1
|
Anyachor CP, Orish CN, Ezejiofor AN, Cirovic A, Cirovic A, Dooka BD, Ezealisiji KM, Noundou XS, Orisakwe OE. Silica Nanoparticles from Melon Seed Husk Abrogated Binary Metal(loid) Mediated Cerebellar Dysfunction by Attenuation of Oxido-inflammatory Response and Upregulation of Neurotrophic Factors in Male Albino Rats. CEREBELLUM (LONDON, ENGLAND) 2024:10.1007/s12311-024-01747-1. [PMID: 39331240 DOI: 10.1007/s12311-024-01747-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Silica nanoparticles (SiNPs) have been touted for their role in the management of non-communicable diseases. Their neuroprotective benefits against heavy metal-induced neurotoxicity remain largely unexplored. This is a comparative evaluation of the oxido-inflammatory and neurotrophic effects of Ni, Al, and Ni/Al mixture on the cerebellum of male albino rats with or without treatment with SiNPs generated from melon seed husk. The study complied with the ARRIVE guidelines for reporting in vivo experiments. A total of 91, 7-9 week-old weight-matched male Sprague rats (to avoid sex bias) were randomly divided into 13 different dosing groups where Group 1 served as the control. Other groups received 0.2 mg/kg Ni, 1 mg/kg Al, and 0.2 mg/kg Ni + 1 mg/kg Al mixture with or without different doses of SiNP for 90 days. Rotarod performance was carried out. Oxidative stress markers, Ni, Al, Ca, Fe, Mg, neurotrophic factors, amyloid beta (Aβ-42), cyclooxygenase-2 (COX-2), and acetylcholinesterase (AChE) were determined in the cerebellum. SiNPs from melon seed husk caused a significant decrease in Aβ-42 level and activities of AChE and COX-2 and a significant increase in brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) mediated by Ni, Al, and Ni/Al mixture exposure in rats. Neurotoxicity of the Ni/Al mixture is via heightened neuronal lipoperoxidative damage, decreased Mg, and increased Fe, and co-administration of SiNPs from melon seed husk with the Ni/Al mixture attenuated some of these biochemical changes in the cerebellum.
Collapse
Affiliation(s)
- Chidinma P Anyachor
- African Centre of Excellence for Public Health and Toxicological Research (ACE‑PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, Choba, Port Harcourt, 5323, Nigeria.
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE‑PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria
| | - Ana Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Belgrade, Serbia
| | - Baridoo Donatus Dooka
- African Centre of Excellence for Public Health and Toxicological Research (ACE‑PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria
| | - Kenneth M Ezealisiji
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Port Harcourt, PMB, Choba, Port Harcourt, 5323, Nigeria
| | - Xavier Siwe Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, MEDUNSA, Box 218, 0204, Pretoria, South Africa
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE‑PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria.
- Advanced Research Centre, European University of Lefke, Lefke, Mersin, TR-10, Northern Cyprus, Turkey.
| |
Collapse
|
2
|
Shi H, Song L, Wu Y, Shen R, Zhang C, Liao X, Wang Q, Zhu J. Edaravone Alleviates Traumatic Brain Injury by Inhibition of Ferroptosis via FSP1 Pathway. Mol Neurobiol 2024:10.1007/s12035-024-04216-2. [PMID: 38733490 DOI: 10.1007/s12035-024-04216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Traumatic brain injury (TBI) is a highly severe form of trauma with complex series of reactions in brain tissue which ultimately results in neuronal damage. Previous studies proved that neuronal ferroptosis, which was induced by intracranial haemorrhage and other reasons, was one of the most primary causes of neuronal damage following TBI. However, the association between neuronal mechanical injury and ferroptosis in TBI and relevant treatments remain unclear. In the present study, we first demonstrated the occurrence of neuronal ferroptosis in the early stage of TBI and preliminarily elucidated that edaravone (EDA), a cerebroprotective agent that eliminates oxygen radicals, was able to inhibit ferroptosis induced by TBI. A cell scratching model was established in PC12 cells, and it was confirmed that mechanical injury induced ferroptosis in neurons at the early stage of TBI. Ferroptosis suppressor protein 1 (FSP1) plays a significant role in inhibiting ferroptosis, and we found that iFSP, a ferroptosis agonist which is capable to inhibit FSP1 pathway, attenuated the anti-ferroptosis effect of EDA. In conclusion, our results suggested that EDA inhibited neuronal ferroptosis induced by mechanical injury in the early phase of TBI by activating FSP1 pathway, which could provide evidence for future research on prevention and treatment of TBI.
Collapse
Affiliation(s)
- Haoyu Shi
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Libiao Song
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Yonghui Wu
- Department of Neurosurgery, The Second People's Hospital of Lu'an, Lu'an, 237000, Anhui Province, China
| | - Ruonan Shen
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Chenxu Zhang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Xingzhi Liao
- Department of Anaesthesiology, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Qiuhong Wang
- Department of Ophthalmology, Wuxi Second Hospital Affiliated to Jiangnan University, Wuxi, 214002, Jiangsu Province, China
| | - Jie Zhu
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China.
| |
Collapse
|
3
|
Ma SJ, Li C, Yan C, Liu N, Jiang GY, Yang HR, Yan HC, Li JY, Liu HL, Gao C. Melatonin alleviates early brain injury by inhibiting the NRF2-mediated ferroptosis pathway after subarachnoid hemorrhage. Free Radic Biol Med 2023; 208:555-570. [PMID: 37717795 DOI: 10.1016/j.freeradbiomed.2023.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Ferroptosis is a novel form of cell death that plays a critical role in the pathological and physiological processes of early brain injury following subarachnoid hemorrhage. Melatonin, as the most potent endogenous antioxidant, has shown strong protective effects against pathological changes following subarachnoid hemorrhage, but its impact on ferroptosis induced by subarachnoid hemorrhage remains unexplored. In our study, we established a subarachnoid hemorrhage model in male SD rats. We found that subarachnoid hemorrhage induced changes in ferroptosis-related indicators such as lipid peroxidation and iron metabolism, while intraperitoneal injection of melatonin (40 mg/kg) effectively ameliorated these changes to a certain degree. Moreover, in a subset of rats with subarachnoid hemorrhage who received pre-treatment via intravenous injection of the melatonin receptor antagonist Luzindole (1 mg/kg) and 4P-PDOT (1 mg/kg), we found that the protective effect of melatonin against subarachnoid hemorrhage includes inhibition of lipid peroxidation and reduction of iron accumulation depended on melatonin receptor 1B (MT2). Furthermore, our study demonstrated that melatonin inhibited neuronal ferroptosis by activating the NRF2 signaling pathway, as evidenced by in vivo inhibition of NRF2. In summary, melatonin acts through MT2 and activates NRF2 and downstream genes such as HO-1/NQO1 to inhibit ferroptosis in subarachnoid hemorrhage-induced neuronal injury, thereby improving neurological function in rats. These results suggest that melatonin is a promising therapeutic target for subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Sheng-Ji Ma
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Chen Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Cong Yan
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Nan Liu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Guang-You Jiang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Hong-Rui Yang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Hao-Chen Yan
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Ji-Yi Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Huai-Lei Liu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Cheng Gao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China.
| |
Collapse
|
4
|
Braidotti S, Curci D, Zampieri D, Covino C, Zanon D, Maximova N, Sala R. Iron Bioavailability in the Extracellular Environment Is More Relevant Than the Intracellular One in Viability and Gene Expression: A Lesson from Oligodendroglioma Cells. Biomedicines 2023; 11:2940. [PMID: 38001941 PMCID: PMC10668974 DOI: 10.3390/biomedicines11112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Oligodendroglioma (OG) is a brain tumor that contributes to <1% of brain tumor diagnoses in the pediatric population. Unfortunately, pediatric OG remains without definitive molecular characteristics to aid in diagnosis, and little is known about the tumor microenvironment. Tumor cells' metabolism and proliferation rate are generally higher than those of healthy cells, so their iron demand is also significantly higher. This consideration underlines the great importance of iron for tumor development and progression. In this context, this study aims to evaluate the effect of iron in a cellular in vitro model of human oligodendroglioma brain tumor. Cell morphology, the effect of siderotic medium on cell growth, iron uptake, and the expression of iron-metabolism-related genes were evaluated via optic microscopy, ICP-MS, confocal microscopy, and real-time PCR, respectively. This study underlines the great importance of iron for tumor development and progression and also the possibility of reducing the available iron concentration to determine an antiproliferative effect on OG. Therefore, every attempt can be promising to defeat OG for which there are currently no long-term curative therapies.
Collapse
Affiliation(s)
- Stefania Braidotti
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Debora Curci
- Advanced Translational Diagnostic Laboratory, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Daniele Zampieri
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Cesare Covino
- Advanced Light and Electron Microscopy Imaging Centre (ALEMBIC), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Davide Zanon
- Pharmacy and Clinical Pharmacology Department, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Natalia Maximova
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Roberto Sala
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy;
| |
Collapse
|
5
|
Juan SMA, Daglas M, Truong PH, Mawal C, Adlard PA. Alterations in iron content, iron-regulatory proteins and behaviour without tau pathology at one year following repetitive mild traumatic brain injury. Acta Neuropathol Commun 2023; 11:118. [PMID: 37464280 PMCID: PMC10353227 DOI: 10.1186/s40478-023-01603-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
Repetitive mild traumatic brain injury (r-mTBI) has increasingly become recognised as a risk factor for the development of neurodegenerative diseases, many of which are characterised by tau pathology, metal dyshomeostasis and behavioural impairments. We aimed to characterise the status of tau and the involvement of iron dyshomeostasis in repetitive controlled cortical impact injury (5 impacts, 48 h apart) in 3-month-old C57Bl6 mice at the chronic (12-month) time point. We performed a battery of behavioural tests, characterised the status of neurodegeneration-associated proteins (tau and tau-regulatory proteins, amyloid precursor protein and iron-regulatory proteins) via western blot; and metal levels using bulk inductively coupled plasma-mass spectrometry (ICP-MS). We report significant changes in various ipsilateral iron-regulatory proteins following five but not a single injury, and significant increases in contralateral iron, zinc and copper levels following five impacts. There was no evidence of tau pathology or changes in tau-regulatory proteins following five impacts, although some changes were observed following a single injury. Five impacts resulted in significant gait deficits, mild anhedonia and mild cognitive deficits at 9-12 months post-injury, effects not seen following a single injury. To the best of our knowledge, we are the first to describe chronic changes in metals and iron-regulatory proteins in a mouse model of r-mTBI, providing a strong indication towards an overall increase in brain iron levels (and other metals) in the chronic phase following r-mTBI. These results bring to question the relevance of tau and highlight the involvement of iron dysregulation in the development and/or progression of neurodegeneration following injury, which may lead to new therapeutic approaches in the future.
Collapse
Affiliation(s)
- Sydney M A Juan
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Maria Daglas
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Phan H Truong
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Celeste Mawal
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
6
|
Franco-Martínez L, Pardo-Marín L, Sánchez-Mateos L, Muñoz-Prieto A, García-Martínez JD, Cerón JJ, Martínez-Subiela S, Rubio CP, Tvarijonaviciute A. Serum Ferritin in Obese Dogs: Changes and Comparison with Other Analytes. Vet Sci 2023; 10:457. [PMID: 37505862 PMCID: PMC10383353 DOI: 10.3390/vetsci10070457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
Canine obesity is the most common nutritional disorder and is associated with decreased quality of life and longevity as well as comorbidities including cardiorespiratory, endocrine, oncologic, or orthopaedic disorders. Ferritin is a major acute-phase protein in dogs, increasing during inflammation; however, it could also be affected by other conditions, including trauma, iron metabolism dysregulations, neoplasia, or hypoxia. Higher ferritin levels have been reported in obese humans, but ferritin has not been explored in canine obesity. To evaluate the possible changes in serum ferritin in canine obesity, ferritin levels from lean/normal weight (CG, n = 55) and overweight/obese dogs (OG, n = 37) were measured, together with complete hemogram and biochemical analyses. Statistically significant higher ferritin levels (1.2-fold) were found in OG (median, (interquartile range), 204 (166-227.5) µg/L) in comparison to CG animals (172 (137-210) µg/L)), with median levels of ferritin in OG dogs above the reference range for healthy animals in our laboratory (60-190 µg/L). In addition, statistically significant higher mean corpuscular volume (MCV), mean cell haemoglobin concentration (MCHC), total proteins, globulins, haptoglobin, total ferric fixation capacity (TIBC), alkaline phosphatase (ALP), butyrylcholinesterase (BChE), triglycerides, and calcium were observed in OG in comparison to CG. The higher levels in ferritin, together with higher TBIC, haematocrit, and MCV, could indicate tissue hypoxia in obese dogs.
Collapse
Affiliation(s)
- Lorena Franco-Martínez
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain
- Moorepark Animal and Grassland Research Center, Teagasc, Irish Agriculture and Food Development Authority, P61 C996 Cork, Ireland
| | - Luis Pardo-Marín
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | | | - Alberto Muñoz-Prieto
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - Juan Diego García-Martínez
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - José J Cerón
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - Camila P Rubio
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
7
|
Squitti R, Reale G, Tondolo V, Crescenti D, Bellini S, Moci M, Caliandro P, Padua L, Rongioletti M. Imbalance of Essential Metals in Traumatic Brain Injury and Its Possible Link with Disorders of Consciousness. Int J Mol Sci 2023; 24:ijms24076867. [PMID: 37047843 PMCID: PMC10095508 DOI: 10.3390/ijms24076867] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Dysfunction of the complex cerebral networks underlying wakefulness and awareness is responsible for Disorders of Consciousness (DoC). Traumatic Brain Injury (TBI) is a common cause of DoC, and it is responsible for a multi-dimensional pathological cascade that affects the proper functioning of the brainstem and brain consciousness pathways. Iron (Fe), Zinc (Zn), and Copper (Cu) have a role in the neurophysiology of both the ascending reticular activating system, a multi-neurotransmitter network located in the brainstem that is crucial for consciousness, and several brain regions. We aimed to summarize the role of these essential metals in TBI and its possible link with consciousness alterations. We found that TBI alters many neuronal molecular mechanisms involving essential metals, causing neurodegeneration, neural apoptosis, synaptic dysfunction, oxidative stress, and inflammation. This final pattern resembles that described for Alzheimer's disease (AD) and other neurological and psychiatric diseases. Furthermore, we found that amantadine, zolpidem, and transcranial direct current stimulation (tDCS)-the most used treatments for DoC recovery-seem to have an effect on essential metals-related pathways and that Zn might be a promising new therapeutic approach. This review summarizes the neurophysiology of essential metals in the brain structures of consciousness and focuses on the mechanisms underlying their imbalance following TBI, suggesting their possible role in DoC. The scenario supports further studies aimed at getting a deeper insight into metals' role in DoC, in order to evaluate metal-based drugs, such as metal complexes and metal chelating agents, as potential therapeutic options.
Collapse
Affiliation(s)
- Rosanna Squitti
- Department of Laboratory Science, Research and Development Division, Fatebenefratelli Isola Tiberina, Gemelli Isola, 00186 Rome, Italy
| | - Giuseppe Reale
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neuroriabilitazione ad Alta Intensità Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Vincenzo Tondolo
- Digestive and Colorectal Surgery, Fatebenefratelli Isola Tiberina, Gemelli Isola, 00186 Rome, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Daniela Crescenti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Sonia Bellini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Marco Moci
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neuroriabilitazione ad Alta Intensità Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Pietro Caliandro
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neurologia, 00168 Rome, Italy
| | - Luca Padua
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neuroriabilitazione ad Alta Intensità Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Mauro Rongioletti
- Department of Laboratory Science, Research and Development Division, Fatebenefratelli Isola Tiberina, Gemelli Isola, 00186 Rome, Italy
| |
Collapse
|
8
|
Daglas M, Truong PH, Miles LQ, Juan SMA, Rao SS, Adlard PA. Deferiprone attenuates neuropathology and improves outcome following traumatic brain injury. Br J Pharmacol 2023; 180:214-234. [PMID: 36102035 DOI: 10.1111/bph.15950] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/27/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Traumatic brain injury (TBI) remains a leading cause of mortality and morbidity in young adults. The role of iron in potentiating neurodegeneration following TBI has gained recent interest as iron deposition has been detected in the injured brain in the weeks to months post-TBI, in both the preclinical and clinical setting. A failure in iron homeostasis can lead to oxidative stress, inflammation and excitotoxicity; and whether this is a cause or consequence of the long-term effects of TBI remains unknown. EXPERIMENTAL APPROACH We investigated the role of iron and the effect of therapeutic intervention using a brain-permeable iron chelator, deferiprone, in a controlled cortical impact mouse model of TBI. An extensive assessment of cognitive, motor and anxiety/depressive outcome measures were examined, and neuropathological and biochemical changes, over a 3-month period post-TBI. KEY RESULTS Lesion volume was significantly reduced at 3 months, which was preceded by a reduction in astrogliosis, microglia/macrophages and preservation of neurons in the injured brain at 2 weeks and/or 1 month post-TBI in mice receiving oral deferiprone. Deferiprone treatment showed significant improvements in neurological severity scores, locomotor/gait performance and cognitive function, and attenuated anxiety-like symptoms post-TBI. Deferiprone reduced iron levels, lipid peroxidation/oxidative stress and altered expression of neurotrophins in the injured brain over this period. CONCLUSION AND IMPLICATIONS Our findings support a detrimental role of iron in the injured brain and suggest that deferiprone (or similar iron chelators) may be promising therapeutic approaches to improve survival, functional outcomes and quality of life following TBI.
Collapse
Affiliation(s)
- Maria Daglas
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Phan H Truong
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Linh Q Miles
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Sydney M A Juan
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Shalini S Rao
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
9
|
Juan SMA, Daglas M, Gunn AP, Lago L, Adlard PA. Characterization of the spatial distribution of metals and profile of metalloprotein complexes in a mouse model of repetitive mild traumatic brain injury. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6865363. [PMID: 36460052 DOI: 10.1093/mtomcs/mfac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022]
Abstract
Metal dyshomeostasis is a well-established consequence of neurodegenerative diseases and traumatic brain injury. While the significance of metals continues to be uncovered in many neurological disorders, their implication in repetitive mild traumatic brain injury remains uncharted. To address this gap, we characterized the spatial distribution of metal levels (iron, zinc, and copper) using laser ablation-inductively coupled plasma-mass spectrometry, the profile of metal-binding proteins via size exclusion chromatography-inductively coupled plasma-mass spectrometry and the expression of the major iron storing protein ferritin via western blotting. Using a mouse model of repetitive mild traumatic brain injury, 3-month-old male and female C57Bl6 mice received one or five impacts (48 h apart). At 1 month following 5× TBI (traumatic brain injury), iron and ferritin levels were significantly elevated in the contralateral cortex. There was a trend toward increased iron levels in the entire contralateral hemisphere and a reduction in contralateral cortical iron-binding proteins following 1× TBI. No major changes in zinc levels were seen in both hemispheres following 5× or 1× TBI, although there was a reduction in ipsilateral zinc-binding proteins following 5× TBI and a contralateral increase in zinc-binding proteins following 1× TBI. Copper levels were significantly increased in both hemispheres following 5× TBI, without changes in copper-binding proteins. This study shows for the first time that repetitive mild TBI (r-mTBI) leads to metal dyshomeostasis, highlighting its potential involvement in promoting neurodegeneration, which provides a rationale for examining the benefit of metal-targeting drugs, which have shown promising results in neurodegenerative conditions and single TBI, but have yet to be tested following r-mTBI.
Collapse
Affiliation(s)
- Sydney M A Juan
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Maria Daglas
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Adam P Gunn
- Neuropathology Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Larissa Lago
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| |
Collapse
|
10
|
Vaghebin R, Khalili M, Amiresmaili S, Roghani M, Esmaeili Saber SS, Namdar H. Saphenous vein phlebotomy alleviates neuroinflammatory response and oxidative stress following traumatic brain injury. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2022.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
11
|
Pang Q, Zheng L, Ren Z, Xu H, Guo H, Shan W, Liu R, Gu Z, Wang T. Mechanism of Ferroptosis and Its Relationships with Other Types of Programmed Cell Death: Insights for Potential Therapeutic Benefits in Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1274550. [PMID: 36062196 PMCID: PMC9433211 DOI: 10.1155/2022/1274550] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/19/2022] [Accepted: 08/13/2022] [Indexed: 12/05/2022]
Abstract
Traumatic brain injury (TBI) is a serious health issue with a high incidence, high morbidity, and high mortality that poses a large burden on society. Further understanding of the pathophysiology and cell death models induced by TBI may support targeted therapies for TBI patients. Ferroptosis, a model of programmed cell death first defined in 2012, is characterized by iron dyshomeostasis, lipid peroxidation, and glutathione (GSH) depletion. Ferroptosis is distinct from apoptosis, autophagy, pyroptosis, and necroptosis and has been shown to play a role in secondary brain injury and worsen long-term outcomes after TBI. This review systematically describes (1) the regulatory pathways of ferroptosis after TBI, (2) the neurobiological links between ferroptosis and other cell death models, and (3) potential therapies targeting ferroptosis for TBI patients.
Collapse
Affiliation(s)
- Qiuyu Pang
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Lexin Zheng
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Zhiyang Ren
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Heng Xu
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Hanmu Guo
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Wenqi Shan
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Rong Liu
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Zhiya Gu
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Tao Wang
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| |
Collapse
|
12
|
Juan SMA, Daglas M, Adlard P. Tau pathology, metal dyshomeostasis and repetitive mild traumatic brain injury: an unexplored link paving the way for neurodegeneration. J Neurotrauma 2022; 39:902-922. [PMID: 35293225 DOI: 10.1089/neu.2021.0241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Repetitive mild traumatic brain injury (r-mTBI), commonly experienced by athletes and military personnel, causes changes in multiple intracellular pathways, one of which involves the tau protein. Tau phosphorylation plays a role in several neurodegenerative conditions including chronic traumatic encephalopathy (CTE), a progressive neurodegenerative disorder linked to repeated head trauma. There is now mounting evidence suggesting that tau phosphorylation may be regulated by metal ions (such as iron, zinc and copper), which themselves are implicated in ageing and neurodegenerative disorders such as Alzheimer's disease (AD). Recent work has also shown that a single TBI can result in age-dependent and region-specific modulation of metal ions. As such, this review explores the link between TBI, CTE, ageing and neurodegeneration with a specific focus on the involvement of (and interaction between) tau pathology and metal dyshomeostasis. The authors highlight that metal dyshomeostasis has yet to be investigated in the context of repeat head trauma or CTE. Given the evidence that metal dyshomeostasis contributes to the onset and/or progression of neurodegeneration, and that CTE itself is a neurodegenerative condition, this brings to light an uncharted link that should be explored. The development of adequate models of r-mTBI and/or CTE will be crucial in deepening our understanding of the pathological mechanisms that drive the clinical manifestations in these conditions and also in the development of effective therapeutics targeted towards slowing progressive neurodegenerative disorders.
Collapse
Affiliation(s)
- Sydney M A Juan
- The Florey Institute of Neuroscience and Mental Health, 56369, 30 Royal Parade, Parkville, Melbourne, Victoria, Australia, 3052;
| | - Maria Daglas
- The Florey Institute of Neuroscience and Mental Health, 56369, Parkville, Victoria, Australia;
| | - Paul Adlard
- Florey Institute of Neuroscience and Mental Health, 56369, Parkville, Victoria, Australia;
| |
Collapse
|
13
|
Forensic biomarkers of lethal traumatic brain injury. Int J Legal Med 2022; 136:871-886. [PMID: 35226180 PMCID: PMC9005436 DOI: 10.1007/s00414-022-02785-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/21/2022] [Indexed: 11/01/2022]
Abstract
AbstractTraumatic brain injury (TBI) is a major cause of death and its accurate diagnosis is an important concern of daily forensic practice. However, it can be challenging to diagnose TBI in cases where macroscopic signs of the traumatic head impact are lacking and little is known about the circumstances of death. In recent years, several post-mortem studies investigated the possible use of biomarkers for providing objective evidence for TBIs as the cause of death or to estimate the survival time and time since death of the deceased. This work systematically reviewed the available scientific literature on TBI-related biomarkers to be used for forensic purposes. Post-mortem TBI-related biomarkers are an emerging and promising resource to provide objective evidence for cause of death determinations as well as survival time and potentially even time since death estimations. This literature review of forensically used TBI-biomarkers revealed that current markers have low specificity for TBIs and only provide limited information with regards to survival time estimations and time since death estimations. Overall, TBI fatality-related biomarkers are largely unexplored in compartments that are easily accessible during autopsies such as urine and vitreous humor. Future research on forensic biomarkers requires a strict distinction of TBI fatalities from control groups, sufficient sample sizes, combinations of currently established biomarkers, and novel approaches such as metabolomics and mi-RNAs.
Collapse
|
14
|
Jakaria M, Belaidi AA, Bush AI, Ayton S. Ferroptosis as a mechanism of neurodegeneration in Alzheimer's disease. J Neurochem 2021; 159:804-825. [PMID: 34553778 DOI: 10.1111/jnc.15519] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, with complex pathophysiology that is not fully understood. While β-amyloid plaque and neurofibrillary tangles define the pathology of the disease, the mechanism of neurodegeneration is uncertain. Ferroptosis is an iron-mediated programmed cell death mechanism characterised by phospholipid peroxidation that has been observed in clinical AD samples. This review will outline the growing molecular and clinical evidence implicating ferroptosis in the pathogenesis of AD, with implications for disease-modifying therapies.
Collapse
Affiliation(s)
- Md Jakaria
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Abdel Ali Belaidi
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
15
|
Scalp Acupuncture Protects Against Neuronal Ferroptosis by Activating The p62-Keap1-Nrf2 Pathway in Rat Models of Intracranial Haemorrhage. J Mol Neurosci 2021; 72:82-96. [PMID: 34405366 PMCID: PMC8755669 DOI: 10.1007/s12031-021-01890-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023]
Abstract
Intracerebral haemorrhage (ICH) can be a catastrophic event; even if the initial stages of the pathology were well-managed, a number of patients experience varied residual neurological deficits following the insult. Ferroptosis is a recently identified type of cell demise which is tightly linked to the neurological impairment associated with ICH. In the current work, the prophylactic impact of scalp acupuncture (SA) therapy on autologous blood injection murine models of ICH was investigated in order to establish whether SA could mitigate the secondary damage arising following ICH by moderating ferroptosis. The pathophysiological mechanisms associated with this process were also explored. Ludmila Belayev tests were utilised for the characterisation of neurological damage. Haematoxylin–eosin staining was employed in order to determine the cerebral impact of the induced ICH. Malondialdehyde (MDA) and iron titres in peri-haemorrhagic cerebral tissues were appraised using purchased assay kits. Transmission electron microscopy delineated mitochondrial appearances within nerve cell bodies from the area of haemorrhage. Western blotting techniques were utilised to assay the degree of protein expression of NeuN, sequestosome 1 (p62), nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein 1 (Keap1), glutathione peroxidase 4 (GPX4) and ferritin heavy chain 1 (FTH1). The frequencies of Nrf2, GPX4 and FTH1 positive cells, respectively, were documented with immunohistochemical staining. The results demonstrated that therapy with SA after ICH mitigated MDA and iron sequestration, diminished the appearance of contracted mitochondria with increased outer mitochondrial membrane diameter within the nerve cell bodies, and suppressed neuronal ferroptosis. The pathways responsible for these effects may encompass amplified p62, Nrf2, GPX4 and FTH1 expression, together with decreased Keap1 expression. Application of SA reduced identified neurobehavioural abnormalities after ICH; no disparities were observed between the consequences of SA therapy and deferoxamine delivery. It can be surmised that intervention with SA enhanced recovery after ICH by triggering the antioxidant pathway, p62/Keap1/Nrf2, and causing FTH1 and GPX4 upregulation, factors that participate in diminishing excess iron and thus in mitigating lipid peroxidation insults arising from ferroptosis following ICH.
Collapse
|
16
|
Huang S, Li S, Feng H, Chen Y. Iron Metabolism Disorders for Cognitive Dysfunction After Mild Traumatic Brain Injury. Front Neurosci 2021; 15:587197. [PMID: 33796002 PMCID: PMC8007909 DOI: 10.3389/fnins.2021.587197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/10/2021] [Indexed: 01/25/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the most harmful forms of acute brain injury and predicted to be one of the three major neurological diseases that cause neurological disabilities by 2030. A series of secondary injury cascades often cause cognitive dysfunction of TBI patients leading to poor prognosis. However, there are still no effective intervention measures, which drive us to explore new therapeutic targets. In this process, the most part of mild traumatic brain injury (mTBI) is ignored because its initial symptoms seemed not serious. Unfortunately, the ignored mTBI accounts for 80% of the total TBI, and a large part of the patients have long-term cognitive dysfunction. Iron deposition has been observed in mTBI patients and accompanies the whole pathological process. Iron accumulation may affect long-term cognitive dysfunction from three pathways: local injury, iron deposition induces tau phosphorylation, the formation of neurofibrillary tangles; neural cells death; and neural network damage, iron deposition leads to axonal injury by utilizing the iron sensibility of oligodendrocytes. Thus, iron overload and metabolism dysfunction was thought to play a pivotal role in mTBI pathophysiology. Cerebrospinal fluid-contacting neurons (CSF-cNs) located in the ependyma have bidirectional communication function between cerebral-spinal fluid and brain parenchyma, and may participate in the pathway of iron-induced cognitive dysfunction through projected nerve fibers and transmitted factor, such as 5-hydroxytryptamine, etc. The present review provides an overview of the metabolism and function of iron in mTBI, and to seek a potential new treatment target for mTBI with a novel perspective through combined iron and CSF-cNs.
Collapse
Affiliation(s)
- Suna Huang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Su Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Military Medical University), Chongqing, China
| |
Collapse
|
17
|
Rui T, Wang H, Li Q, Cheng Y, Gao Y, Fang X, Ma X, Chen G, Gao C, Gu Z, Song S, Zhang J, Wang C, Wang Z, Wang T, Zhang M, Min J, Chen X, Tao L, Wang F, Luo C. Deletion of ferritin H in neurons counteracts the protective effect of melatonin against traumatic brain injury-induced ferroptosis. J Pineal Res 2021; 70:e12704. [PMID: 33206394 DOI: 10.1111/jpi.12704] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022]
Abstract
Accumulating evidence demonstrates that ferroptosis may be important in the pathophysiological process of traumatic brain injury (TBI). As a major hormone of the pineal gland, melatonin exerts many beneficial effects on TBI, but there is no information regarding the effects of melatonin on ferroptosis after TBI. As expected, TBI resulted in the time-course changes of ferroptosis-related molecules expression and iron accumulation in the ipsilateral cortex. Importantly, we found that treating with melatonin potently rescued TBI induced the changes mentioned above and improved functional deficits versus vehicle. Similar results were obtained with a ferroptosis inhibitor, liproxstatin-1. Moreover, the protective effect of melatonin is likely dependent on melatonin receptor 1B (MT2). Although ferritin plays a vital role in iron metabolism by storing excess cellular iron, its precise function in the brain, and whether it involves melatonin's neuroprotection remain unexplored. Considering ferritin H (Fth) is expressed predominantly in the neurons and global loss of Fth in mice induces early embryonic lethality, we then generated neuron-specific Fth conditional knockout (Fth-KO) mice, which are viable and fertile but have altered iron metabolism. In addition, Fth-KO mice were more susceptible to ferroptosis after TBI, and the neuroprotection by melatonin was largely abolished in Fth-KO mice. In vitro siFth experiments further confirmed the results mentioned above. Taken together, these data indicate that melatonin produces cerebroprotection, at least partly by inhibiting neuronal Fth-mediated ferroptosis following TBI, supporting the notion that melatonin is an excellent ferroptosis inhibitor and its anti-ferroptosis provides a potential therapeutic target for treating TBI.
Collapse
Affiliation(s)
- Tongyu Rui
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Haochen Wang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Qianqian Li
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Ying Cheng
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Yuan Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Xuexian Fang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuying Ma
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Guang Chen
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Cheng Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Zhiya Gu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Shunchen Song
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Jian Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunling Wang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zufeng Wang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Tao Wang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Mingyang Zhang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Junxia Min
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiping Chen
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Luyang Tao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Fudi Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengliang Luo
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
18
|
Potential Efficacy of Erythropoietin on Reducing the Risk of Mortality in Patients with Traumatic Brain Injury: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7563868. [PMID: 33178833 PMCID: PMC7644316 DOI: 10.1155/2020/7563868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 01/28/2023]
Abstract
Objective The objective of this study is to assess the effectiveness of erythropoietin (EPO) on mortality, neurological outcomes, and adverse event in the treatment of traumatic brain injury (TBI). Methods We searched databases including PubMed, OVID, and the Cochrane Library from inception until October 18, 2019 for randomized controlled trials (RCTs) to compare EPO treatment group and placebo in patients with TBI. Two authors independently processed the data and evaluated the quality of inclusion studies. Statistical analysis was performed with heterogeneity test with I 2 and chi-square tests. We summarized the mortality, prognosis of neurological function, and deep vein thrombosis (DVT) outcomes and presented as risk ratio (RR) or risk difference (RD) with a 95% CI. Results Seven RCTs accounting for 1180 patients were included after meeting the inclusion criteria. Compared with placebo, the overall mortality of EPO-treated patients was significantly reduced (RR 0.68 [95% CI 0.50-0.93]; p = 0.02). EPO therapy did not improve neurological prognosis (RR 1.21 [95% CI 0.93-1.15]; p = 0.16) or increase the occurrence of DVT (RR 0.83 [95% CI 0.61-1.13]; p = 0.242), which showed no significant difference. Conclusions The results showed that the administration of EPO may reduce the risk of mortality without enhancing the occurrence of DVT in TBI patients. However, the effect of EPO on neurological outcome remains indistinct. Through subgroup analysis, we demonstrated that the dose of EPO may be a potential factor affecting the heterogeneity in neurological function and that the follow-up duration may influence the stability of the result.
Collapse
|
19
|
Robicsek SA, Bhattacharya A, Rabai F, Shukla K, Doré S. Blood-Related Toxicity after Traumatic Brain Injury: Potential Targets for Neuroprotection. Mol Neurobiol 2019; 57:159-178. [PMID: 31617072 DOI: 10.1007/s12035-019-01766-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Emergency visits, hospitalizations, and deaths due to traumatic brain injury (TBI) have increased significantly over the past few decades. While the primary early brain trauma is highly deleterious to the brain, the secondary injury post-TBI is postulated to significantly impact mortality. The presence of blood, particularly hemoglobin, and its breakdown products and key binding proteins and receptors modulating their clearance may contribute significantly to toxicity. Heme, hemin, and iron, for example, cause membrane lipid peroxidation, generate reactive oxygen species, and sensitize cells to noxious stimuli resulting in edema, cell death, and increased morbidity and mortality. A wide range of other mechanisms such as the immune system play pivotal roles in mediating secondary injury. Effective scavenging of all of these pro-oxidant and pro-inflammatory metabolites as well as controlling maladaptive immune responses is essential for limiting toxicity and secondary injury. Hemoglobin metabolism is mediated by key molecules such as haptoglobin, heme oxygenase, hemopexin, and ferritin. Genetic variability and dysfunction affecting these pathways (e.g., haptoglobin and heme oxygenase expression) have been implicated in the difference in susceptibility of individual patients to toxicity and may be target pathways for potential therapeutic interventions in TBI. Ongoing collaborative efforts are required to decipher the complexities of blood-related toxicity in TBI with an overarching goal of providing effective treatment options to all patients with TBI.
Collapse
Affiliation(s)
- Steven A Robicsek
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA. .,Departments of Neurosurgery, Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Ayon Bhattacharya
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA.,Department of Pharmacology, KPC Medical College, West Bengal University of Health Sciences, Kolkata, West Bengal, India
| | - Ferenc Rabai
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Krunal Shukla
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA. .,Departments of Neurology, Psychiatry, Pharmaceutics and Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
20
|
Time-dependent hemeoxygenase-1, lipocalin-2 and ferritin induction after non-contusion traumatic brain injury. Brain Res 2019; 1725:146466. [PMID: 31539545 DOI: 10.1016/j.brainres.2019.146466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/22/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022]
Abstract
Traumatic brain injury (TBI) often presents with focal contusion and parenchymal bleeds, activating heme oxygenase (HO) to degrade released hemoglobin. Here we show that diffuse, midline fluid percussion injury causes time-dependent induction of HO-1 and iron binding proteins within both hemorrhagic neocortex and non-hemorrhagic hippocampus. Rats subjected to midline fluid percussion injury (FPI) survived 1-15d postinjury and tissue was collected for Western blot and immunohistochemical assays. HO-1 was elevated 1d after FPI, peaked at 3d, and returned to control baseline 7-15d. Iron management proteins lipocalin 2 (LCN2) and ferritin (FTL) exhibited distinct postinjury time courses, where peak LCN2 response preceded, and FTL followed that of HO-1. LCN2 elevation supported not only its role in iron transport, but also mediation of matrix metalloproteinase 9 (MMP9) activity. Upregulation of FTL for intracellular iron sequestration was delayed relative to both HO-1 and LCN2 induction. In the neocortex IBA-1+ microglia around the injury core expressed HO-1, but astrocytes co-localized with HO-1 in perilesional parenchyma. Non-hemorrhagic dentate gyrus showed predominant HO-1 labeling in hilar microglia and in molecular layer astrocytes. At 1d postinjury, LCN2 and HO-1 co-localized in a subpopulation of reactive glia within both brain regions. Notably, FTL was distributed within cells around injured vessels, damaged subcortical white matter, and along vessels of the hippocampal fissure. Together these results confirm that even the moderate, non-contusional insult of diffuse midline FPI can significantly activate postinjury HO-1 heme processing pathways and iron management proteins. Moreover, this activation is time-dependent and occurs in the absence of overt hemorrhage.
Collapse
|
21
|
Pulos-Holmes MC, Srole DN, Juarez MG, Lee ASY, McSwiggen DT, Ingolia NT, Cate JH. Repression of ferritin light chain translation by human eIF3. eLife 2019; 8:48193. [PMID: 31414986 PMCID: PMC6721798 DOI: 10.7554/elife.48193] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/14/2019] [Indexed: 11/13/2022] Open
Abstract
A central problem in human biology remains the discovery of causal molecular links between mutations identified in genome-wide association studies (GWAS) and their corresponding disease traits. This challenge is magnified for variants residing in non-coding regions of the genome. Single-nucleotide polymorphisms (SNPs) in the 5ʹ untranslated region (5ʹ-UTR) of the ferritin light chain (FTL) gene that cause hyperferritinemia are reported to disrupt translation repression by altering iron regulatory protein (IRP) interactions with the FTL mRNA 5ʹ-UTR. Here, we show that human eukaryotic translation initiation factor 3 (eIF3) acts as a distinct repressor of FTL mRNA translation, and eIF3-mediated FTL repression is disrupted by a subset of SNPs in FTL that cause hyperferritinemia. These results identify a direct role for eIF3-mediated translational control in a specific human disease.
Collapse
Affiliation(s)
- Mia C Pulos-Holmes
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Daniel N Srole
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Maria G Juarez
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Amy S-Y Lee
- Biology Department, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, United States
| | - David T McSwiggen
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Nicholas T Ingolia
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Jamie H Cate
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, United States.,Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
22
|
Chao H, Lin C, Zuo Q, Liu Y, Xiao M, Xu X, Li Z, Bao Z, Chen H, You Y, Kochanek PM, Yin H, Liu N, Kagan VE, Bayır H, Ji J. Cardiolipin-Dependent Mitophagy Guides Outcome after Traumatic Brain Injury. J Neurosci 2019; 39:1930-1943. [PMID: 30626699 PMCID: PMC6407296 DOI: 10.1523/jneurosci.3415-17.2018] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 11/21/2018] [Accepted: 12/28/2018] [Indexed: 01/14/2023] Open
Abstract
Mitochondrial energy production is essential for normal brain function. Traumatic brain injury (TBI) increases brain energy demands, results in the activation of mitochondrial respiration, associated with enhanced generation of reactive oxygen species. This chain of events triggers neuronal apoptosis via oxidation of a mitochondria-specific phospholipid, cardiolipin (CL). One pathway through which cells can avoid apoptosis is via elimination of damaged mitochondria by mitophagy. Previously, we showed that externalization of CL to the mitochondrial surface acts as an elimination signal in cells. Whether CL-mediated mitophagy occurs in vivo or its significance in the disease processes are not known. In this study, we showed that TBI leads to increased mitophagy in the human brain, which was also detected using TBI models in male rats. Knockdown of CL synthase, responsible for de novo synthesis of CL, or phospholipid scramblase-3, responsible for CL translocation to the outer mitochondrial membrane, significantly decreased TBI-induced mitophagy. Inhibition of mitochondrial clearance by 3-methyladenine, mdivi-1, or phospholipid scramblase-3 knockdown after TBI led to a worse outcome, suggesting that mitophagy is beneficial. Together, our findings indicate that TBI-induced mitophagy is an endogenous neuroprotective process that is directed by CL, which marks damaged mitochondria for elimination, thereby limiting neuronal death and behavioral deficits.SIGNIFICANCE STATEMENT Traumatic brain injury (TBI) increases energy demands leading to activation of mitochondrial respiration associated with enhanced generation of reactive oxygen species and resultant damage to mitochondria. We demonstrate that the complete elimination of irreparably damaged organelles via mitophagy is activated as an early response to TBI. This response includes translocation of mitochondria phospholipid cardiolipin from the inner membrane to the outer membrane where externalized cardiolipin mediates targeted protein light chain 3-mediated autophagy of damaged mitochondria. Our data on targeting phospholipid scramblase and cardiolipin synthase in genetically manipulated cells and animals strongly support the essential role of cardiolipin externalization mechanisms in the endogenous reparative plasticity of injured brain cells. Furthermore, successful execution and completion of mitophagy is beneficial in the context of preservation of cognitive functions after TBI.
Collapse
Affiliation(s)
- Honglu Chao
- Departments of Neurosurgery and
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | | | - Qiang Zuo
- Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | | | - Mengqing Xiao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of the Chinese Academy of Sciences, CAS, Beijing 100049, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | | | | | | | - Huimei Chen
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210029, China
| | | | - Patrick M Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Huiyong Yin
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of the Chinese Academy of Sciences, CAS, Beijing 100049, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100022, China
| | | | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health
- Laboratory of Navigational Redox Lipidomics and Department of Human Pathology, IM Sechenov Moscow State Medical University, Moscow 119991, Russian Federation, and
| | - Hülya Bayır
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health,
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Jing Ji
- Departments of Neurosurgery and
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
23
|
Zhang L, Wang H, Zhou X, Mao L, Ding K, Hu Z. Role of mitochondrial calcium uniporter-mediated Ca 2+ and iron accumulation in traumatic brain injury. J Cell Mol Med 2019; 23:2995-3009. [PMID: 30756474 PMCID: PMC6433723 DOI: 10.1111/jcmm.14206] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 12/17/2022] Open
Abstract
Previous studies have suggested that the cellular Ca2+ and iron homeostasis, which can be regulated by mitochondrial calcium uniporter (MCU), is associated with oxidative stress, apoptosis and many neurological diseases. However, little is known about the role of MCU‐mediated Ca2+ and iron accumulation in traumatic brain injury (TBI). Under physiological conditions, MCU can be inhibited by ruthenium red (RR) and activated by spermine (Sper). In the present study, we used RR and Sper to reveal the role of MCU in mouse and neuron TBI models. Our results suggested that the Ca2+ and iron concentrations were obviously increased after TBI. In addition, TBI models showed a significant generation of reactive oxygen species (ROS), decrease in adenosine triphosphate (ATP), deformation of mitochondria, up‐regulation of deoxyribonucleic acid (DNA) damage and increase in apoptosis. Blockage of MCU by RR prevented Ca2+ and iron accumulation, abated the level of oxidative stress, improved the energy supply, stabilized mitochondria, reduced DNA damage and decreased apoptosis both in vivo and in vitro. Interestingly, Sper did not increase cellular Ca2+ and iron concentrations, but suppressed the Ca2+ and iron accumulation to benefit the mice in vivo. However, Sper had no significant impact on TBI in vitro. Taken together, our data demonstrated for the first time that blockage of MCU‐mediated Ca2+ and iron accumulation was essential for TBI. These findings indicated that MCU could be a novel therapeutic target for treating TBI.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiaoming Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Lei Mao
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Ke Ding
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhigang Hu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
24
|
Daglas M, Adlard PA. The Involvement of Iron in Traumatic Brain Injury and Neurodegenerative Disease. Front Neurosci 2018; 12:981. [PMID: 30618597 PMCID: PMC6306469 DOI: 10.3389/fnins.2018.00981] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) consists of acute and long-term pathophysiological sequelae that ultimately lead to cognitive and motor function deficits, with age being a critical risk factor for poorer prognosis. TBI has been recently linked to the development of neurodegenerative diseases later in life including Alzheimer’s disease, Parkinson’s disease, chronic traumatic encephalopathy, and multiple sclerosis. The accumulation of iron in the brain has been documented in a number of neurodegenerative diseases, and also in normal aging, and can contribute to neurotoxicity through a variety of mechanisms including the production of free radicals leading to oxidative stress, excitotoxicity and by promoting inflammatory reactions. A growing body of evidence similarly supports a deleterious role of iron in the pathogenesis of TBI. Iron deposition in the injured brain can occur via hemorrhage/microhemorrhages (heme-bound iron) or independently as labile iron (non-heme bound), which is considered to be more damaging to the brain. This review focusses on the role of iron in potentiating neurodegeneration in TBI, with insight into the intersection with neurodegenerative conditions. An important implication of this work is the potential for therapeutic approaches that target iron to attenuate the neuropathology/phenotype related to TBI and to also reduce the associated risk of developing neurodegenerative disease.
Collapse
Affiliation(s)
- Maria Daglas
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
25
|
Khalaf S, Ahmad AS, Chamara KR, Doré S. Unique Properties Associated with the Brain Penetrant Iron Chelator HBED Reveal Remarkable Beneficial Effects after Brain Trauma. J Neurotrauma 2018; 36:43-53. [PMID: 29743006 PMCID: PMC6306957 DOI: 10.1089/neu.2017.5617] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Iron is postulated to contribute to secondary injury after brain trauma through various pathways including oxidative stress and inflammation. Therefore, one goal is to limit iron toxicity by either directly limiting iron activity, or limiting the secondary cascade mediated by iron, therefore rescuing the brain from damage after trauma. The N,N'-Di(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid monohydrochloride (HBED) is a unique iron chelator that has the ability to cross the intact blood-brain barrier; it has a higher affinity to iron, and it has a longer half-life than most commonly used chelators. A controlled-cortical impact model of traumatic brain injury (TBI) was induced in mice. Mice were subcutaneously injected with HBED immediately after TBI, then at 12 h after, followed by a twice-a-day regimen until an end-point of 3 days. Neurobehavioral tests were performed daily. Cortical injury volume, hemispheric enlargement, and hippocampal swelling were quantified. Perls' iron immunostaining along with markers of gliosis, oxidative stress, and aquaporin (AQP) 4 were also performed. Data revealed that HBED treatment significantly decreases motor deficits and improves recovery after TBI. It also reduces cortical injury volume by 36.6 ± 6.8% (p < 0.001), hippocampal swelling by 23.4 ± 3.8% (p < 0.05), and total hemispheric volume by 13.3 ± 2.7% (p < 0.01). These effects are related to a reduction in microgliosis and oxidiative stress markers in the impacted corpus callosum area by 39.8 ± 7.3%, and by 80.5 ± 0.8% (p < 0.05), respectively. AQP4 staining is also attenuated in the hippocampus of HBED-treated mice. Therefore, our results suggest that HBED should be considered as a therapeutic tool to facilitate the recovery process following brain trauma.
Collapse
Affiliation(s)
- Saher Khalaf
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Abdullah Shafique Ahmad
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - K.V.D. Ranga Chamara
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida
- Departments of Neurology, Psychiatry, Pharmaceutics, Psychology, and Neuroscience, University of Florida, Gainesville, Florida
| |
Collapse
|
26
|
Ondruschka B, Schuch S, Pohlers D, Franke H, Dreßler J. Acute phase response after fatal traumatic brain injury. Int J Legal Med 2018; 132:531-539. [PMID: 29306988 DOI: 10.1007/s00414-017-1768-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022]
Abstract
An inflammatory response occurring after fatal traumatic brain injury (TBI) initiates time-dependent cascades of acute phase response. This may offer the potential to monitor postmortem biomarker levels of several pro-inflammatory cytokines to gain information about the cause of death and the trauma survival time. Cerebrospinal fluid (CSF) and serum samples were collected from forensic autopsies of 95 adult cadavers after postmortem intervals up to 6 days. The cases were divided according to their cause of death into fatal TBI (n = 46) with different survival times and age- and gender-matching non-TBI fatalities as controls (n = 49). Quantitative marker levels of interleukin-6 (IL-6), ferritin, soluble tumor necrosis factor receptor type 1, C-reactive protein, and lactate dehydrogenase were analyzed using immunoassays. Standardized statistical tests were performed to differentiate causes of death and survival time of TBI cases. The CSF IL-6, ferritin, and LDH levels after TBI were significantly higher than those in the controls (p < 0.001). Only serum IL-6 values showed comparable differences (p < 0.05). Both CSF and serum ferritin levels were discriminative between early and delayed death after TBI (p < 0.05). There were partly distinctive correlations between marker levels in both fluids with rising values after longer survival. There were up to moderate correlation between the marker levels and the postmortem interval due to postmortem hemolysis. However, neither CSF nor serum level ranges were affected by the age or gender of the subjects. This study is the first to measure all five proteins systematically in postmortem trauma cases. Ferritin and IL-6 proved themselves to be interesting postmortem biomarkers to provide specific information on the injury pattern and the survival time of traumatic fatalities. Such forensic investigations could serve as inexpensive and fast laboratory tests.
Collapse
Affiliation(s)
- Benjamin Ondruschka
- Institute of Legal Medicine, Medical Faculty University of Leipzig, Johannisallee 28, 04103, Leipzig, Germany.
| | - Sandra Schuch
- Institute of Legal Medicine, Medical Faculty University of Leipzig, Johannisallee 28, 04103, Leipzig, Germany
| | - Dirk Pohlers
- Center of Diagnostics GmbH, Klinikum Chemnitz, Chemnitz, Germany
| | - Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty University of Leipzig, Leipzig, Germany
| | - Jan Dreßler
- Institute of Legal Medicine, Medical Faculty University of Leipzig, Johannisallee 28, 04103, Leipzig, Germany
| |
Collapse
|
27
|
Rosager AM, Sørensen MD, Dahlrot RH, Hansen S, Schonberg DL, Rich JN, Lathia JD, Kristensen BW. Transferrin receptor-1 and ferritin heavy and light chains in astrocytic brain tumors: Expression and prognostic value. PLoS One 2017; 12:e0182954. [PMID: 28837569 PMCID: PMC5570299 DOI: 10.1371/journal.pone.0182954] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 07/27/2017] [Indexed: 01/28/2023] Open
Abstract
Astrocytic brain tumors are the most frequent primary brain tumors. Treatment with radio- and chemotherapy has increased survival making prognostic biomarkers increasingly important. The aim of the present study was to investigate the expression and prognostic value of transferrin receptor-1 (TfR1) as well as ferritin heavy (FTH) and light (FTL) chain in astrocytic brain tumors. A cohort of 111 astrocytic brain tumors (grade II-IV) was stained immunohistochemically with antibodies against TfR1, FTH, and FTL and scored semi-quantitatively. Double-immunofluorescence stainings were established to determine the phenotype of cells expressing these markers. We found that TfR1, FTH, and FTL were expressed by tumor cells in all grades. TfR1 increased with grade (p<0.001), but was not associated with prognosis in the individual grades. FTH and FTL were expressed by tumor cells and cells with microglial/macrophage morphology. Neither FTH nor FTL increased with malignancy grade, but low FTH expression by both tumor cells (p = 0.03) and microglia/macrophages (p = 0.01) correlated with shorter survival in patients anaplastic astrocytoma. FTL-positive microglia/macrophages were frequent in glioblastomas, and high FTL levels correlated with shorter survival in the whole cohort (p = 0.01) and in patients with anaplastic astrocytoma (p = 0.02). Double-immunofluorescence showed that TfR1, FTH, and FTL were co-expressed to a limited extent with the stem cell-related marker CD133. FTH and FTL were also co-expressed by IBA-1-positive microglia/macrophages. In conclusion, TfR1 was highly expressed in glioblastomas and associated with shorter survival in the whole cohort, but not in the individual malignancy grades. Low levels of FTH-positive tumor cells and microglia/macrophages were associated with poor survival in anaplastic astrocytomas, while high amounts of FTL-positive microglia/macrophages had a negative prognostic value. The results suggest that regulation of the iron metabolism in astrocytic brain tumors is complex involving both autocrine and paracrine signaling.
Collapse
Affiliation(s)
- Ann Mari Rosager
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mia D. Sørensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Rikke H. Dahlrot
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Steinbjørn Hansen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - David L. Schonberg
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, United States of America
| | - Jeremy N. Rich
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, United States of America
| | - Justin D. Lathia
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, United States of America
| | - Bjarne W. Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
28
|
Portbury SD, Hare DJ, Sgambelloni CJ, Bishop DP, Finkelstein DI, Doble PA, Adlard PA. Age modulates the injury-induced metallomic profile in the brain. Metallomics 2017; 9:402-410. [DOI: 10.1039/c6mt00260a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Garton T, Keep RF, Hua Y, Xi G. Brain iron overload following intracranial haemorrhage. Stroke Vasc Neurol 2016; 1:172-184. [PMID: 28959481 PMCID: PMC5435218 DOI: 10.1136/svn-2016-000042] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/15/2022] Open
Abstract
Intracranial haemorrhages, including intracerebral haemorrhage (ICH), intraventricular haemorrhage (IVH) and subarachnoid haemorrhage (SAH), are leading causes of morbidity and mortality worldwide. In addition, haemorrhage contributes to tissue damage in traumatic brain injury (TBI). To date, efforts to treat the long-term consequences of cerebral haemorrhage have been unsatisfactory. Incident rates and mortality have not showed significant improvement in recent years. In terms of secondary damage following haemorrhage, it is becoming increasingly apparent that blood components are of integral importance, with haemoglobin-derived iron playing a major role. However, the damage caused by iron is complex and varied, and therefore, increased investigation into the mechanisms by which iron causes brain injury is required. As ICH, IVH, SAH and TBI are related, this review will discuss the role of iron in each, so that similarities in injury pathologies can be more easily identified. It summarises important components of normal brain iron homeostasis and analyses the existing evidence on iron-related brain injury mechanisms. It further discusses treatment options of particular promise.
Collapse
Affiliation(s)
- Thomas Garton
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
30
|
Portbury SD, Hare DJ, Sgambelloni C, Finkelstein DI, Adlard PA. A time-course analysis of changes in cerebral metal levels following a controlled cortical impact. Metallomics 2016; 8:193-200. [PMID: 26689359 DOI: 10.1039/c5mt00234f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) is complicated by a sudden and dramatic change in brain metal levels, including iron (Fe), copper (Cu) and zinc (Zn). Specific 'metallo-pathological' features of TBI include increased non-heme bound Fe and the liberation of free Zn ions, both of which may contribute to the pathogenesis of TBI. To further characterise the metal dyshomeostasis that occurs following brain trauma, we performed a quantitative time-course survey of spatial Fe, Cu and Zn distribution in mice receiving a controlled cortical impact TBI. Images of brain metal levels produced using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in the upper quadrant of the ipsilateral hemisphere were compared to the corresponding contralateral hemisphere, together with regional areas radiating toward the center of the brain from the site of lesion. Significant regional and time point specific elevations in Fe, Zn and Cu were detected immediately and up to 28 days after TBI. The magnitude and timeframe of many of these changes suggest that TBI results in a pronounced and sustained alteration in normal metal levels within the brain. Such alterations are likely to play a role in both the short- and long-term consequences of head trauma and suggest that pharmacological modulation to normalize these metal levels may be efficacious in improving functional outcome.
Collapse
Affiliation(s)
- Stuart D Portbury
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria 3052, Australia.
| | - Dominic J Hare
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria 3052, Australia. and Elemental Bio-imaging Facility, University of Technology Sydney, Thomas Street, Broadway, New South Wales 2007, Australia
| | - Charlotte Sgambelloni
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria 3052, Australia.
| | - David I Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria 3052, Australia.
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria 3052, Australia.
| |
Collapse
|
31
|
Yang Z, Lin F, Weissman AS, Jaalouk E, Xue QS, Wang KKW. A Repetitive Concussive Head Injury Model in Mice. J Vis Exp 2016. [PMID: 27768069 DOI: 10.3791/54530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Despite the concussion/ mild traumatic brain injury (mTBI) being the most frequent occurrence of traumatic brain injury, there is still a lack of knowledge on the injury and its effects. To develop a better understanding of concussions, animals are often used because they provide a controlled, rigorous, and efficient model. Studies have adapted traditional animal models to perform mTBI to stimulate mild injury severity by changing the injury parameters. These models have been used because they can produce morphologically similar brain injuries to the clinical condition and provide a spectrum of injury severities. However, they are limited in their ability to present the identical features of injuries in patients. Using a traditional impact system, a repetitive concussive injury (rCHI) model can induce mild to moderate human-like concussion. The injury degree can be determined by measuring the period of loss of consciousness (LOC) with a sign of a transient termination of breathing. The rCHI model is beneficial to use for its accuracy and simplicity in determining mTBI effects and potential treatments.
Collapse
Affiliation(s)
- Zhihui Yang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, University of Florida; Department of Psychiatry, University of Florida;
| | - Fan Lin
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, University of Florida; Department of Psychiatry, University of Florida
| | - Amanda S Weissman
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, University of Florida; Department of Psychiatry, University of Florida
| | - Emily Jaalouk
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, University of Florida; Department of Psychiatry, University of Florida
| | | | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, University of Florida; Department of Psychiatry, University of Florida
| |
Collapse
|
32
|
Logsdon AF, Lucke-Wold BP, Nguyen L, Matsumoto RR, Turner RC, Rosen CL, Huber JD. Salubrinal reduces oxidative stress, neuroinflammation and impulsive-like behavior in a rodent model of traumatic brain injury. Brain Res 2016; 1643:140-51. [PMID: 27131989 PMCID: PMC5578618 DOI: 10.1016/j.brainres.2016.04.063] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/07/2016] [Accepted: 04/26/2016] [Indexed: 02/05/2023]
Abstract
Traumatic brain injury (TBI) is the leading cause of trauma related morbidity in the developed world. TBI has been shown to trigger secondary injury cascades including endoplasmic reticulum (ER) stress, oxidative stress, and neuroinflammation. The link between secondary injury cascades and behavioral outcome following TBI is poorly understood warranting further investigation. Using our validated rodent blast TBI model, we examined the interaction of secondary injury cascades following single injury and how these interactions may contribute to impulsive-like behavior after a clinically relevant repetitive TBI paradigm. We targeted these secondary pathways acutely following single injury with the cellular stress modulator, salubrinal (SAL). We examined the neuroprotective effects of SAL administration on significantly reducing ER stress: janus-N-terminal kinase (JNK) phosphorylation and C/EBP homology protein (CHOP), oxidative stress: superoxide and carbonyls, and neuroinflammation: nuclear factor kappa beta (NFκB) activity, inducible nitric oxide synthase (iNOS) protein expression, and pro-inflammatory cytokines at 24h post-TBI. We then used the more clinically relevant repeat injury paradigm and observed elevated NFκB and iNOS activity. These injury cascades were associated with impulsive-like behavior measured on the elevated plus maze. SAL administration attenuated secondary iNOS activity at 72h following repetitive TBI, and most importantly prevented impulsive-like behavior. Overall, these results suggest a link between secondary injury cascades and impulsive-like behavior that can be modulated by SAL administration.
Collapse
Affiliation(s)
- Aric F Logsdon
- Department of Pharmaceutical Sciences, School of Pharmacy, Health Sciences Center, West Virginia University, One Medical Center Drive, Morgantown, WV, United States; Department of Neurosurgery, School of Medicine, West Virginia University, Morgantown, WV, United States; Centers for Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, United States.
| | - Brandon P Lucke-Wold
- Department of Neurosurgery, School of Medicine, West Virginia University, Morgantown, WV, United States; Centers for Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, United States.
| | - Linda Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy, Health Sciences Center, West Virginia University, One Medical Center Drive, Morgantown, WV, United States.
| | - Rae R Matsumoto
- Dean's Office, College of Pharmacy, Touro University California, Vallejo, CA, United States.
| | - Ryan C Turner
- Department of Neurosurgery, School of Medicine, West Virginia University, Morgantown, WV, United States; Centers for Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, United States.
| | - Charles L Rosen
- Department of Neurosurgery, School of Medicine, West Virginia University, Morgantown, WV, United States; Centers for Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, United States.
| | - Jason D Huber
- Department of Pharmaceutical Sciences, School of Pharmacy, Health Sciences Center, West Virginia University, One Medical Center Drive, Morgantown, WV, United States; Department of Neurosurgery, School of Medicine, West Virginia University, Morgantown, WV, United States; Centers for Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, United States.
| |
Collapse
|
33
|
Merchant-Borna K, Lee H, Wang D, Bogner V, van Griensven M, Gill J, Bazarian JJ. Genome-Wide Changes in Peripheral Gene Expression following Sports-Related Concussion. J Neurotrauma 2016; 33:1576-85. [PMID: 27035221 DOI: 10.1089/neu.2015.4191] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We conducted a prospective study to identify genome-wide changes in peripheral gene expression before and after sports-related concussion (SRC). A total of 253 collegiate contact athletes underwent collection of peripheral blood mononuclear cells (PBMCs) before the sport season (baseline). Sixteen athletes who subsequently developed an SRC, along with 16 non-concussed teammate controls, underwent repeat collection of PBMCs within 6 h of injury (acutely). Concussed athletes underwent additional sample collection at 7 days post-injury (sub-acutely). Messenger RNA (mRNA) expression at baseline was compared with mRNA expression acutely and sub-acutely post-SRC. To estimate the contribution of physical exertion to gene changes, baseline samples from athletes who subsequently developed an SRC were compared with samples from uninjured teammate controls collected at the acute time-point. Clinical outcome was determined by changes in post-concussive symptoms, postural stability, and cognition from baseline to the sub-acute time-point. SRC athletes had significant changes in mRNA expression at both the acute and sub-acute time-points. There were no significant expression changes among controls. Acute transcriptional changes centered on interleukins 6 and 12, toll-like receptor 4, and NF-κB. Sub-acute gene expression changes centered on NF-κB, follicle stimulating hormone, chorionic gonadotropin, and protein kinase catalytic subunit. All SRC athletes were clinically back to baseline by Day 7. In conclusion, acute post-SRC transcriptional changes reflect regulation of the innate immune response and the transition to adaptive immunity. By 7 days, transcriptional activity is centered on regulating the hypothalamic-pituitary-adrenal axis. Future efforts to compare expressional changes in fully recovered athletes with those who do not recover from SRC could suggest putative targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kian Merchant-Borna
- 1 Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry , Rochester, New York
| | - Hyunhwa Lee
- 2 University of Nevada, Las Vegas, School of Nursing , Las Vegas, Nevada
| | - Dan Wang
- 3 National Institute for Nursing Research, National Institutes of Health , Bethesda, Maryland
| | | | - Martijn van Griensven
- 5 Department of Trauma Surgery, Klinikum rechts der Isar, Technical University Munich , Munich, Germany
| | - Jessica Gill
- 3 National Institute for Nursing Research, National Institutes of Health , Bethesda, Maryland
| | - Jeffrey J Bazarian
- 1 Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry , Rochester, New York
| |
Collapse
|
34
|
Cerebrospinal Fluid Markers of Macrophage and Lymphocyte Activation After Traumatic Brain Injury in Children. Pediatr Crit Care Med 2015; 16:549-57. [PMID: 25850867 PMCID: PMC4497935 DOI: 10.1097/pcc.0000000000000400] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES The magnitude and role of the cellular immune response following pediatric traumatic brain injury remains unknown. We tested the hypothesis that macrophage/microglia and T-cell activation occurs following pediatric traumatic brain injury by measuring cerebrospinal fluid levels of soluble cluster of differentiation 163 and ferritin and soluble interleukin-2 receptor α, respectively, and determined whether these biomarkers were associated with relevant clinical variables and outcome. DESIGN Retrospective analysis of samples from an established, single-center cerebrospinal fluid bank. SETTING PICU in a tertiary children's hospital. PATIENTS Sixty-six pediatric patients after severe traumatic brain injury (Glasgow Coma Scale score < 8) who were 1 month to 16 years old and 17 control patients who were 1 month to 14 years old. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Cerebrospinal fluid levels of soluble cluster of differentiation 163, ferritin, and soluble interleukin-2 receptor α were determined by enzyme-linked immunosorbent assay at two time points (t1 = 17 ± 10 hr; t2 = 72 ± 15 hr) for each traumatic brain injury patient. Cerebrospinal fluid levels of soluble cluster of differentiation 163, ferritin, and soluble interleukin-2 receptor α after traumatic brain injury were compared with controls and analyzed for associations with age, patient sex, initial Glasgow Coma Scale score, diagnosis of abusive head trauma, the presence of hemorrhage on CT scan, and Glasgow Outcome Scale score. Cerebrospinal fluid level of soluble cluster of differentiation 163 was increased in traumatic brain injury patients at t2 versus t1 and controls (median, 95.4 ng/mL [interquartile range, 21.8-134.0 ng/mL] vs 31.0 ng/mL [5.7-77.7 ng/mL] and 27.8 ng/mL [19.1-43.1 ng/mL], respectively; p < 0.05). Cerebrospinal fluid level of ferritin was increased in traumatic brain injury patients at t2 and t1 versus controls (8.3 ng/mL [<7.5-19.8 ng/mL] and 8.9 ng/mL [<7.5-26.7 ng/mL] vs <7.5 ng/mL below lower limit of detection, respectively; p < 0.05). Cerebrospinal fluid levels of soluble interleukin-2 receptor α in traumatic brain injury patients at t2 and t1 were not different versus controls. Multivariate regression revealed associations between high ferritin and age 4 years or younger, lower Glasgow Coma Scale score, abusive head trauma, and unfavorable Glasgow Outcome Scale score. CONCLUSIONS Children with traumatic brain injury demonstrate evidence for macrophage activation after traumatic brain injury, and in terms of cerebrospinal fluid ferritin, this appears more prominent with young age, initial injury severity, abusive head trauma, and unfavorable outcome. Further study is needed to determine whether biomarkers of macrophage activation may be used to discriminate between aberrant and adaptive immune responses and whether inflammation represents a therapeutic target after traumatic brain injury.
Collapse
|
35
|
Logsdon AF, Lucke-Wold BP, Turner RC, Huber JD, Rosen CL, Simpkins JW. Role of Microvascular Disruption in Brain Damage from Traumatic Brain Injury. Compr Physiol 2015; 5:1147-60. [PMID: 26140712 PMCID: PMC4573402 DOI: 10.1002/cphy.c140057] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Traumatic brain injury (TBI) is acquired from an external force, which can inflict devastating effects to the brain vasculature and neighboring neuronal cells. Disruption of vasculature is a primary effect that can lead to a host of secondary injury cascades. The primary effects of TBI are rapidly occurring while secondary effects can be activated at later time points and may be more amenable to targeting. Primary effects of TBI include diffuse axonal shearing, changes in blood-brain barrier (BBB) permeability, and brain contusions. These mechanical events, especially changes to the BBB, can induce calcium perturbations within brain cells producing secondary effects, which include cellular stress, inflammation, and apoptosis. These secondary effects can be potentially targeted to preserve the tissue surviving the initial impact of TBI. In the past, TBI research had focused on neurons without any regard for glial cells and the cerebrovasculature. Now a greater emphasis is being placed on the vasculature and the neurovascular unit following TBI. A paradigm shift in the importance of the vascular response to injury has opened new avenues of drug-treatment strategies for TBI. However, a connection between the vascular response to TBI and the development of chronic disease has yet to be elucidated. Long-term cognitive deficits are common amongst those sustaining severe or multiple mild TBIs. Understanding the mechanisms of cellular responses following TBI is important to prevent the development of neuropsychiatric symptoms. With appropriate intervention following TBI, the vascular network can perhaps be maintained and the cellular repair process possibly improved to aid in the recovery of cellular homeostasis.
Collapse
Affiliation(s)
- Aric F Logsdon
- Department of Pharmaceutical Sciences, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Brandon P Lucke-Wold
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Ryan C Turner
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Jason D Huber
- Department of Pharmaceutical Sciences, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Charles L Rosen
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - James W Simpkins
- Department of Physiology and Pharmacology, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| |
Collapse
|
36
|
Simon D, Nicol JMB, Sabino da Silva S, Graziottin C, Silveira PC, Ikuta N, Regner A. Serum ferritin correlates with Glasgow coma scale scores and fatal outcome after severe traumatic brain injury. Brain Inj 2015; 29:612-7. [PMID: 25625879 DOI: 10.3109/02699052.2014.995228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Severe traumatic brain injury (TBI) is associated with a 30-70% mortality rate. Nevertheless, in clinical practice there are no effective biomarkers for the prediction of fatal outcome following severe TBI. Therefore, the aim was to determine whether ferritin serum levels are associated with ICU mortality in patients with severe TBI. METHODS This prospective study enrolled 69 male patients who suffered severe TBI [Glasgow Coma Scale (GCS) 3-8 at emergency room admission]. The serum ferritin protein level was determined at ICU admission (mean 5.6 ± 2.5 hours after emergency room admission). RESULTS Severe TBI was associated with a 39% mortality rate. Higher serum ferritin concentrations were significantly associated with lower hospital admission GCS scores (p = 0.049). Further, there was a significant association between higher ferritin concentrations and fatal outcome (289.5 ± 27.1 µg L(-1) for survivors and 376.5 ± 31.5 µg L(-1) for non-survivors, respectively, mean ± SEM, p = 0.032). CONCLUSIONS Increased serum ferritin levels were associated with lower hospital admission GCS scores and predicted short-term fatal outcome following severe TBI.
Collapse
Affiliation(s)
- Daniel Simon
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde
| | | | | | | | | | | | | |
Collapse
|
37
|
Imamura T, Hirayama T, Tsuruma K, Shimazawa M, Nagasawa H, Hara H. Hydroxyl radicals cause fluctuation in intracellular ferrous ion levels upon light exposure during photoreceptor cell death. Exp Eye Res 2014; 129:24-30. [PMID: 25447561 DOI: 10.1016/j.exer.2014.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/01/2014] [Accepted: 10/24/2014] [Indexed: 12/21/2022]
Abstract
Iron accumulation is a potential pathogenic event often seen in age-related macular degeneration (AMD) patients. In this study, we focused on the relationship between AMD pathology and concentrations of ferrous ion, which is a highly reactive oxygen generator in biological systems. Murine cone-cells-derived 661 W cells were exposed to white fluorescence light at 2500 lx for 1, 3, 6, or 12 h. Levels of ferrous ions, reactive oxygen species (ROS), and hydroxyl radicals were detected by RhoNox-1, a novel fluorescent probe for the selective detection of ferrous ion, 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA), and 3'-p-(aminophenyl) fluorescein, respectively. Reduced glutathione, total iron levels and photoreceptor cell death were also measured. Two genes related to iron metabolism, transferrin receptor 1 (TfR1) and H ferritin (HFt), were quantified by RT-PCR. The effects of ferrous ion on cell death and hydroxyl radical production were determined by treatment with a ferrous ion chelating agent, 2,2'-bipyridyl. We found that the ferrous ion level decreased with light exposure in the short time frame, whereas it was upregulated during a 6-h light exposure. Total iron, ROS, cell death rate, and expression of TfR and HFt genes were significantly increased in a time-dependent manner in 661 W cells exposed to light. Chelation with 2,2'-bipyridyl reduced the level of hydroxyl radicals and protected against light-induced cell death. These results suggest that light exposure decreases ferrous ion levels and enhances iron uptake in photoreceptor cells. Ferrous ion may be involved in light-induced photoreceptor cell death through production of hydroxyl radicals.
Collapse
Affiliation(s)
- Tomoyo Imamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tasuku Hirayama
- Pharmaceutical and Medicinal Chemistry, Department of Organic and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Kazuhiro Tsuruma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hideko Nagasawa
- Pharmaceutical and Medicinal Chemistry, Department of Organic and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| |
Collapse
|
38
|
Wang Y, Gao A, Xu X, Dang B, You W, Li H, Yu Z, Chen G. The Neuroprotection of Lysosomotropic Agents in Experimental Subarachnoid Hemorrhage Probably Involving the Apoptosis Pathway Triggering by Cathepsins via Chelating Intralysosomal Iron. Mol Neurobiol 2014; 52:64-77. [PMID: 25112680 DOI: 10.1007/s12035-014-8846-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/31/2014] [Indexed: 01/11/2023]
Abstract
α-Lipoic acid-plus (LAP), an amine derivative of α-lipoic acid (LA), could protect cells against oxidant challenges via chelating intralysosomal iron. However, the application of LAP in experimental subarachnoid hemorrhage (SAH) is still not well known. This study was designed to evaluate the potential neuroprotection of LAP on the early brain injury (EBI) and the underlying mechanisms in a rat model of SAH. The SAH models were induced in Sprague-Dawley rats. LA and LAP were oral administration and lasted for 72 h once a day. The brain tissue samples were obtained for assay at 72 h after SAH. In experiment 1, we found that lysosome amounts in neurons decreased significantly in SAH group, and LAP (100 mg/kg) could stabilize lysosomal membrane markedly based on lysosomal-associated membrane protein-1 (LAMP-1) expression in neurons by immunofluorescence. Hence, the LAP dosages of 100 and 150 mg/kg were applied in experiment 2. Firstly, Western blot analysis showed that the protein levels of cathepsin B/D, caspase-3, Bax, ferritin, and heme-oxygenase-1 (HO-1) markedly increased after SAH, which were further confirmed by double immunofluorescence staining and reversed by LA and LAP treatments. In addition, LA and LAP also reduced oxidative stress and iron deposition in brain tissue. Furthermore, LA and LAP significantly ameliorated brain edema, blood-brain barrier injury, cortical apoptosis, and neurological behavior impairment induced by SAH. Finally, it is noteworthy that LAP exerted more significant effects than LA on these parameters as described above. LAP probably exerted neuroprotective effects via targeting lysosomes and chelating intralysosomal iron in EBI post-SAH in rats.
Collapse
Affiliation(s)
- Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ayton S, Zhang M, Roberts BR, Lam LQ, Lind M, McLean C, Bush AI, Frugier T, Crack PJ, Duce JA. Ceruloplasmin and β-amyloid precursor protein confer neuroprotection in traumatic brain injury and lower neuronal iron. Free Radic Biol Med 2014; 69:331-7. [PMID: 24509156 DOI: 10.1016/j.freeradbiomed.2014.01.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/10/2014] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
Abstract
Traumatic brain injury (TBI) is in part complicated by pro-oxidant iron elevation independent of brain hemorrhage. Ceruloplasmin (CP) and β-amyloid protein precursor (APP) are known neuroprotective proteins that reduce oxidative damage through iron regulation. We surveyed iron, CP, and APP in brain tissue from control and TBI-affected patients who were stratified according to time of death following injury. We observed CP and APP induction after TBI accompanying iron accumulation. Elevated APP and CP expression was also observed in a mouse model of focal cortical contusion injury concomitant with iron elevation. To determine if changes in APP or CP were neuroprotective we employed the same TBI model on APP(-/-) and CP(-/-) mice and found that both exhibited exaggerated infarct volume and iron accumulation postinjury. Evidence supports a regulatory role of both proteins in defence against iron-induced oxidative damage after TBI, which presents as a tractable therapeutic target.
Collapse
Affiliation(s)
- Scott Ayton
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health
| | - Moses Zhang
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Blaine R Roberts
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health
| | - Linh Q Lam
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health
| | - Monica Lind
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health
| | - Catriona McLean
- Department of Pathology, and The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ashley I Bush
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health; Department of Pathology, and The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tony Frugier
- Department of Anatomy and Cell Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Peter J Crack
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - James A Duce
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, North Yorkshire, UK.
| |
Collapse
|