umbilical vein endothelial cells (BUVECs). In this study, we aim to determine the ability of BUVEC-CM to reduce inflammation and apoptosis on in vitro neurodegeneration models (PC12 and SH-SY5Y cell lines). BUVEC-CM obtained from the third and fourth passages were analyzed using liquid chromatography–mass spectrometry (LC-MS) and high-resolution mass spectrometry (HR-MS), while the other part was used as a treatment for in vitro model neurodegeneration. The PC12 and SH-SY5Y cell lines were cultured and grouped into seven different treatments, including untreated cells. As the treatment group, cells were given TMT 10 µM in the presence of different doses of CM (25%, 50%, 75%, and 100%); as a control comparison of recent therapy, donepezil was used. In addition, cells with the administration of TMT 10 µM were run as a positive control. Cell viability assay (CCK-8) and enzyme-linked immunosorbent assay (ELISA) were performed to identify the viability and expression of interleukin-1β (IL-1β), caspase-3, and caspase-9 for both PC12 and SH-SY5Y cells. The results showed that BUVEC-CM could significantly reduce IL-1β expression and downregulate caspase-3 and caspase-9, as well as when compared to the donepezil group. Taken together, these results indicate that BUVEC-CM can be used as a potential candidate for neuroprotective agents by reducing the activity of IL-1β and the expression of caspase-9 and caspase-3 in PC12 and SH-SY5Y cells induced by TMT. However, further research still needs to be conducted.
Collapse
|
6
|
Pomierny B, Krzyżanowska W, Jurczyk J, Skórkowska A, Strach B, Szafarz M, Przejczowska-Pomierny K, Torregrossa R, Whiteman M, Marcinkowska M, Pera J, Budziszewska B. The Slow-Releasing and Mitochondria-Targeted Hydrogen Sulfide (H 2S) Delivery Molecule AP39 Induces Brain Tolerance to Ischemia. Int J Mol Sci 2021; 22:ijms22157816. [PMID: 34360581 PMCID: PMC8346077 DOI: 10.3390/ijms22157816] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/29/2022] Open
Abstract
Ischemic stroke is the third leading cause of death in the world, which accounts for almost 12% of the total deaths worldwide. Despite decades of research, the available and effective pharmacotherapy is limited. Some evidence underlines the beneficial properties of hydrogen sulfide (H2S) donors, such as NaSH, in an animal model of brain ischemia and in in vitro research; however, these data are ambiguous. This study was undertaken to verify the neuroprotective activity of AP39, a slow-releasing mitochondria-targeted H2S delivery molecule. We administered AP39 for 7 days prior to ischemia onset, and the potential to induce brain tolerance to ischemia was verified. To do this, we used the rat model of 90-min middle cerebral artery occlusion (MCAO) and used LC-MS/MS, RT-PCR, LuminexTM assays, Western blot and immunofluorescent double-staining to determine the absolute H2S levels, inflammatory markers, neurotrophic factor signaling pathways and apoptosis marker in the ipsilateral frontal cortex, hippocampus and in the dorsal striatum 24 h after ischemia onset. AP39 (50 nmol/kg) reduced the infarct volume, neurological deficit and reduced the microglia marker (Iba1) expression. AP39 also exerted prominent anti-inflammatory activity in reducing the release of Il-1β, Il-6 and TNFα in brain areas particularly affected by ischemia. Furthermore, AP39 enhanced the pro-survival pathways of neurotrophic factors BDNF-TrkB and NGF-TrkA and reduced the proapoptotic proNGF-p75NTR-sortilin pathway activity. These changes corresponded with reduced levels of cleaved caspase 3. Altogether, AP39 treatment induced adaptative changes within the brain and, by that, developed brain tolerance to ischemia.
Collapse
Affiliation(s)
- Bartosz Pomierny
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (W.K.); (J.J.); (A.S.); (B.B.)
- Correspondence:
| | - Weronika Krzyżanowska
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (W.K.); (J.J.); (A.S.); (B.B.)
| | - Jakub Jurczyk
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (W.K.); (J.J.); (A.S.); (B.B.)
| | - Alicja Skórkowska
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (W.K.); (J.J.); (A.S.); (B.B.)
| | - Beata Strach
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, Botaniczna 3, 31-503 Kraków, Poland; (B.S.); (J.P.)
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.S.); (K.P.-P.)
| | - Katarzyna Przejczowska-Pomierny
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.S.); (K.P.-P.)
| | - Roberta Torregrossa
- St. Luke’s Campus, University of Exeter Medical School, Exeter EX1 2LU, UK; (R.T.); (M.W.)
| | - Matthew Whiteman
- St. Luke’s Campus, University of Exeter Medical School, Exeter EX1 2LU, UK; (R.T.); (M.W.)
| | - Monika Marcinkowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
| | - Joanna Pera
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, Botaniczna 3, 31-503 Kraków, Poland; (B.S.); (J.P.)
| | - Bogusława Budziszewska
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (W.K.); (J.J.); (A.S.); (B.B.)
| |
Collapse
|
7
|
Yuan L, Qu Y, Li Q, An T, Chen Z, Chen Y, Deng X, Bai D. Protective effect of astaxanthin against La2O3 nanoparticles induced neurotoxicity by activating PI3K/AKT/Nrf-2 signaling in mice. Food Chem Toxicol 2020; 144:111582. [DOI: 10.1016/j.fct.2020.111582] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022]
|
8
|
Gudasheva TA, Povarnina PY, Tarasiuk AV, Seredenin SB. Low-molecular mimetics of nerve growth factor and brain-derived neurotrophic factor: Design and pharmacological properties. Med Res Rev 2020; 41:2746-2774. [PMID: 32808322 DOI: 10.1002/med.21721] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
To overcome the limitations of the clinical use of neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), scientists have been trying to create their low-molecular-weight mimetics having improved pharmacokinetic properties and lacking side effects of full-sized proteins since the 90s of the last century. The efforts of various research groups have led to the production of peptide and nonpeptide mimetics, being agonists or modulators of the corresponding Trk or p75 receptors that reproduced the therapeutic effects of full-sized proteins. This review discusses different strategies and approaches to the design of such compounds. The relationship between the structure of the mimetics obtained and their action mechanisms and pharmacological properties are analyzed. Special attention is paid to the dipeptide mimetics of individual NGF and BDNF loops having different patterns of activation of Trk receptors signal transduction pathways, phosphoinositide 3-kinase/protein kinase B and mitogen-activated protein kinase/extracellular signal-regulated kinase, which allowed to evaluate the contribution of each pathway to different pharmacological effects. In conclusion, data on therapeutically promising compounds being at different stages of preclinical and clinical studies are summarized.
Collapse
Affiliation(s)
- Tatiana A Gudasheva
- Medicinal Chemistry Department, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| | - Polina Y Povarnina
- Medicinal Chemistry Department, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| | - Aleksey V Tarasiuk
- Medicinal Chemistry Department, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| | - Sergey B Seredenin
- Department of Pharmacogenetics, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| |
Collapse
|
9
|
Steliga A, Kowiański P, Czuba E, Waśkow M, Moryś J, Lietzau G. Neurovascular Unit as a Source of Ischemic Stroke Biomarkers-Limitations of Experimental Studies and Perspectives for Clinical Application. Transl Stroke Res 2020; 11:553-579. [PMID: 31701356 PMCID: PMC7340668 DOI: 10.1007/s12975-019-00744-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/13/2023]
Abstract
Cerebral stroke, which is one of the most frequent causes of mortality and leading cause of disability in developed countries, often leads to devastating and irreversible brain damage. Neurological and neuroradiological diagnosis of stroke, especially in its acute phase, is frequently uncertain or inconclusive. This results in difficulties in identification of patients with poor prognosis or being at high risk for complications. It also makes difficult identification of these stroke patients who could benefit from more aggressive therapies. In contrary to the cardiovascular disease, no single biomarker is available for the ischemic stroke, addressing the abovementioned issues. This justifies the need for identifying of effective diagnostic measures characterized by high specificity and sensitivity. One of the promising avenues in this area is studies on the panels of biomarkers characteristic for processes which occur in different types and phases of ischemic stroke and represent all morphological constituents of the brains' neurovascular unit (NVU). In this review, we present the current state of knowledge concerning already-used or potentially applicable biomarkers of the ischemic stroke. We also discuss the perspectives for identification of biomarkers representative for different types and phases of the ischemic stroke, as well as for different constituents of NVU, which concentration levels correlate with extent of brain damage and patients' neurological status. Finally, a critical analysis of perspectives on further improvement of the ischemic stroke diagnosis is presented.
Collapse
Affiliation(s)
- Aleksandra Steliga
- Faculty of Health Sciences, Pomeranian University of Slupsk, 64 Bohaterów Westerplatte St., 76-200, Slupsk, Poland
| | - Przemysław Kowiański
- Faculty of Health Sciences, Pomeranian University of Slupsk, 64 Bohaterów Westerplatte St., 76-200, Slupsk, Poland.
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland.
| | - Ewelina Czuba
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland
| | - Monika Waśkow
- Faculty of Health Sciences, Pomeranian University of Slupsk, 64 Bohaterów Westerplatte St., 76-200, Slupsk, Poland
| | - Janusz Moryś
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland
| | - Grażyna Lietzau
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
NGF mediates protection of mesenchymal stem cells-conditioned medium against 2,5-hexanedione-induced apoptosis of VSC4.1 cells via Akt/Bad pathway. Mol Cell Biochem 2020; 469:53-64. [PMID: 32279149 DOI: 10.1007/s11010-020-03727-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/03/2020] [Indexed: 12/25/2022]
Abstract
It has been shown that the conditioned medium of bone mesenchymal stem cells (BMSC-CM) can inhibit apoptosis of neural cells exposed to 2,5-hexanedione (HD), but its protective mechanism remains unclear. To investigate the underlying mechanism, VSC4.1 cells were given HD and 5, 10 and 15% BMSC-CM (v/v) in the current experiment. Our data showed that BMSC-CM concentration-dependently attenuated HD-induced cell apoptosis. Moreover, BMSC-CM remarkably decreased the mitochondrial cytochrome c (Cyt C) release and the caspase-3 activity in HD-given VSC4.1 cells. Given a relatively high expression of NGF in BMSCs and BMSC-CM, we hypothesized that NGF might be an important mediator of the protection of BMSC-CM against apoptosis induced by HD. To verify our hypothesis, the VSC4.1 cells were administrated with NGF and anti-NGF antibody in addition to HD. As expected, NGF could perfectly mimic BMSC-CM's protective role and these beneficial effects were abolished by anti-NGF antibody intervention. To further explore its mechanism, inhibitors of TrkA and Akt were given to the VSC4.1 cells and NGF/Akt/Bad pathway turned out to be involved in anti-apoptotic role of BMSC-CM. Based on these findings, it was revealed that BMSC-CM beneficial role was mediated by NGF and relied on the Akt/Bad pathway.
Collapse
|
11
|
Gudasheva TA, Povarnina PY, Volkova AA, Kruglov SV, Antipova TA, Seredenin SB. A Nerve Growth Factor Dipeptide Mimetic Stimulates Neurogenesis and Synaptogenesis in the Hippocampus and Striatum of Adult Rats with Focal Cerebral Ischemia. Acta Naturae 2019; 11:31-37. [PMID: 31720014 PMCID: PMC6826148 DOI: 10.32607/20758251-2019-11-3-31-37] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/06/2019] [Indexed: 11/20/2022] Open
Abstract
The nerve growth factor (NGF) and its mimetics, which have neuroprotective and neuroregenerative properties, are attractive candidates for developing new drugs for brain injury therapy. A dipeptide mimetic of NGF loop 4, bis(N-succinyl-L-glutamyl-L-lysine) hexamethylenediamide (GK-2), developed at the Zakusov Research Institute of Pharmacology, has the NGF-like ability to activate TrkA receptors, but unlike NGF, GK-2 activates mainly the PI3K/AKT pathway associated with neuroprotection and has no effect on the MAPK cascade associated with hyperalgesia, the main side effect of NGF. That GK-2 possesses neuroprotective activity has been observed in various models of cerebral ischemia. GK-2 was found to statistically significantly reduce the cerebral infarct volume in experimental stroke, even at treatment onset 24 h after injury. This suggests that GK-2 possesses neuroregenerative properties, which may be associated with the activation of neurogenesis and/or synaptogenesis. We studied the effect of GK-2 on neurogenesis and synaptogenesis in experimental ischemic stroke caused by transient occlusion of the middle cerebral artery in rats. GK-2 was administered 6 or 24 h after surgery and then once a day for 7 days. One day after the last administration, proliferative activity in the hippocampus and striatum of the affected hemisphere was assessed using Ki67 and synaptogenesis in the striatum was evaluated using synaptophysin and PSD-95. Ki67 immunoreactivity, both in the striatum and in the hippocampus of the ischemic rats, was found to have dropped by approximately 30% compared to that in the sham-operated controls. Synaptic markers - synaptophysin and PSD-95 - were also statistically significantly reduced, by 14 and 29%, respectively. GK-2 in both administration schedules completely restored the level of Ki67 immunoreactivity in the hippocampus and promoted its increase in the striatum. In addition, GK-2 restored the level of the postsynaptic marker PSD-95, with the therapeutic effect amounting to 70% at the start of its administration after 6 h, and promoted restoration of the level of this marker at the start of administration 24 h after an experimental stroke. GK-2 had no effect on the synaptophysin level. These findings suggest that the neurotrophin mimetic GK-2, which mainly activates one of the main Trk receptor signaling pathways PI3K/ AKT, has a stimulating effect on neurogenesis (and, probably, gliogenesis) and synaptogenesis in experimental cerebral ischemia. This effect may explain the protective effect observed at the start of dipeptide administration 24 h after stroke simulation.
Collapse
Affiliation(s)
- T. A. Gudasheva
- Federal State Budgetary Institution “Zakusov Research Institute of Pharmacology”, Baltiyskay Str. 8 , Moscow, 125315, Russia
| | - P. Yu. Povarnina
- Federal State Budgetary Institution “Zakusov Research Institute of Pharmacology”, Baltiyskay Str. 8 , Moscow, 125315, Russia
| | - A. A. Volkova
- Federal State Budgetary Institution “Zakusov Research Institute of Pharmacology”, Baltiyskay Str. 8 , Moscow, 125315, Russia
| | - S. V. Kruglov
- Federal State Budgetary Institution “Zakusov Research Institute of Pharmacology”, Baltiyskay Str. 8 , Moscow, 125315, Russia
| | - T. A. Antipova
- Federal State Budgetary Institution “Zakusov Research Institute of Pharmacology”, Baltiyskay Str. 8 , Moscow, 125315, Russia
| | - S. B. Seredenin
- Federal State Budgetary Institution “Zakusov Research Institute of Pharmacology”, Baltiyskay Str. 8 , Moscow, 125315, Russia
| |
Collapse
|
12
|
Seredenin SB, Povarnina PY, Gudasheva TA. [An experimental evaluation of the therapeutic window of the neuroprotective activity of a low-molecular nerve growth factor mimetic GK-2]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 118:49-53. [PMID: 30132457 DOI: 10.17116/jnevro20181187149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIM To identify the time interval for the preservation of the effect of GK-2 depending on the start of administration after modeling ischemic stroke by the transient occlusion of the middle cerebral artery in rats. MATERIAL AND METHODS The experiments were performed on 33 wild-type male rats and 81 male Wistar rats. Animals were kept in standard conditions. Ischemic stroke was modelled by thread occlusion of the middle cerebral artery. RESULTS AND CONCLUSION It was found that GK-2 at a daily dose of 1 mg/kg, intraperitoneally, during 7 days statistically significantly reduces brain infarct volume by 20-60% at the first injection from 4 to 24h, with the highest effect 6-8 hours after surgery. Thus, the 'therapeutic window' of GK-2 detected in the experiment is no less than 24 hours, which exceeds the existing neuroprotective agents.
Collapse
Affiliation(s)
- S B Seredenin
- Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - P Yu Povarnina
- Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - T A Gudasheva
- Zakusov Research Institute of Pharmacology, Moscow, Russia
| |
Collapse
|
13
|
Bai M, Liu B, Peng M, Jia J, Fang X, Miao M. Effect of Sargentodoxa cuneata total phenolic acids on focal cerebral ischemia reperfusion injury rats model. Saudi J Biol Sci 2018; 26:569-576. [PMID: 30899173 PMCID: PMC6408703 DOI: 10.1016/j.sjbs.2018.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/24/2018] [Accepted: 11/25/2018] [Indexed: 11/12/2022] Open
Abstract
Objective Explore the possible protective effect of Sargentodoxa cuneata total phenolic acids on cerebral ischemia reperfusion injury rats. Methods Focal cerebral ischemia reperfusion rats model were established by linear thrombus. Nimodipine group, Naoluotong group, the high, middle and low dose of Sargentodoxa cuneata total phenolic acids groups were given related drugs via intragastric administration before operation for seven days, once a day. At the same time sham operation group, and ischemia reperfusion group were given the same volume of physiological saline. One hour after the last administration, establish focal cerebral ischemia- reperfusion model in rats by thread method, and the thread was taken out after 2 h ischemia to achieve cerebral ischemia reperfusion injury in rats. After reperfusion for 24 h, the rats were given neurologic deficit score. The brain tissue was taken to measure the levels of IL-6, IL-1β, TNF-α, Bcl-2, Bax, Casp-3 and ICAM-1; HE staining observed histopathological changes in the hippocampus and cortical areas of the brain; Immunohistochemistry was used to observe the expression of NGF and NF-KBp65. Result Focal cerebral ischemia reperfusion rats model was copyed successed. Compared with model group, each dose group of Sargentodoxa cuneata total phenolic acids could decreased the neurologic deficit score (P < 0.05 or P < 0.01), decreased the levels of IL-6, IL-1β, ICAM-1, TNF-α, Bax and Caspase-3 in brain tissue (P < 0.05 or P < 0.01), increased the levels of IL-10, Bcl-2, NGF in brain tissue (P < 0.05 or P < 0.01), decreased the express of NF-KBp65 in brain (P < 0.05 or P < 0.01). Conclusion Sargentodoxa cuneata total phenolic acids can improve focal cerebral ischemia reperfusion injury rats tissue inflammation, apoptosis pathway, increase nutrition factor to protect the neurons, reduce the apoptosis of nerve cells, activate brain cells self-protect, improve the histopathological changes in the hippocampus and cortical areas of the brain, reduce cerebral ischemia reperfusion injury.
Collapse
Affiliation(s)
- Ming Bai
- Pharmacology Laboratory, Henan University of Chinese Medicine, Zhengzhou, China
| | - Baosong Liu
- Pharmacology Laboratory, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mengfan Peng
- Pharmacology Laboratory, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiaojiao Jia
- Pharmacology Laboratory, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoyan Fang
- Pharmacology Laboratory, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingsan Miao
- Pharmacology Laboratory, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
14
|
Effect of Combination Therapy with Neuroprotective and Vasoprotective Agents on Cerebral Ischemia. Can J Neurol Sci 2018; 45:325-331. [DOI: 10.1017/cjn.2018.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractBecause most tested drugs are active against only one of the damaging processes associated with stroke, other mechanisms may cause cellular death. Thus, a combination of protective agents targeting different pathophysiological mechanisms may obtain better effects than a single agent. The major objective of this study was to investigate the effect of combination therapy with vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) after controlled ischemic brain injury in rabbits.Methods:Animals were randomly assigned to one of the following groups: sham group, saline-treated control group or NGF+VEGF-treated group. Animals received an intracerebral microinjection of VEGF and NGF or saline at 5 or 8 hours after ischemia. The two specified time points of administration were greater than or equal to the existing therapeutic time window for monoterapy with VEGF or NGF alone (3 or 5 hours of ischemia). Infarct volume, water content, neurological deficits, neural cell apoptosis and the expression of caspase-3 and Bcl-2 were measured.Results:Compared with saline-treated controls, the combination therapy of VEGF and NGF significantly reduced infarct volume, water content, neural cell apoptosis and the expression of caspase-3, up-regulated the expression of Bcl-2 and improved functional recovery (bothp<0.01) when administered 5 or 8 hours after ischemia. The earlier the administration the better the neuroprotection.Conclusions:These results showed that the combination therapy with VEGF and NGF provided neuroprotective effects. In addition, the time window of combination treatment should be at least 8 hours after ischemia, which was wider than monotherapy.RÉSUMÉ:Les effets d’une polythérapie combinant agents neuro-protecteurs et agents vasoprotecteurs dans les cas d’ischémie cérébrale.Contexte:Étant donné que la plupart des médicaments préalablement testés tendent à n’agir contre seulement un des processus de dommage associés aux AVC, il est possible que d’autres processus entraînent une mort cellulaire. À cet effet, il se pourrait qu’une combinaison d’agents protecteurs ciblant divers mécanismes physiopathologiques permette d’obtenir de meilleurs résultats qu’un simple agent. Après avoir suscité de façon contrôlée des lésions cérébrales ischémiques chez des lapins, l’objectif principal de la présente étude a donc été de se pencher sur l’impact d’une polythérapie combinant la protéine dite « facteur de croissance de l’endothélium vasculaire » (ou « VEGF » en anglais) avec le « facteur de croissance des nerfs » (ou « NGF » en anglais).Méthodes:Les animaux ont été attribués au hasard à l’un des groupes suivants : ceux ayant reçu un traitement fictif ; ceux, du groupe témoin, ayant bénéficié d’un traitement à base de solution saline ; et finalement ceux ayant été traités au moyen des VEGF et NGF. À noter que les lapins ont reçu une micro-injection intracérébrale de VEGF et de NGF ou de solution saline 5 heures ou 8 heures à la suite de leur AVC. Ces deux délais d’administration des VEGF et NGF sont équivalents ou supérieurs aux délais actuels d’administration des VEGF ou NGF à titre de monothérapie (3 heures ou 5 heures à la suite d’un AVC). Tant le volume des infarctus, le contenu en eau, les déficits neurologiques ainsi causés, l’apoptose des neurones que l’expression des protéases caspase 3 et des protéines Bcl-2 ont été mesurés.Résultats:Si on la compare au traitement à base de solution saline administré au groupe témoin, la polythérapie à base de VEGF et de NGF, lorsqu’administrée 5 heures ou 8 heures à la suite de l’AVC, a su réduire de façon notable le volume des infarctus, le contenu en eau, l’apoptose des neurones et l’expression des protéases caspase 3. Elle a également permis de réguler à la hausse l’expression des protéines Bcl-2 en plus d’entraîner une amélioration de la récupération fonctionnelle (p< 0,01 pour ces deux aspects). Ainsi donc, plus tôt l’on opte pour cette polythérapie, meilleure sera la neuroprotection encourue.Conclusions:Ces résultats démontrent que la polythérapie à base de VEGF et de NGF procure des effets neuroprotecteurs. Quant au délai d’administration de ce traitement combinatoire, il devrait être d’au moins 8 heures à la suite d’un AVC, ce qui est plus élevé que la monothérapie.
Collapse
|
15
|
Birch AM, Kelly ÁM. Lifelong environmental enrichment in the absence of exercise protects the brain from age-related cognitive decline. Neuropharmacology 2018; 145:59-74. [PMID: 29630903 DOI: 10.1016/j.neuropharm.2018.03.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 12/19/2022]
Abstract
Environmental manipulations enhance neuroplasticity, with enrichment-induced cognitive improvements linked to increased expression of growth factors and enhanced hippocampal neurogenesis. Environmental enrichment (EE) is defined as the addition of social, physical and somatosensory stimulation into an animal's environment via larger group housing, extra objects and, often, running wheels. Previous studies from our laboratory report that physical activity is a potent memory enhancer but that long-term environmental stimulation can be as effective as exercise at ameliorating age-related memory decline. To assess the effects of EE, in the absence of exercise, rats were housed in continuous enriched conditions for 20 months and memory assessed at young, middle aged and aged timepoints. MRI scans were also performed at these timepoints to assess regional changes in grey matter and blood flow with age, and effects of EE upon these measures. Results show an age-related decline in recognition, spatial and working memory that was prevented by EE. A parallel reduction in βNGF in hippocampus, and cell proliferation in the dentate gyrus, was prevented by EE. Furthermore, EE attenuated an age-related increase in apoptosis and expression of pro-inflammatory markers IL-1β and CD68. Long-term EE induced region-specific changes in grey matter intensity and partially rescued age-related reductions in cerebral blood flow. This study demonstrates that sensory enrichment alone can ameliorate many features typical of the ageing brain, such as increases in apoptosis and pro-inflammatory markers. Furthermore, we provide novel data on enrichment-induced regional grey matter alterations and age-related changes in blood flow in the rat. This article is part of the Special Issue entitled "Neurobiology of Environmental Enrichment".
Collapse
Affiliation(s)
- Amy M Birch
- Department of Physiology, School of Medicine & Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Áine M Kelly
- Department of Physiology, School of Medicine & Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, University of Dublin, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
16
|
Nai Y, Liu H, Bi X, Gao H, Ren C. Protective effect of astaxanthin on acute cerebral infarction in rats. Hum Exp Toxicol 2017; 37:929-936. [PMID: 29216762 DOI: 10.1177/0960327117745693] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of the study was to investigate the effect of astaxanthin and its possible mechanisms on acute cerebral infarction (ACI) in rat model. Male Sprague Dawley rats were randomly divided into sham group, model group, and astaxanthin-treated groups (20, 40, and 80 mg/kg). Neurological examination, the ratio of cerebral edema, and histopathology changes were assessed. Moreover, some oxidative stress markers were obtained for biochemical analysis, and the expression of neurotrophic factors gene was detected by real-time polymerase chain reaction (RT-PCR) method. The results showed that treatment with astaxanthin notably reduced neurological deficit scores and the ratio of cerebral edema compared with the model group. Meanwhile, astaxanthin increased the activity of catalase, superoxide dismutase, and glutathioneperoxidase as well as decreased the content of malondialdehyde in brain tissue. RT-PCR results showed that the expression of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) mRNA were increased with astaxanthin treatment. The results indicated that astaxanthin could ameliorate ACI followed by suppressing oxidative stress and upregulating the expression of BDNF and NGF mRNA.
Collapse
Affiliation(s)
- Yu Nai
- 1 Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Hong Liu
- 1 Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xizhuang Bi
- 1 Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Hongyu Gao
- 2 Medical College of Qingdao University, Qingdao, China
| | - Chao Ren
- 1 Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
17
|
Povarnina PY, Volkova AA, Gudasheva TA, Seredenin SB. Comparison of the Pharmacological Effects of Dimeric Dipeptide Nerve Growth Factor Mimetic GK-2 and Mexidol on the Model of Ischemic Stroke in Rats. Bull Exp Biol Med 2017; 164:173-176. [PMID: 29181667 DOI: 10.1007/s10517-017-3951-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Indexed: 10/18/2022]
Abstract
We compared the effects of GK-2 (dimeric dipeptide mimetic of nerve growth factor) and Mexidol (standard preparation for the therapy of stroke) on rat model of transient occlusion of the middle cerebral artery. GK-2 and Mexidol were administered intraperitoneally in the most active doses (1 and 100 mg/kg, respectively) 6 h after surgery and then once a day for 6 days. The preparations reduced the volume of cerebral infarction (by 60 and 30%, respectively). At the same time, GK-2 had a pronounced and statistically more reliable effect in a dose that is lower by two orders of magnitude. In addition, GK-2 significantly reduced the neurological deficit in the limb placement test, while Mexidol was ineffective in this test.
Collapse
Affiliation(s)
- P Yu Povarnina
- Laboratory of Peptide Bioregulation, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia.
| | - A A Volkova
- Laboratory of Peptide Bioregulation, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - T A Gudasheva
- Laboratory of Peptide Bioregulation, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - S B Seredenin
- Department of Pharmacogenetics, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| |
Collapse
|
18
|
Isaev NK, Stelmashook EV, Genrikhs EE. Role of Nerve Growth Factor in Plasticity of Forebrain Cholinergic Neurons. BIOCHEMISTRY (MOSCOW) 2017; 82:291-300. [PMID: 28320270 DOI: 10.1134/s0006297917030075] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Neuronal plastic rearrangements during the development and functioning of neurons are largely regulated by trophic factors, including nerve growth factor (NGF). NGF is also involved in the pathogenesis of Alzheimer's disease. In the brain, NGF is produced in structures innervated by basal forebrain cholinergic neurons and retrogradely transported along the axons to the bodies of cholinergic neurons. NGF is essential for normal development and functioning of the basal forebrain; it affects formation of the dendritic tree and modulates the activities of choline acetyltransferase and acetylcholinesterase in basal forebrain neurons. The trophic effect of NGF is mediated through its interactions with TrkA and p75 receptors. Experimental and clinical studies have shown that brain levels of NGF are altered in various pathologies. However, the therapeutic use of NGF is limited by its poor ability to penetrate the blood-brain barrier, adverse side effects that are due to the pleiotropic action of this factor, and the possibility of immune response to NGF. For this reason, the development of gene therapy methods for treating NGF deficit-associated pathologies is of particular interest. Another approach is creation of low molecular weight NGF mimetics that would interact with the corresponding receptors and display high biological activity but be free of the unfavorable effects of NGF.
Collapse
Affiliation(s)
- N K Isaev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | | | |
Collapse
|
19
|
Li SY, Qi Y, Hu SH, Piao FY, Guan H, Wang ZM, Chen RL, Liu S. Mesenchymal stem cells-conditioned medium protects PC12 cells against 2,5-hexanedione-induced apoptosis via inhibiting mitochondria-dependent caspase 3 pathway. Toxicol Ind Health 2016; 33:107-118. [PMID: 26419259 DOI: 10.1177/0748233715598267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Studies suggested that the conditioned medium of mesenchymal stem cells (MSC-CM) inhibited the increased apoptosis in various cells. However, there are no reports underlying the protection of MSC-CM against 2,5-hexanedione (HD)-induced apoptosis in neural cells. In the present study, the viability was observed in PC12 cells that received HD alone or with MSC-CM by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis was estimated by Hoechst 33342 staining and flow cytometry. Mitochondrial transmembrane potential was examined by rhodamine 123. Moreover, we investigated the expression of Bax and Bcl-2, cytochrome c translocation, and caspase 3 activity by real-time polymerase chain reaction, Western blot, and immunochemistry. Nerve growth factor (NGF) was examined in MSCs and MSC-CM. Our results showed that MSC-CM promoted cell survival and reduced apoptosis in HD-exposed PC12 cells. Moreover, MSC-CM significantly reversed disturbance of Bax and Bcl-2, ameliorated disruption of mitochondrial transmembrane potential, and reduced release of cytochrome c and activity of caspase 3 in HD-exposed PC12 cells. In the meantime, NGF was detected in MSCs and MSC-CM. These findings demonstrate that MSC-CM protects against HD-induced apoptosis in PC12 cells via inhibiting mitochondrial pathway. Our results indicate that NGF in MSC-CM may be involved in the protection of MSC-CM against HD-induced apoptosis. Our study clarifies the protection of MSC-CM on HD neurotoxicity and its underlying mechanism.
Collapse
Affiliation(s)
- Shuang-Yue Li
- 1 Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China
| | - Yuan Qi
- 1 Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China
| | - Shu-Hai Hu
- 2 College of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Feng-Yuan Piao
- 1 Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China
| | - Huai Guan
- 3 Department of Obstetrics and Gynecology, Dalian, Liaoning, China
| | - Zhe-Min Wang
- 1 Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China
| | - Ruo-Lin Chen
- 1 Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China
| | - Shuang Liu
- 1 Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
20
|
Propofol Suppressed Hypoxia/Reoxygenation-Induced Apoptosis in HBVSMC by Regulation of the Expression of Bcl-2, Bax, Caspase3, Kir6.1, and p-JNK. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1518738. [PMID: 27057270 PMCID: PMC4736333 DOI: 10.1155/2016/1518738] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/05/2015] [Accepted: 11/29/2015] [Indexed: 12/29/2022]
Abstract
Recent studies have found that propofol may protect brain from cerebral ischemic-reperfusion injury. However, the underlying mechanism remains unclear. The effects of propofol were evaluated in HBVSMC after hypoxia/reoxygenation (H/R). Cell viability and levels of SOD, LDH, and MDA were measured. Apoptosis was detected by flow cytometry. The levels of Bax, Bcl-2, Caspase3, Sur2b, Kir6.1, JNK, p-JNK, mTOR, and p-mTOR proteins were measured by western blotting. H/R decreased cell viability and SOD activity and increased LDH leakage and MDA content in HBVSMC, all of which were significantly reversed by propofol. Propofol suppressed the levels of H/R-induced apoptosis. The expression of Bcl-2 and p-mTOR was significantly downregulated and the expression levels of Bax, Caspase3, Kir6.1, and p-JNK were upregulated following H/R injury. The ratio of p-JNK/JNK was increased; however, that of p-mTOR/mTOR decreased correspondingly. The effects on the expression of these proteins were reversed by propofol treatment. SP600125 enhanced and Everolimus attenuated the effect of propofol. These findings suggested that the protective effect of propofol against H/R injury in the HBVSMC was through the inhibition of apoptosis by inducing the expression of Bcl-2 and p-mTOR as well as inhibiting the expression levels of Bax, Caspase3, Kir6.1, and p-JNK.
Collapse
|
21
|
Seredenin SB, Gudasheva TA. [The development of a pharmacologically active low-molecular mimetic of the nerve growth factor]. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:63-70. [PMID: 26356399 DOI: 10.17116/jnevro20151156163-70] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Authors present an overview of theirs author's works on the design of low-molecular mimetic of the nerve growth factor and studies of mechanisms of action and pharmacological properties of the compound. The original working hypothesis, underlying the design of the compound, posited that different neurotrophin hairpin loops could activate different signaling cascades by interaction with the receptor and so be responsible for different effects. The mimetic bis(N-succinyl-L-glutamyl-L-lysine)hexametylendiamide (GK-2), that was designed on the basis of NGF loop 4 β-turn sequence, activated TrkA and PI3K/Akt, but not MAPK/Erk. GK-2 showed neuroprotective activity in concentrations up to 10-9М against H(2)O(2) or glutamate or MPTP-induced neurotoxicity in РС12, НТ22 cells and primary rat hippocampal neurons. At that, GK-2 has no differentiating activity. In in vivo experiments, GK-2 exhibited significant anti-ischemic, anti-parkinsonic effect, reversed impaired cognitive functions in models of Alzheimer's disease in doses 0.01 - 5 mg/kg intraperitoneally and 5-10 mg/kg orally, but does not induce side effects accompanying the full-length neurotrophin treatment, which are hyperalgesia and weight loss. It was shown that GK-2 was a low-toxicity compound (LD50=700 mg/kg, intraperitoneally, mice) and capable of crossing the blood-brain barrier. The agent GK-2 is promising for development as a neuroprotective agent and is currently in preclinical studies.
Collapse
Affiliation(s)
- S B Seredenin
- Zakusov Research Institute of Pharmacology, Russian Academy of Sciences, Moscow
| | - T A Gudasheva
- Zakusov Research Institute of Pharmacology, Russian Academy of Sciences, Moscow
| |
Collapse
|
22
|
Effectiveness of GK-2, a Nerve Growth Factor Mimetic, in Preventing Post-Resuscitation Changes in the Brain. Bull Exp Biol Med 2015; 159:453-5. [DOI: 10.1007/s10517-015-2989-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Indexed: 11/26/2022]
|
23
|
Wadowska M, Woods J, Rogozinska M, Briones TL. Neuroprotective effects of enriched environment housing after transient global cerebral ischaemia are associated with the upregulation of insulin-like growth factor-1 signalling. Neuropathol Appl Neurobiol 2015; 41:544-56. [PMID: 24750178 PMCID: PMC4201886 DOI: 10.1111/nan.12146] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 04/08/2014] [Indexed: 11/30/2022]
Abstract
Aims Use of enriched environment (EE) housing has been shown to promote recovery from cerebral ischaemic injury but the underlying mechanisms of their beneficial effects remains unclear. Here we examined whether the beneficial effects of EE housing on ischaemia‐induced neurodegeneration and cognitive impairment are associated with increased insulin‐like growth factor‐1 (IGF‐1) signalling in the hippocampus. Methods Forty‐two adult male Wistar rats were included in the study and received either ischaemia or sham surgery. Rats in each group were further randomized to either: EE or standard laboratory cage housing (control). Rats were placed in their assigned housing condition immediately after recovery from anaesthesia. Behavioural testing in the cued learning and discrimination learning tasks were conducted 2 weeks after ischaemia. Rats were euthanized after behavioural testing and the hippocampus was analysed for IGF‐1 level, IGF‐1 receptor (IGF‐1R) activation, protein kinase B (Akt) pathway activation, neurone loss and caspase 3 expression. Results Our data showed that EE housing: (1) mitigated ischaemia‐induced neuronal loss; (2) attenuated ischaemia‐induced increase in caspase 3 immunoreactivity in the hippocampus; (3) ameliorated ischaemia‐induced cognitive impairments; and (4) increased IGF‐1R activation and signalling through the Akt pathway after ischaemic injury. Conclusion Ultimately, these findings suggest the possibility that IGF‐1 signalling may be one of the underlying mechanisms involved in the beneficial effects of EE in optimizing recovery following cerebral ischaemic injury.
Collapse
Affiliation(s)
- Magdalena Wadowska
- Department of Biobehavioral Health Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Julie Woods
- Department of Biobehavioral Health Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Magdalena Rogozinska
- Department of Biobehavioral Health Science, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
24
|
Expression analysis following argon treatment in an in vivo model of transient middle cerebral artery occlusion in rats. Med Gas Res 2014; 4:11. [PMID: 25671080 PMCID: PMC4322493 DOI: 10.1186/2045-9912-4-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/29/2014] [Indexed: 01/02/2023] Open
Abstract
Background Argon treatment following experimental neurotrauma has been found neuroprotective in an array of in vivo and in vitro models. The inherent cellular and molecular mechanisms are still unknown. We seeked to shed light on these processes by examinig the cellular distribution and the expression of inflammatory markers and growth factors in argon treated brain tissue. Methods Male adult Sprague-Dawley rats were randomly assigned to one of the study groups: sham surgery + placebo, sham surgery + argon, tMCAO + placebo, and tMCAO + argon. Animals underwent 2 h-transient middle cerebral artery occlusion (tMCAO) using the endoluminal thread model or sham surgery without tMCAO. After the first hour of tMCAO or sham surgery a 1 h inhalative argon (50% argon/50% O2) or placebo (50% N2/50% O2) treatment was performed. Brains were removed and evaluated after 24 h. RealTime-PCR was performed from biopsies of the penumbra and contralateral corresponding regions. Paraffin sections were immunostained with antibodies against GFAP, NeuN, and Iba1. Cell counts of astrocytes, neurons and microglia in different cortical regions were performed in a double-blinded manner. Results Fifteen animals per tMCAO group and twelve sham + placebo respectively eleven sham + argon animals completed the interventional procedure. We identified several genes (IL-1β, IL-6, iNOS, TGF-β, and NGF) whose transcription was elevated 24 h after the study intervention, and whose expression levels significantly differed between argon treatment and placebo following tMCAO. Except for the core region of ischemia, cell numbers were comparable between different treatment groups. Conclusion In our study, we found an elevated expression of several inflammatory markers and growth factors following tMCAO + argon compared to tMCAO + placebo. Although conflicting the previously described neuroprotective effects of argon following experimental ischemia, these findings might still be associated with each other. Further studies will have to evaluate their relevance and potential relationship.
Collapse
|
25
|
Gudasheva TA, Povarnina PY, Antipova TA, Seredenin SB. A Novel Dimeric Dipeptide Mimetic of the Nerve Growth Factor Exhibits Pharmacological Effects upon Systemic Administration and Has No Side Effects Accompanying the Neurotrophin Treatment. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/nm.2014.52013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Chronic intracerebroventricular infusion of nerve growth factor improves recognition memory in the rat. Neuropharmacology 2013; 75:255-61. [PMID: 23932816 DOI: 10.1016/j.neuropharm.2013.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 02/02/2023]
Abstract
Nerve Growth Factor (NGF) plays pivotal roles in neuronal survival in the adult mammalian brain and may modulate forms of structural and functional plasticity, including neurogenesis. We have shown previously that six weeks of housing in an enriched environment (EE) that did not include access to running wheels resulted in improved recognition memory concomitant with increased NGF expression and neurogenesis in the hippocampus. Here we have attempted to probe a causal link between NGF and the observed enrichment-induced changes in hippocampal function by assessing the effects of six weeks continuous intracerebroventricular (i.c.v.) infusion of NGF on recognition memory and cell proliferation. We report that NGF-infused rats show enhanced recognition memory when compared with vehicle-treated controls. Expression of NGF and its receptor, TrkA, was increased in treated rats, as was expression of the synaptic vesicle protein, synapsin. Finally, we observed an increase in cell proliferation in the dentate gyrus of NGF-treated rats. These data indicate that chronic infusion of NGF can stimulate an improvement in learning and memory that is associated with specific cellular changes in the hippocampus, including synaptogenesis and cell proliferation.
Collapse
|
27
|
Shenfu injection attenuates neonatal hypoxic-ischemic brain damage in rat. Neurol Sci 2013; 34:1571-4. [DOI: 10.1007/s10072-013-1288-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 12/12/2012] [Indexed: 10/27/2022]
|
28
|
Abstract
Brain and spinal cord traumas include blunt and penetrating trauma, disease, and required surgery. Such traumas trigger events such as inflammation, infiltration of inflammatory and other cells, oxidative stress, acidification, excitotoxicity, ischemia, and the loss of calcium homeostasis, all of which cause neurotoxicity and neuron death. To prevent trauma-induced neurological deficits and death, each of the many neurotoxic events that occur in parallel or sequentially must be minimized or prevented. Although neuroprotective techniques have been developed that block single neurotoxic events, most provide only limited neuroprotection and are only applied singly. However, because many neurotoxicity triggers arise from common events, an approach for invoking more effective neuroprotection is to apply multiple neuroprotective methods simultaneously before the many neurotoxic triggers and cascades are initiated and become irreversible. This paper first discusses some triggers of neurotoxicity and neuroprotective mechanisms that block them, including hypothermia, alkalinization, and the administration of adenosine. It then examines how the simultaneous application of these techniques provides significantly greater neuroprotection than is provided by any technique alone. The paper also stresses the importance of determining whether the neuroprotection provided by these techniques can be further enhanced by combining them with additional techniques, such as the systemic administration of glucocorticoids. Finally, the paper stresses the absolute critical importance of applying these techniques within the "golden hour" following trauma, before the many neurotoxic events and cascades are manifest and before the neurotoxic cascades become irreversible.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
29
|
Chen Y, Wu X, Yu S, Fauzee NJS, Wu J, Li L, Zhao J, Zhao Y. Neuroprotective Capabilities of Tanshinone IIA against Cerebral Ischemia/Reperfusion Injury via Anti-apoptotic Pathway in Rats. Biol Pharm Bull 2012; 35:164-70. [DOI: 10.1248/bpb.35.164] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yanlin Chen
- Department of Pathology, Chongqing Medical University
| | - Xuemei Wu
- Department of Pathology, Chongqing Medical University
| | - Shanshan Yu
- Department of Pathology, Chongqing Medical University
| | | | - Jingxian Wu
- Department of Pathology, Chongqing Medical University
| | - Lan Li
- Department of Pathophysiology, Chongqing Medical University
| | - Jing Zhao
- Department of Pathophysiology, Chongqing Medical University
| | - Yong Zhao
- Department of Pathology, Chongqing Medical University
| |
Collapse
|