1
|
Islam F, Roy S, Zehravi M, Paul S, Sutradhar H, Yaidikar L, Kumar BR, Dogiparthi LK, Prema S, Nainu F, Rab SO, Doukani K, Emran TB. Polyphenols Targeting MAP Kinase Signaling Pathway in Neurological Diseases: Understanding Molecular Mechanisms and Therapeutic Targets. Mol Neurobiol 2024; 61:2686-2706. [PMID: 37922063 DOI: 10.1007/s12035-023-03706-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/10/2023] [Indexed: 11/05/2023]
Abstract
Polyphenols are a class of secondary metabolic products found in plants that have been extensively studied for how well they regulate biological processes, such as the proliferation of cells, autophagy, and apoptosis. The mitogen-activated protein kinase (MAPK)-mediated signaling cascade is currently identified as a crucial pro-inflammatory pathway that plays a significant role in the development of neuroinflammation. This process has been shown to contribute to the pathogenesis of several neurological conditions, such as Alzheimer's disease (AD), Parkinson's disease (PD), CNS damage, and cerebral ischemia. Getting enough polyphenols through eating habits has resulted in mitigating the effects of oxidative stress (OS) and lowering the susceptibility to associated neurodegenerative disorders, including but not limited to multiple sclerosis (MS), AD, stroke, and PD. Polyphenols possess significant promise in dealing with the root cause of neurological conditions by modulating multiple therapeutic targets simultaneously, thereby attenuating their complicated physiology. Several polyphenolic substances have demonstrated beneficial results in various studies and are presently undergoing clinical investigation to treat neurological diseases (NDs). The objective of this review is to provide a comprehensive summary of the different aspects of the MAPK pathway involved in neurological conditions, along with an appraisal of the progress made in using polyphenols to regulate the MAPK signaling system to facilitate the management of NDs.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sumon Roy
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Kingdom of Saudi Arabia.
| | - Shyamjit Paul
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Hriday Sutradhar
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Lavanya Yaidikar
- Department of Pharmacology, Seven Hills College of Pharmacy, Tirupati, India
| | - B Raj Kumar
- Department of Pharmaceutical Analysis, Moonray Institute of Pharmaceutical Sciences, Raikal (V), Farooq Nagar (Tlq), Shadnagar (M), R.R Dist., Telangana, 501512, India
| | - Lakshman Kumar Dogiparthi
- Department of Pharmacognosy, MB School of Pharmaceutical Sciences, MBU, Tirupati, Andhra Pradesh, India
| | - S Prema
- Crescent School of Pharmacy, BS Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, 600048, India
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Koula Doukani
- Faculty of Nature and Life Sciences, University of Ibn Khaldoun-Tiaret, Tiaret, Algeria
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
2
|
Zhang W, Xu H, Li C, Han B, Zhang Y. Exploring Chinese herbal medicine for ischemic stroke: insights into microglia and signaling pathways. Front Pharmacol 2024; 15:1333006. [PMID: 38318134 PMCID: PMC10838993 DOI: 10.3389/fphar.2024.1333006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Ischemic stroke is a prevalent clinical condition affecting the central nervous system, characterized by a high mortality and disability rate. Its incidence is progressively rising, particularly among younger individuals, posing a significant threat to human well-being. The activation and polarization of microglia, leading to pro-inflammatory and anti-inflammatory responses, are widely recognized as pivotal factors in the pathogenesis of cerebral ischemia and reperfusion injury. Traditional Chinese herbal medicines (TCHMs) boasts a rich historical background, notable efficacy, and minimal adverse effects. It exerts its effects by modulating microglia activation and polarization, suppressing inflammatory responses, and ameliorating nerve injury through the mediation of microglia and various associated pathways (such as NF-κB signaling pathway, Toll-like signaling pathway, Notch signaling pathway, AMPK signaling pathway, MAPK signaling pathway, among others). Consequently, this article focuses on microglia as a therapeutic target, reviewing relevant pathway of literature on TCHMs to mitigate neuroinflammation and mediate IS injury, while also exploring research on drug delivery of TCHMs. The ultimate goal is to provide new insights that can contribute to the clinical management of IS using TCHMs.
Collapse
Affiliation(s)
| | | | | | - Bingbing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yimin Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
3
|
Pinto SN, Krenciute G. The Mechanisms of Altered Blood-Brain Barrier Permeability in CD19 CAR T-Cell Recipients. Int J Mol Sci 2024; 25:644. [PMID: 38203814 PMCID: PMC10779697 DOI: 10.3390/ijms25010644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Cluster of differentiation 19 (CD19) chimeric antigen receptor (CAR) T cells are a highly effective immunotherapy for relapsed and refractory B-cell malignancies, but their utility can be limited by the development of immune effector cell-associated neurotoxicity syndrome (ICANS). The recent discovery of CD19 expression on the pericytes in the blood-brain barrier (BBB) suggests an important off-target mechanism for ICANS development. In addition, the release of systemic cytokines stimulated by the engagement of CD19 with the CAR T cells can cause endothelial activation and decreased expression of tight junction molecules, further damaging the integrity of the BBB. Once within the brain microenvironment, cytokines trigger a cytokine-specific cascade of neuroinflammatory responses, which manifest clinically as a spectrum of neurological changes. Brain imaging is frequently negative or nonspecific, and treatment involves close neurologic monitoring, supportive care, interleukin antagonists, and steroids. The goal of this review is to inform readers about the normal development and microstructure of the BBB, its unique susceptibility to CD19 CAR T cells, the role of individual cytokines on specific elements of the brain's microstructural environment, and the clinical and imaging manifestations of ICANS. Our review will link cellular pathophysiology with the clinical and radiological manifestations of a complex clinical entity.
Collapse
Affiliation(s)
- Soniya N. Pinto
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| |
Collapse
|
4
|
Tang F, Liu D, Zhang L, Xu LY, Zhang JN, Zhao XL, Ao H, Peng C. Targeting endothelial cells with golden spice curcumin: A promising therapy for cardiometabolic multimorbidity. Pharmacol Res 2023; 197:106953. [PMID: 37804925 DOI: 10.1016/j.phrs.2023.106953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Cardiometabolic multimorbidity (CMM) is an increasingly significant global public health concern. It encompasses the coexistence of multiple cardiometabolic diseases, including hypertension, stroke, heart disease, atherosclerosis, and T2DM. A crucial component to the development of CMM is the disruption of endothelial homeostasis. Therefore, therapies targeting endothelial cells through multi-targeted and multi-pathway approaches hold promise for preventing and treatment of CMM. Curcumin, a widely used dietary supplement derived from the golden spice Carcuma longa, has demonstrated remarkable potential in treatment of CMM through its interaction with endothelial cells. Numerous studies have identified various molecular targets of curcumin (such as NF-κB/PI3K/AKT, MAPK/NF-κB/IL-1β, HO-1, NOs, VEGF, ICAM-1 and ROS). These findings highlight the efficacy of curcumin as a therapeutic agent against CMM through the regulation of endothelial function. It is worth noting that there is a close relationship between the progression of CMM and endothelial damage, characterized by oxidative stress, inflammation, abnormal NO bioavailability and cell adhesion. This paper provides a comprehensive review of curcumin, including its availability, pharmacokinetics, pharmaceutics, and therapeutic application in treatment of CMM, as well as the challenges and future prospects for its clinical translation. In summary, curcumin shows promise as a potential treatment option for CMM, particularly due to its ability to target endothelial cells. It represents a novel and natural lead compound that may offer significant therapeutic benefits in the management of CMM.
Collapse
Affiliation(s)
- Fei Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Dong Liu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li-Yue Xu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing-Nan Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao-Lan Zhao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hui Ao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
5
|
Gravandi MM, Abdian S, Tahvilian M, Iranpanah A, Moradi SZ, Fakhri S, Echeverría J. Therapeutic targeting of Ras/Raf/MAPK pathway by natural products: A systematic and mechanistic approach for neurodegeneration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154821. [PMID: 37119761 DOI: 10.1016/j.phymed.2023.154821] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Multiple dysregulated pathways are behind the pathogenesis of neurodegenerative diseases (NDDs); however, the crucial targets are still unknown. Oxidative stress, apoptosis, autophagy, and inflammation are the most dominant pathways that strongly influence neurodegeneration. In this way, targeting the Ras/Raf/mitogen-activated protein kinases (MAPKs) pathway appears to be a developing strategy for combating NDDs like Parkinson's disease, Alzheimer's disease, stroke, aging, and other NDDs. Accordingly, plant secondary metabolites have shown promising potentials for the simultaneous modulation of the Ras/Raf/MAPKs pathway and play an essential role in NDDs. MAPKs include p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK 1/2), and c-Jun N-terminal kinase (JNK), which are important molecular players in neurodegeneration. Ras/Raf, which is located the upstream of MAPK pathway influences the initiation and progression of neurodegeneration and is regulated by natural products. PURPOSE Thus, the present study aimed to investigate the neuroprotective roles of plant- and marine-derived secondary metabolites against several NDDs through the modulation of the Ras/Raf/MAPK signaling pathway. STUDY DESIGN AND METHODS A systematic and comprehensive review was performed to highlight the modulatory roles of natural products on the Ras/Raf/MAPK signaling pathway in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including PubMed, Scopus, and Web of Sciences. Associated reference lists were also searched for the literature review. RESULTS From a total of 1495 results, finally 107 articles were included in the present study. The results show that several natural compounds such as alkaloid, phenolic, terpenoids, and nanoformulation were shown to have modulatory effects on the Ras/Raf/MAPKs pathway. CONCLUSION Natural products are promising multi-targeted agents with on NDDs through Ras/Raf/MAPKs pathway. Nevertheless, additional and complementary studies are necessary to check its efficacy and potential side effects.
Collapse
Affiliation(s)
| | - Sadaf Abdian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maedeh Tahvilian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile.
| |
Collapse
|
6
|
Lee Y, Park HR, Lee JY, Kim J, Yang S, Lee C, Kim K, Kim HS, Chang SC, Lee J. Low-dose curcumin enhances hippocampal neurogenesis and memory retention in young mice. Arch Pharm Res 2023; 46:423-437. [PMID: 36947339 DOI: 10.1007/s12272-023-01440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Adult neurogenesis generates new functional neurons from adult neural stem cells in various regions, including the subventricular zone (SVZ) of the lateral ventricles and subgranular zone (SGZ) of hippocampal dentate gyrus (DG). Available evidence shows hippocampal neurogenesis can be negatively or positively regulated by dietary components. In a previous study, we reported that curcumin (diferuloylmethane; a polyphenolic found in curry spice) stimulates the proliferation of embryonic neural stem cells (NSCs) by activating adaptive cellular stress responses. Here, we investigated whether subchronic administration of curcumin (once daily at 0.4, 2, or 10 mg/kg for 14 days) promotes hippocampal neurogenesis and neurocognitive function in young (5-week-old) mice. Oral administration of low-dose curcumin (0.4 mg/kg) increased the proliferation and survival of newly generated cells in hippocampus, but surprisingly, high-dose curcumin (10 mg/kg) did not effectively upregulate the proliferation or survival of newborn cells. Furthermore, hippocampal BDNF levels and phosphorylated CREB activity were elevated in only low-dose curcumin-treated mice. Passive avoidance testing revealed that low-dose curcumin increased cross-over latency times, indicating enhanced memory retention, and an in vitro study showed that low-concentration curcumin increased the proliferative activity of neural progenitor cells (NPCs) by upregulating NF1X levels. Collectively, our findings suggest that low-dose curcumin has neurogenic effects and that it may prevent age and neurodegenerative disease-related cognitive deficits.
Collapse
Affiliation(s)
- Yujeong Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Hee Ra Park
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
- Department of KM Science Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Joo Yeon Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaehoon Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Seonguk Yang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Chany Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Kipom Kim
- Research Strategy Office, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Hyung Sik Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaewon Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
7
|
Wei X, Zhou Y, Song J, Zhao J, Huang T, Zhang M, Zhao Y. Hyperglycemia Aggravates Blood-Brain Barrier Disruption Following Diffuse Axonal Injury by Increasing the Levels of Inflammatory Mediators through the PPARγ/Caveolin-1/TLR4 Pathway. Inflammation 2023; 46:129-145. [PMID: 35857154 DOI: 10.1007/s10753-022-01716-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
Hyperglycemia aggravates brain damage after diffuse axonal injury (DAI), but the underlying mechanisms are not fully defined. In this study, we aimed to investigate a possible role for hyperglycemia in the disruption of blood-brain barrier (BBB) integrity in a rat model of DAI and the underlying mechanisms. Accordingly, 50% glucose was intraperitoneally injected after DAI to establish the hyperglycemia model. Hyperglycemia treatment aggravated neurological impairment and axonal injury, increased cell apoptosis and glial activation, and promoted the release of inflammatory factors, including TNF-α, IL-1β, and IL-6. It also exacerbated BBB disruption and decreased the expression of tight junction-associated proteins, including ZO-1, claudin-5, and occludin-1, whereas the PPARγ agonist rosiglitazone (RSG) had the opposite effects. An in vitro BBB model was established by a monolayer of human microvascular endothelial cells (HBMECs). Hyperglycemia induction worsened the loss of BBB integrity induced by oxygen and glucose deprivation (OGD) by increasing the release of inflammatory factors and decreasing the expression of tight junction-associated proteins. Hyperglycemia further reduced the expression of PPARγ and caveolin-1, which significantly decreased after DAI and OGD. Hyperglycemia also further increased the expression of toll-like receptor 4 (TLR4), which significantly increased after OGD. Subsequently, the PPARγ agonist RSG increased caveolin-1 expression and decreased TLR4 expression and inflammatory factor levels. In contrast, caveolin-1 siRNA abrogated the protective effects of RSG in the in vitro BBB model of hyperglycemia by increasing TLR4 and Myd88 expression and the levels of inflammatory factors, including TNF-α, IL-1β, and IL-6. Collectively, we demonstrated that hyperglycemia was involved in mediating secondary injury after DAI by disrupting BBB integrity by inducing inflammation through the PPARγ/caveolin-1/TLR4 pathway.
Collapse
Affiliation(s)
- Xing Wei
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yaqing Zhou
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, People's Republic of China
| | - Jinning Song
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Junjie Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Tingqin Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ming Zhang
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yonglin Zhao
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, People's Republic of China.
| |
Collapse
|
8
|
Wang Y, Zu G, Yu Y, Tang J, Han T, Zhang C. Curcumin's mechanism of action against ischemic stroke: A network pharmacology and molecular dynamics study. PLoS One 2023; 18:e0280112. [PMID: 36598916 PMCID: PMC9812305 DOI: 10.1371/journal.pone.0280112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023] Open
Abstract
Ischemic stroke (IS) is one of the major global causes of death and disability. Because blood clots block the neural arteries provoking ischemia and hypoxia in the brain tissue, IS results in irreversible neurological damage. Available IS treatments are currently limited. Curcumin has gained attention for many beneficial effects after IS, including neuroprotective and anti-inflammatory; however, its precise mechanism of action should be further explored. With network pharmacology, molecular docking, and molecular dynamics (MD), this study aimed to comprehensively and systematically investigate the potential targets and molecular mechanisms of curcumin on IS. We screened 1096 IS-related genes, 234 potential targets of curcumin, and 97 intersection targets. KEGG and GO enrichment analyses were performed on these intersecting targets. The findings showed that the treatment of IS using curcumin is via influencing 177 potential signaling pathways (AGE-RAGE signaling pathway, p53 signaling pathway, necroptosis, etc.) and numerous biological processes (the regulation of neuronal death, inflammatory response, etc.), and the AGE-RAGE signaling pathway had the largest degree of enrichment, indicating that it may be the core pathway. We also constructed a protein-protein interaction network and a component-target-pathway network using network pharmacology. From these, five key targets were screened: NFKB1, TP53, AKT1, STAT3, and TNF. To predict the binding conformation and intermolecular affinities of the key targets and compounds, molecular docking was used, whose results indicated that curcumin exhibited strong binding activity to the key targets. Moreover, 100 ns MD simulations further confirmed the docking findings and showed that the curcumin-protein complex could be in a stable state. In conclusion, curcumin affects multiple targets and pathways to inhibit various important pathogenic mechanisms of IS, including oxidative stress, neuronal death, and inflammatory responses. This study offers fresh perspectives on the transformation of curcumin to clinical settings and the development of IS therapeutic agents.
Collapse
Affiliation(s)
- Yangyang Wang
- College of Rehabilitation Medicine, Weifang Medical University, Weifang, China
| | - Guoxiu Zu
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese, Jinan, China
| | - Ying Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiqin Tang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- * E-mail: (JT); (TH)
| | - Tao Han
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese, Jinan, China
- * E-mail: (JT); (TH)
| | - Chengdong Zhang
- College of Rehabilitation Medicine, Weifang Medical University, Weifang, China
| |
Collapse
|
9
|
Butnariu M, Quispe C, Koirala N, Khadka S, Salgado-Castillo CM, Akram M, Anum R, Yeskaliyeva B, Cruz-Martins N, Martorell M, Kumar M, Vasile Bagiu R, Abdull Razis AF, Sunusi U, Muhammad Kamal R, Sharifi-Rad J. Bioactive Effects of Curcumin in Human Immunodeficiency Virus Infection Along with the Most Effective Isolation Techniques and Type of Nanoformulations. Int J Nanomedicine 2022; 17:3619-3632. [PMID: 35996526 PMCID: PMC9391931 DOI: 10.2147/ijn.s364501] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Human immunodeficiency virus (HIV) is one of the leading causes of death worldwide, with African countries being the worst affected by this deadly virus. Curcumin (CUR) is a Curcuma longa-derived polyphenol that has attracted the attention of researchers due to its antimicrobial, anti-inflammatory, antioxidant, immunomodulatory and antiviral effects. CUR also demonstrates anti-HIV effects by acting as a possible inhibitor of gp120 binding, integrase, protease, and topoisomerase II activities, besides also exerting a protective action against HIV-associated diseases. However, its effectiveness is limited due to its poor water solubility, rapid metabolism, and systemic elimination. Nanoformulations have been shown to be useful to enhance curcumin’s bioavailability and its effectiveness as an anti-HIV agent. In this sense, bioactive effects of CUR in HIV infection are carefully reviewed, along with the most effective isolation techniques and type of nanoformulations available.
Collapse
Affiliation(s)
- Monica Butnariu
- Chemistry & Biochemistry Discipline, University of Life Sciences "King Mihai I" from Timisoara, 300645, Calea Aradului 119, Timis, Romania
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, 1110939, Chile
| | - Niranjan Koirala
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu, 44600, Nepal.,Laboratory of Biotechnology, Faculty of Science and Technology, University of Macau, Macau SAR, 999078, People's Republic of China
| | - Sujan Khadka
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,State Key Laboratory of Environmental Aquatic Chemistry" with "State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | | | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rabia Anum
- SINA Health, Education and Welfare Trust, Karachi, Pakistan
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Gandra PRD, 4585-116, Portugal.,TOXRUN-Oxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, 4585-116, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, 4070386, Chile.,Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción, 4070386, Chile
| | - Manoj Kumar
- Chemical and BioChemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Radu Vasile Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara Department of Microbiology, Timisoara, Romania.,Preventive Medicine Study Center, Timisoara, Romania
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Biochemistry, Bayero University Kano, Kano, Nigeria
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Pharmacology, Federal University Dutse, Dutse, Jigawa State, Nigeria
| | | |
Collapse
|
10
|
Fan F, Lei M. Mechanisms Underlying Curcumin-Induced Neuroprotection in Cerebral Ischemia. Front Pharmacol 2022; 13:893118. [PMID: 35559238 PMCID: PMC9090137 DOI: 10.3389/fphar.2022.893118] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is the leading cause of death and disability worldwide, and restoring the blood flow to ischemic brain tissues is currently the main therapeutic strategy. However, reperfusion after brain ischemia leads to excessive reactive oxygen species production, inflammatory cell recruitment, the release of inflammatory mediators, cell death, mitochondrial dysfunction, endoplasmic reticulum stress, and blood-brain barrier damage; these pathological mechanisms will further aggravate brain tissue injury, ultimately affecting the recovery of neurological functions. It has attracted the attention of researchers to develop drugs with multitarget intervention effects for individuals with cerebral ischemia. A large number of studies have established that curcumin plays a significant neuroprotective role in cerebral ischemia via various mechanisms, including antioxidation, anti-inflammation, anti-apoptosis, protection of the blood-brain barrier, and restoration of mitochondrial function and structure, restoring cerebral circulation, reducing infarct volume, improving brain edema, promoting blood-brain barrier repair, and improving the neurological functions. Therefore, summarizing the results from the latest literature and identifying the potential mechanisms of action of curcumin in cerebral ischemia will serve as a basis and guidance for the clinical applications of curcumin in the future.
Collapse
Affiliation(s)
- Feng Fan
- Department of Interventional Neuroradiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Lei
- Department of Neurology, The Third People’s Hospital of Henan Province, Zhengzhou, China
| |
Collapse
|
11
|
Sadraei MR, Tavalaee M, Forouzanfar M, Nasr-Esfahani MH. Effect of curcumin, and nano-curcumin on sperm function in varicocele rat model. Andrologia 2021; 54:e14282. [PMID: 34755901 DOI: 10.1111/and.14282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022] Open
Abstract
Varicocele is one of the most important causes of infertility in men which gradually leads to testicular dysfunction. Testicular heat stress-induced oxidative stress is considered the main cause of pathology in these individuals. In this study, the effects of curcumin and nano-curcumin, as natural antioxidants, were investigated on spermatogenesis and sperm function in varicocele-induced rats. Seventy Wistar rats were randomly divided into seven groups; sham, control, varicocele, varicocele + curcumin 50 mg, varicocele + curcumin 100 mg, varicocele + nano-curcumin 4 mg and varicocele + nano-curcumin 8 mg. After 2 months of antioxidant therapy, all the rats were sacrificed. The results demonstrated that the mean sperm concentration and motility were significantly lower while the mean of abnormal morphology, lipid peroxidation, intracytoplasmic ROS and DNA damage was significantly higher in varicocelised rats compared to control and sham groups (p < .05). Both doses of curcumin and also nano-curcumin were significantly effective in improving the aforementioned parameters except for abnormal sperm morphology, and motility where nano-curcumin (4 mg) was significantly more effective than other groups (p < .05). The results of the current study suggest the application of nano-curcumin is more preferable to curcumin in infertile individuals with varicocele.
Collapse
Affiliation(s)
- Mohamad Reza Sadraei
- Department of Biology, College of Science, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Forouzanfar
- Department of Biology, College of Science Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
12
|
Curcumin Ameliorates White Matter Injury after Ischemic Stroke by Inhibiting Microglia/Macrophage Pyroptosis through NF- κB Suppression and NLRP3 Inflammasome Inhibition. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1552127. [PMID: 34630845 PMCID: PMC8497115 DOI: 10.1155/2021/1552127] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022]
Abstract
NLRP3 inflammasome-mediated pyroptosis is a proinflammatory programmed cell death pathway, which plays a vital role in functional outcomes after stroke. We previously described the beneficial effects of curcumin against stroke-induced neuronal damage through modulating microglial polarization. However, the impact of curcumin on microglial pyroptosis remains unknown. Here, stroke was modeled in mice by middle cerebral artery occlusion (MCAO) for 60 minutes and treated with curcumin (150 mg/kg) intraperitoneally immediately after reperfusion, followed by daily administrations for 7 days. Curcumin ameliorated white matter (WM) lesions and brain tissue loss 21 days poststroke and improved sensorimotor function 3, 10, and 21 days after stroke. Furthermore, curcumin significantly reduced the number of gasdermin D+ (GSDMD+) Iba1+ and caspase-1+Iba1+ microglia/macrophage 21 days after stroke. In vitro, lipopolysaccharide (LPS) with ATP treatment was used to induce pyroptosis in primary microglia. Western blot revealed a decrease in pyroptosis-related proteins, e.g., GSDMD-N, cleaved caspase-1, NLRP3, IL-1β, and IL-18, following in vitro or in vivo curcumin treatment. Mechanistically, both in vivo and in vitro studies confirmed that curcumin inhibited the activation of the NF-κB pathway. NLRP3 knocked down by siRNA transfection markedly increased the inhibitory effects of curcumin on microglial pyroptosis and proinflammatory responses, both in vitro and in vivo. Furthermore, stereotaxic microinjection of AAV-based NLRP3 shRNA significantly improved sensorimotor function and reduced WM lesion following curcumin treatment in MCAO mice. Our study suggested that curcumin reduced stroke-induced WM damage, improved functional outcomes, and attenuated microglial pyroptosis, at least partially, through suppression of the NF-κB/NLRP3 signaling pathway, further supporting curcumin as a potential therapeutic drug for stroke.
Collapse
|
13
|
Subedi L, Gaire BP. Neuroprotective Effects of Curcumin in Cerebral Ischemia: Cellular and Molecular Mechanisms. ACS Chem Neurosci 2021; 12:2562-2572. [PMID: 34251185 DOI: 10.1021/acschemneuro.1c00153] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite being a major global health concern, cerebral ischemia/stroke has limited therapeutic options. Tissue plasminogen activator (tPA) is the only available medication to manage acute ischemic stroke, but this medication is associated with adverse effects and has a narrow therapeutic time window. Curcumin, a polyphenol that is abundantly present in the rhizome of the turmeric plant (Curcuma longa), has shown promising neuroprotective effects in animal models of neurodegenerative diseases, including cerebral ischemia. In the central nervous system (CNS), neuroprotective effects of curcumin have been experimentally validated in Alzheimer's disease, Parkinson's disease, multiple sclerosis, and cerebral ischemia. Curcumin can exert pleiotropic effects in the postischemic brain including antioxidant, anti-inflammatory, antiapoptotic, vasculoprotective, and direct neuroprotective efficacies. Importantly, neuroprotective effects of curcumin has been reported in both ischemic and hemorrhagic stroke models. A broad-spectrum neuroprotective efficacy of curcumin suggested that curcumin can be an appealing therapeutic strategy to treat cerebral ischemia. In this review, we aimed to address the pharmacotherapeutic potential of curcumin in cerebral ischemia including its cellular and molecular mechanisms of neuroprotection revealing curcumin as an appealing therapeutic candidate for cerebral ischemia.
Collapse
Affiliation(s)
- Lalita Subedi
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, School of Medicine, University of Maryland, Baltimore, Maryland 21201, United States
| | - Bhakta Prasad Gaire
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, School of Medicine, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
14
|
Niu F, Sharma A, Wang Z, Feng L, Muresanu DF, Sahib S, Tian ZR, Lafuente JV, Buzoianu AD, Castellani RJ, Nozari A, Patnaik R, Wiklund L, Sharma HS. Co-administration of TiO 2-nanowired dl-3-n-butylphthalide (dl-NBP) and mesenchymal stem cells enhanced neuroprotection in Parkinson's disease exacerbated by concussive head injury. PROGRESS IN BRAIN RESEARCH 2020; 258:101-155. [PMID: 33223034 DOI: 10.1016/bs.pbr.2020.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
dl-3-n-butylphthalide (dl-NBP) is a powerful antioxidant compound with profound neuroprotective effects in stroke and brain injury. However, its role in Parkinson's disease (PD) is not well known. Traumatic brain injury (TBI) is one of the key factors in precipitating PD like symptoms in civilians and particularly in military personnel. Thus, it would be interesting to explore the possible neuroprotective effects of NBP in PD following concussive head injury (CHI). In this chapter effect of nanowired delivery of NBP together with mesenchymal stem cells (MSCs) in PD with CHI is discussed based on our own investigations. It appears that CHI exacerbates PD pathophysiology in terms of p-tau, α-synuclein (ASNC) levels in the cerebrospinal fluid (CSF) and the loss of TH immunoreactivity in substantia niagra pars compacta (SNpc) and striatum (STr) along with dopamine (DA), dopamine decarboxylase (DOPAC). And homovanillic acid (HVA). Our observations are the first to show that a combination of NBP with MSCs when delivered using nanowired technology induces superior neuroprotective effects in PD brain pathology exacerbated by CHI, not reported earlier.
Collapse
Affiliation(s)
- Feng Niu
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, Hebei Province, China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Zhenguo Wang
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, Hebei Province, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
15
|
Zheng Y, Han Z, Zhao H, Luo Y. MAPK: A Key Player in the Development and Progression of Stroke. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:248-256. [PMID: 32533818 DOI: 10.2174/1871527319666200613223018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/13/2022]
Abstract
Conclusion:
Stroke is a complex disease caused by genetic and environmental factors, and its etiological
mechanism has not been fully clarified yet, which brings great challenges to its effective prevention
and treatment. MAPK signaling pathway regulates gene expression of eukaryotic cells and basic cellular
processes such as cell proliferation, differentiation, migration, metabolism and apoptosis, which are
considered as therapeutic targets for many diseases. Up to now, mounting evidence has shown that
MAPK signaling pathway is involved in the pathogenesis and development of ischemic stroke. However,
the upstream kinase and downstream kinase of MAPK signaling pathway are complex and the
influencing factors are numerous, the exact role of MAPK signaling pathway in the pathogenesis of
ischemic stroke has not been fully elucidated. MAPK signaling molecules in different cell types in the
brain respond variously after stroke injury, therefore, the present review article is committed to summarizing
the pathological process of different cell types participating in stroke, discussed the mechanism
of MAPK participating in stroke. We further elucidated that MAPK signaling pathway molecules
can be used as therapeutic targets for stroke, thus promoting the prevention and treatment of stroke.
Collapse
Affiliation(s)
- Yangmin Zheng
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ziping Han
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Haiping Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Rajdev K, Mehan S. Neuroprotective Methodologies of Co-Enzyme Q10 Mediated Brain Hemorrhagic Treatment: Clinical and Pre-Clinical Findings. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:446-465. [PMID: 31187715 DOI: 10.2174/1871527318666190610101144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/22/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022]
Abstract
Cerebral brain hemorrhage is associated with the highest mortality and morbidity despite only constituting approximately 10-15% of all strokes classified into intracerebral and intraventricular hemorrhage where most of the patients suffer from impairment in memory, weakness or paralysis in arms or legs, headache, fatigue, gait abnormality and cognitive dysfunctions. Understanding molecular pathology and finding the worsening cause of hemorrhage will lead to explore the therapeutic interventions that could prevent and cure the disease. Mitochondrial ETC-complexes dysfunction has been found to increase neuroinflammatory cytokines, oxidative free radicals, excitotoxicity, neurotransmitter and energy imbalance that are the key neuropathological hallmarks of cerebral hemorrhage. Coenzyme Q10 (CoQ10), as a part of the mitochondrial respiratory chain can effectively restore these neuronal dysfunctions by preventing the opening of mitochondrial membrane transition pore, thereby counteracting cell death events as well as exerts an anti-inflammatory effect by influencing the expression of NF-kB1 dependent genes thus preventing the neuroinflammation and energy restoration. Due to behavior and biochemical heterogeneity in post cerebral brain hemorrhagic pattern different preclinical autologous blood injection models are required to precisely investigate the forthcoming therapeutic strategies. Despite emerging pre-clinical research and resultant large clinical trials for promising symptomatic treatments, there are very less pharmacological interventions demonstrated to improve post operative condition of patients where intensive care is required. Therefore, in current review, we explore the disease pattern, clinical and pre-clinical interventions under investigation and neuroprotective methodologies of CoQ10 precursors to ameliorate post brain hemorrhagic conditions.
Collapse
Affiliation(s)
- Kajal Rajdev
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Sidharth Mehan
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| |
Collapse
|
17
|
Amirzargar N, Heidari-Soureshjani S, Yang Q, Abbaszadeh S, Khaksarian M. Neuroprotective Effects of Medicinal Plants in Cerebral Hypoxia and Anoxia: A Systematic Review. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2210315509666190820103658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background:
Hypoxia and anoxia are dangerous and sometimes irreversible complications
in the central nervous system (CNS), which in some cases lead to death.
Objective:
The aim of this review was to investigate the neuroprotective effects of medicinal plants
in cerebral hypoxia and anoxia.
Methods:
The word hypox*, in combination with some herbal terms such as medicinal plant, phyto*
and herb*, was used to search for relevant publications indexed in the Institute for Scientific Information
(ISI) and PubMed from 2000-2019.
Results:
Certain medicinal plants and herbal derivatives can exert their protective effects in several
ways. The most important mechanisms are the inhibition of inducible nitric oxide synthase (iNOS),
production of NO, inhibition of both hypoxia-inducible factor 1α and tumor necrosis factor-alpha activation,
and reduction of extracellular glutamate, N-Methyl-D-aspartic and intracellular Ca (2+). In
addition, they have an antioxidant activity and can adjust the expression of genes related to oxidant
generation or antioxidant capacity. These plants can also inhibit lipid peroxidation, up-regulate superoxide
dismutase activity and inhibit the content of malondialdehyde and lactate dehydrogenase.
Moreover, they also have protective effects against cytotoxicity through down-regulation of the proteins
that causes apoptosis, anti-excitatory activity, inhibition of apoptosis signaling pathway, reduction
of pro-apoptotic proteins, and endoplasmic reticulum stress that causes apoptosis during hypoxia,
increasing anti-apoptotic protein, inhibition of protein tyrosine kinase activation, decreasing
proteases activity and DNA fragmentation, and upregulation of mitochondrial cytochrome oxidase.
Conclusion:
The results indicated that medicinal plants and their compounds mainly exert their neuroprotective
effects in hypoxia via regulating proteins that are related to antioxidant, anti-apoptosis
and anti-inflammatory activities.
Collapse
Affiliation(s)
- Nasibeh Amirzargar
- Department of Neurology, Rofeydeh Rehabilitation Hospital, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Qian Yang
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Saber Abbaszadeh
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mojtaba Khaksarian
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
18
|
Neuroinflammation in CNS diseases: Molecular mechanisms and the therapeutic potential of plant derived bioactive molecules. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100176] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Li H, Sureda A, Devkota HP, Pittalà V, Barreca D, Silva AS, Tewari D, Xu S, Nabavi SM. Curcumin, the golden spice in treating cardiovascular diseases. Biotechnol Adv 2020; 38:107343. [DOI: 10.1016/j.biotechadv.2019.01.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/10/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
|
20
|
Zhao Y, Wei X, Song J, Zhang M, Huang T, Qin J. Peroxisome Proliferator-Activated Receptor γ Agonist Rosiglitazone Protects Blood-Brain Barrier Integrity Following Diffuse Axonal Injury by Decreasing the Levels of Inflammatory Mediators Through a Caveolin-1-Dependent Pathway. Inflammation 2019; 42:841-856. [PMID: 30488141 DOI: 10.1007/s10753-018-0940-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Our early experiments confirmed that rosiglitazone (RSG), a peroxisome proliferator-activated receptor γ (PPARγ) agonist, had therapeutic potential for the treatment of diffuse axonal injury (DAI) by inhibiting the expression of amyloid-beta precursor protein and reducing the loss and abnormal phosphorylation of tau, but the underlying mechanisms were not fully defined. In this study, we aimed to investigate a possible role for PPARγ in the protection of blood-brain barrier (BBB) integrity in a rat model of DAI, and the underlying mechanisms. PPAR agonists and antagonists were intraperitoneally injected after DAI. Treatment with RSG ameliorated axonal injury, cell apoptosis, glia activation, and the release of inflammatory factors such as TNF-α, IL-1β, and IL-6. It also increased the expression of tight junction-associated proteins like ZO-1, claudin-5, and occludin-1, whereas the PPARγ antagonist GW9662 had the opposite effects. These effects were also studied in a BBB in vitro model, consisting of a monolayer of human microvascular endothelial cells (HBMECs) subjected to oxygen and glucose deprivation (OGD). Treatment with RSG ameliorated the loss of BBB integrity and the increased permeability induced by OGD by reducing the release of inflammatory factors and maintaining the expression of tight junction-associated proteins. Interestingly, caveolin-1 was found located mainly in endothelial cells, and RSG increased the expression of caveolin-1, which decreased following OGD. In contrast, caveolin-1 siRNA abrogated the protective effects of RSG in the in vitro BBB model. In conclusion, we provide evidence that PPARγ plays an important role in a series of processes associated with DAI, and that the PPARγ agonist RSG can protect BBB integrity by decreasing the levels of inflammatory mediators through a caveolin-1-dependent pathway.
Collapse
Affiliation(s)
- Yonglin Zhao
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xing Wei
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jinning Song
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ming Zhang
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Tingqin Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jie Qin
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, People's Republic of China.
| |
Collapse
|
21
|
Zheng S, Zhao J, Xing H, Xu S. Oxidative stress, inflammation, and glycometabolism disorder-induced erythrocyte hemolysis in selenium-deficient exudative diathesis broilers. J Cell Physiol 2019; 234:16328-16337. [PMID: 30741419 DOI: 10.1002/jcp.28298] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 01/24/2023]
Abstract
Selenium (Se) deficiency causes injury of diversified tissues and cells, including livers, hearts, skeletal muscles, and erythrocytes. The aim of the present study is to explore the molecular mechanism of erythrocyte hemolysis due to Se deficiency in broilers. One hundred and eighty broilers (male/female, 1 day old) were randomly divided into two groups and fed with either a normal Se content diet (C group, 0.2 mg Se/kg) or a Se-deficient diet (ED group, 0.008 mg Se/kg) for 45 days. During the trial period of 15-30 days, biological properties such as osmotic fragility, fluidity, phospholipid components of cell membrane, adenosine triphosphatase activities, and antioxidant function of erythrocytes in broilers were examined. Moreover, the messenger RNA (mRNA) expressions of genes associated with inflammation, glycometabolism, and avian uncoupling protein (avUCP) were detected. We found that compared with the C group, hemolysis rate, degree of polarization, and microviscosity of erythrocytes were increased in broilers of the ED group. The composition of erythrocyte membrane lipids was changed. Meanwhile, the antioxidant function of erythrocytes was weakened and mRNA levels of inflammatory genes were stimulated by Se deficiency (p < 0.05). In addition, mRNA expressions of rate-limiting enzymes in glycometabolism were effected and avUCP mRNA level was downregulated (p < 0.05) in the ED group. It has been concluded from the results that oxidative stress, inflammatory response, and glycometabolism disorder lead to erythrocyte hemolysis by changing the structure and function of erythrocyte membrane in ED broilers suffered from Se deficiency.
Collapse
Affiliation(s)
- Shufang Zheng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China.,Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Jinxin Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Houjuan Xing
- Department of Animal Production, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Shiwen Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China.,Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
22
|
Curcumin: a modulator of inflammatory signaling pathways in the immune system. Inflammopharmacology 2019; 27:885-900. [DOI: 10.1007/s10787-019-00607-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/20/2019] [Indexed: 12/24/2022]
|
23
|
Shi Q, Zhang Q, Peng Y, Zhang X, Wang Y, Shi L. A natural diarylheptanoid protects cortical neurons against oxygen–glucose deprivation-induced autophagy and apoptosis. J Pharm Pharmacol 2019; 71:1110-1118. [DOI: 10.1111/jphp.13096] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/16/2019] [Indexed: 12/31/2022]
Abstract
Abstract
Objectives
This study aims to investigate the neuroprotective effects of curcumin analogues, 7-(4-Hydroxy-3-methoxyphenyl)-1-phenyl-4E-hepten-3-one (AO-2) on oxygen–glucose deprivation and re-oxygenation (OGD/R) induced injury in cortical neurons, which is a widely accepted in-vitro model for ischaemic reperfusion.
Methods
In this study, AO-2 was added to cortical neurons for 2 h as pretreatment, and then cortical neurons were subjected to OGD/R in the presence of AO-2 for 4 h. Cell viability was tested by 2′, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay and apoptosis by flow cytometry and Live & Dead cell assay. Western blot analysis detected the change in AKT/mTOR (mammalian target of rapamycin) signalling pathway.
Key findings
Treatment of AO-2 increased cell survival of OGD/R-treated cortical neurons. Transient AKT/mTOR inhibition, induction of the autophagy marker LC3-II (microtubule-associated protein 1A/1B-light chain 3 phosphatidylethanolamine conjugate), and cleavage of the apoptosis marker Caspase-3 were observed at different stages of OGD/R, and AO-2 reversed all three events. Importantly, treatment of the mTOR inhibitor rapamycin blocked the neuroprotective effects of AO-2 on reducing LC3-II and cleaved Caspase-3 expression and cancelled AO-2-mediated neuronal survival.
Conclusions
These results demonstrate that AO-2 increases resistance of cortical neurons to OGD/R by decreasing autophagy and cell apoptosis, which involves an mTOR-dependent mechanism.
Collapse
Affiliation(s)
- Qiaoyun Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Qinghua Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Yinghui Peng
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Xiaoqi Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Ying Wang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr 2019; 60:887-939. [PMID: 30632782 DOI: 10.1080/10408398.2018.1552244] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Curcumin is a naturally occurring polyphenolic compound present in rhizome of Curcuma longa belonging to the family zingiberaceae. Growing experimental evidence revealed that curcumin exhibit multitarget biological implications signifying its crucial role in health and disease. The current review highlights the recent progress and mechanisms underlying the wide range of pharmacological effects of curcumin against numerous diseases like neuronal, cardiovascular, metabolic, kidney, endocrine, skin, respiratory, infectious, gastrointestinal diseases and cancer. The ability of curcumin to modulate the functions of multiple signal transductions are linked with attenuation of acute and chronic diseases. Numerous preclinical and clinical studies have revealed that curcumin modulates several molecules in cell signal transduction pathway including PI3K, Akt, mTOR, ERK5, AP-1, TGF-β, Wnt, β-catenin, Shh, PAK1, Rac1, STAT3, PPARγ, EBPα, NLRP3 inflammasome, p38MAPK, Nrf2, Notch-1, AMPK, TLR-4 and MyD-88. Curcumin has a potential to prevent and/or manage various diseases due to its anti-inflammatory, anti-oxidant and anti-apoptotic properties with an excellent safety profile. In contrast, the anti-cancer effects of curcumin are reflected due to induction of growth arrest and apoptosis in various premalignant and malignant cells. This review also carefully emphasized the pharmacokinetics of curcumin and its interaction with other drugs. Clinical studies have shown that curcumin is safe at the doses of 12 g/day but exhibits poor systemic bioavailability. The use of adjuvant like piperine, liposomal curcumin, curcumin nanoparticles and curcumin phospholipid complex has shown enhanced bioavailability and therapeutic potential. Further studies are warranted to prove the potential of curcumin against various ailments.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ashish Acharya
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - R S Ray
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ritesh Agrawal
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ramsaneh Raghuwanshi
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Priyal Jain
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| |
Collapse
|
25
|
Cheng Q, Tong F, Shen Y, He C, Wang C, Ding F. Achyranthes bidentata polypeptide k improves long-term neurological outcomes through reducing downstream microvascular thrombosis in experimental ischemic stroke. Brain Res 2018; 1706:166-176. [PMID: 30414726 DOI: 10.1016/j.brainres.2018.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/04/2018] [Accepted: 11/08/2018] [Indexed: 01/07/2023]
Abstract
Achyranthes bidentata Bl. (A. bidentata) occupies an important position in traditional Chinese medicine owing to the property of promoting the circulation of blood and removing stasis. Achyranthes bidentata polypeptide k (ABPPk) is one of the active components isolated from A. bidentata. We previously demonstrated that ABPPk has potent neuroprotective effects against neuronal apoptosis both in vitro and in vivo, but the roles and mechanisms of ABPPk on long-term functional recovery after ischemic stroke remain unknown. In the current study, we investigated the neuroprotective effects of ABPPk on filament transient middle cerebral artery occlusion (tMCAO) rats and found that ABPPk reduced the infarct volume and maintained the neuronal integrity in the ischemic penumbra. Moreover, we found that ABPPk might reduce the formation of downstream microthrombus through preventing ischemic-induced oxidative damage of brain endothelial cells and activation of tissue factor (TF), plasminogen activator inhibitor-1 (PAI-1), and NF-κB. ABPPk also inhibited polymorphonuclear leukocytes (PMNs) infiltration and matrix metalloproteinase-2/-9 (MMP-2/-9) activation in the ischemic penumbra. Morris water maze, foot fault test, and modified neurological severity score were assessed for a period of 6 weeks following tMCAO. ABPPk improved long-term recognition abilities and neurological outcomes after stroke compared with saline-treated rats. Taken together, these results suggested that ABPPk is beneficial to the improvement of long-term outcomes after transient cerebral ischemia injury and can be used as a potential neuroprotective agent.
Collapse
Affiliation(s)
- Qiong Cheng
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fang Tong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chunjiao He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Caiping Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
26
|
Hu Y, Li M, Zhang M, Jin Y. Inhalation treatment of idiopathic pulmonary fibrosis with curcumin large porous microparticles. Int J Pharm 2018; 551:212-222. [PMID: 30227240 DOI: 10.1016/j.ijpharm.2018.09.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 02/08/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with high mortality and poor prognosis. Curcumin shows anti-inflammatory effect by suppressing pro-inflammatory cytokines and inhibiting NF-κB mediated inflammation. Here, we developed inhalable curcumin-loaded poly(lactic-co-glycolic)acid (PLGA) large porous microparticles (LPMPs) for the treatment of IPF. Curcumin LPMPs were rough and loose particles with many pores on the surfaces and channels in the inner spaces. The mean geometric diameter of them was larger than 10 µm while the aerodynamic diameter was only 3.12 µm due to their porous structures. They showed a fine particle fraction (FPF) <4.46 μm of 13.41%, 71% cumulative release after 9 h, and more importantly, they avoided uptake by alveolar macrophages. Therefore, most of released curcumin had opportunities to enter lung tissues. Rat pulmonary fibrosis models were established via once intratracheal administration of bleomycin. Curcumin powders and curcumin LPMPs were administered on Days 2, 7, 14, and 21. Curcumin LPMPs remarkably attenuated lung injuries, decreased hydroxyproline contents, reduced the synthesis of collagen I, and inhibited the expressions of TNF-α, TGF-β1, NF-κB p65 and MMP9. Moreover, curcumin LPMPs showed higher antifibrotic activity than curcumin powders. Curcumin LPMPs are a promising inhalable medication for the treatment of IPF.
Collapse
Affiliation(s)
- Yuzhen Hu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Anhui Medical University, Hefei 230001, China
| | - Miao Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Mengmeng Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Pharmaceutical College of Henan University, Kaifeng 475004, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Anhui Medical University, Hefei 230001, China.
| |
Collapse
|
27
|
Tan X, Kim G, Lee D, Oh J, Kim M, Piao C, Lee J, Lee MS, Jeong JH, Lee M. A curcumin-loaded polymeric micelle as a carrier of a microRNA-21 antisense-oligonucleotide for enhanced anti-tumor effects in a glioblastoma animal model. Biomater Sci 2018; 6:407-417. [PMID: 29340361 DOI: 10.1039/c7bm01088e] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A glioblastoma is a common primary brain tumor that expresses microRNA-21 (miR-21), which inhibits the expression of pro-apoptotic genes such as phosphatase and tensin homologue (PTEN) and programmed cell death 4 (PDCD4). Therefore, an antisense-oligonucleotide against miR-21 (miR21ASO) could have therapeutic effects for glioblastomas. In this study, curcumin was loaded into deoxycholic acid-conjugated polyethylenimine (DP) micelles. The curcumin-loaded DP micelle (DP-Cur) was evaluated as a carrier for the combined delivery of curcumin and miR21ASO. Gel retardation and heparin competition assays showed that DP-Cur formed stable complexes with miR21ASO. The anti-tumor effects of the combined delivery of curcumin and miR21ASO were evaluated in C6 glioblastoma cells. In vitro transfection showed that DP-Cur had an miR21ASO delivery efficiency similar to that of polyethylenimine (25 kDa, PEI25k) and DP. In the C6 cells, the delivery of miR21ASO using DP-Cur effectively reduced the miR21 level. The miR21ASO/DP-Cur complex induced apoptosis more effectively than the single delivery of curcumin or miR21ASO. The therapeutic effect of the miR21ASO/DP-Cur complex was also evaluated in an intracranial glioblastoma animal model. The miR21ASO/DP-Cur complex reduced the tumor volume more effectively than single therapy of curcumin or miR21ASO. Immunohistochemistry showed that PDCD4 and PTEN were induced in the miR21ASO/DP and miR21ASO/DP-Cur complex groups. Therefore, DP-Cur is an efficient carrier of miR21ASO and the combined delivery of miR21ASO and curcumin may be useful in the development of combination therapy for glioblastoma.
Collapse
Affiliation(s)
- Xiaonan Tan
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Aguilera G, Colín-González AL, Rangel-López E, Chavarría A, Santamaría A. Redox Signaling, Neuroinflammation, and Neurodegeneration. Antioxid Redox Signal 2018; 28:1626-1651. [PMID: 28467722 DOI: 10.1089/ars.2017.7099] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Production of pro-inflammatory and anti-inflammatory cytokines is part of the defense system that mostly microglia and macrophages display to induce normal signaling to counteract the deleterious actions of invading pathogens in the brain. Also, redox activity in the central nervous system (CNS) constitutes an integral part of the metabolic processes needed by cells to exert their normal molecular and biochemical functions. Under normal conditions, the formation of reactive oxygen and nitrogen species, and the following oxidative activity encounter a healthy balance with immunological responses to preserve cell functions in the brain. However, under different pathological conditions, inflammatory responses recruit pro-oxidant signals and vice versa. The aim of this article is to review the basic concepts about the triggering of inflammatory and oxidative responses in the CNS. Recent Advances: Diverse concurrent toxic pathways are described to provide a solid mechanistic scope for considering intervention at the experimental and clinical levels that are aimed at diminishing the harmful actions of these two contributing factors to nerve cell damage. Critical Issues and Future Directions: The main conclusion supports the existence of a narrow cross-talk between pro-inflammatory and oxidative signals that can lead to neuronal damage and subsequent neurodegeneration. Further investigation about critical pathways crosslinking oxidative stress and inflammation will strength our knowlegde on this topic. Antioxid. Redox Signal. 28, 1626-1651.
Collapse
Affiliation(s)
- Gabriela Aguilera
- 1 Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía , Mexico City, Mexico
| | - Ana Laura Colín-González
- 1 Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía , Mexico City, Mexico
| | - Edgar Rangel-López
- 1 Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía , Mexico City, Mexico
| | - Anahí Chavarría
- 2 Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - Abel Santamaría
- 1 Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía , Mexico City, Mexico
| |
Collapse
|
29
|
Ruzicka J, Urdzikova LM, Kloudova A, Amin AG, Vallova J, Kubinova S, Schmidt MH, Jhanwar-Uniyal M, Jendelova P. Anti-inflammatory compound curcumin and mesenchymal stem cells in the treatment of spinal cord injury in rats. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Hexahydrocurcumin protects against cerebral ischemia/reperfusion injury, attenuates inflammation, and improves antioxidant defenses in a rat stroke model. PLoS One 2017; 12:e0189211. [PMID: 29220411 PMCID: PMC5722321 DOI: 10.1371/journal.pone.0189211] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/21/2017] [Indexed: 12/04/2022] Open
Abstract
The purpose of the present experiment was to investigate whether hexahydrocurcumin (HHC) attenuates brain damage and improves functional outcome via the activation of antioxidative activities, anti-inflammation, and anti-apoptosis following cerebral ischemia/reperfusion (I/R). In this study, rats with cerebral I/R injury were induced by a transient middle cerebral artery occlusion (MCAO) for 2 h, followed by reperfusion. The male Wistar rats were randomly divided into five groups, including the sham-operated, vehicle-treated, 10 mg/kg HHC-treated, 20 mg/kg HHC-treated, and 40 mg/kg HHC-treated I/R groups. The animals were immediately injected with HHC by an intraperitoneal administration at the onset of cerebral reperfusion. After 24 h of reperfusion, the rats were tested for neurological deficits, and the pathology of the brain was studied by 2,3,5-triphenyltetrazolium chloride (TTC) staining, hematoxylin and eosin (H&E) staining, and terminal deoxynucleotidyltransferase UTP nick end labeling (TUNEL) staining. In addition, the brain tissues were prepared for protein extraction for Western blot analysis, a malondialdehyde (MDA) assay, a nitric oxide (NO) assay, a superoxide dismutase (SOD) assay, a glutathione (GSH) assay, and a glutathione peroxidase (GSH-Px) assay. The data revealed that the neurological deficit scores and the infarct volume were significantly reduced in the HHC-treated rats at all doses compared to the vehicle group. Treatment with HHC significantly attenuated oxidative stress and inflammation, with a decreased level of MDA and NO and a decreased expression of NF-κB (p65) and cyclooxygenase-2 (COX-2) in the I/R rats. HHC also evidently increased Nrf2 (nucleus) protein expression, heme oxygenase-1 (HO-1) protein expression, the antioxidative enzymes, and the superoxide dismutase (SOD) activity. Moreover, the HHC treatment also significantly decreased apoptosis, with a decrease in Bax and cleaved caspase-3 and an increase in Bcl-XL, which was in accordance with a decrease in the apoptotic neuronal cells. Therefore, the HHC treatment protects the brain from cerebral I/R injury by diminishing oxidative stress, inflammation, and apoptosis. The antioxidant properties of HHC may play an important role in improving functional outcomes and may offer significant neuroprotection against I/R damage.
Collapse
|
31
|
Dhungana H, Huuskonen MT, Jaronen M, Lemarchant S, Ali H, Keksa-Goldsteine V, Goldsteins G, Kanninen KM, Koistinaho J, Malm T. Sulfosuccinimidyl oleate sodium is neuroprotective and alleviates stroke-induced neuroinflammation. J Neuroinflammation 2017; 14:237. [PMID: 29202856 PMCID: PMC5716243 DOI: 10.1186/s12974-017-1010-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/22/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ischemic stroke is one of the main causes of death and disability worldwide. It is caused by the cessation of cerebral blood flow resulting in the insufficient delivery of glucose and oxygen to the neural tissue. The inflammatory response initiated by ischemic stroke in order to restore tissue homeostasis in the acute phase of stroke contributes to delayed brain damage. METHODS By using in vitro models of neuroinflammation and in vivo model of permanent middle cerebral artery occlusion, we demonstrate the neuroprotective and anti-inflammatory effects of sulfosuccinimidyl oleate sodium (SSO). RESULTS SSO significantly reduced the lipopolysaccharide/interferon-γ-induced production of nitric oxide, interleukin-6 and tumor necrosis factor-α, and the protein levels of inflammatory enzymes including nitric oxide synthase 2, cyclooxygenase-2 (COX-2), and p38 mitogen-activated protein kinase (MAPK) in microglia, without causing cell toxicity. Although SSO failed to directly alleviate glutamate-induced excitotoxicity in murine cortical neurons, it prevented inflammation-induced neuronal death in microglia-neuron co-cultures. Importantly, oral administration of SSO in Balb/c mice subjected to permanent occlusion of the middle cerebral artery reduced microglial activation in the peri-ischemic area and attenuated brain damage. This in vivo neuroprotective effect of SSO was associated with a reduction in the COX-2 and heme oxygenase-1 immunoreactivities. CONCLUSIONS Our results suggest that SSO is an anti-inflammatory and a possible therapeutic candidate in diseases such as stroke where inflammation is a central hallmark.
Collapse
Affiliation(s)
- Hiramani Dhungana
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. box 1727, FI-70211, Kuopio, Finland
| | - Mikko T Huuskonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. box 1727, FI-70211, Kuopio, Finland
| | - Merja Jaronen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. box 1727, FI-70211, Kuopio, Finland
| | - Sighild Lemarchant
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. box 1727, FI-70211, Kuopio, Finland
| | - Humair Ali
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. box 1727, FI-70211, Kuopio, Finland
| | - Velta Keksa-Goldsteine
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. box 1727, FI-70211, Kuopio, Finland
| | - Gundars Goldsteins
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. box 1727, FI-70211, Kuopio, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. box 1727, FI-70211, Kuopio, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. box 1727, FI-70211, Kuopio, Finland.
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. box 1727, FI-70211, Kuopio, Finland.
| |
Collapse
|
32
|
Prdx6 Upregulation by Curcumin Attenuates Ischemic Oxidative Damage via SP1 in Rats after Stroke. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6597401. [PMID: 28596967 PMCID: PMC5449737 DOI: 10.1155/2017/6597401] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/26/2017] [Indexed: 12/11/2022]
Abstract
Background The role of Peroxiredoxin 6 (Prdx6) in brain ischemia remains unclear. Curcumin (Cur) treatment elicits neuroprotective effects against cerebral ischemic injury, and the associated mechanisms may involve Prdx6. In this study, we investigated whether Prdx6 and the transcription factor specific protein 1 (SP1) were involved in the antioxidant effect of Cur after stoke. Methods Focal cerebral ischemic injury was induced by transient middle cerebral artery occlusion for 2 hours in male Sprague-Dawley rats treated with or without Prdx6 siRNA. Expression of Prdx6 in the penumbra was assessed by Real-Time PCR (RT-PCR), Western blot analysis, and immunoflourescent staining. In addition, infarct volume, neurological deficit score, and oxidative stress were evaluated. Prdx6 levels were also determined in the presence and absence of SP1 antagonist mithramycin A (MTM-A). Results Cur treatment upregulated Prdx6 protein expression and the number of Prdx6-positive neuronal cells 24 hours after reperfusion. Cur treatment also attenuated oxidative stress and induced neuroprotective effects against ischemic damage, whereas the beneficial effects of Cur treatment were lost in animals treated with Prdx6-siRNA. Prdx6 upregulation by Cur treatment was abolished by SP1 antagonists MTM. Conclusions Prdx6 upregulation by Cur treatment attenuates ischemic oxidative damage through SP1 induction in rats after stroke. This represents a novel mechanism of Cur-induced neuroprotection against cerebral ischemia.
Collapse
|
33
|
Zhao P, Chang RY, Liu N, Wang J, Zhou R, Qi X, Liu Y, Ma L, Niu Y, Sun T, Li YX, He YP, Yu JQ. Neuroprotective Effect of Oxysophocarpine by Modulation of MAPK Pathway in Rat Hippocampal Neurons Subject to Oxygen-Glucose Deprivation and Reperfusion. Cell Mol Neurobiol 2017; 38:529-540. [PMID: 28488010 DOI: 10.1007/s10571-017-0501-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 05/03/2017] [Indexed: 12/19/2022]
Abstract
Oxysophocarpine (OSC), an alkaloid isolated from Sophora flavescens Ait, has been traditionally used as a medicinal agent based on the observed pharmacological effects. In this study, the direct effect of OSC against neuronal injuries induced by oxygen and glucose deprivation (OGD) in neonatal rat primary-cultured hippocampal neurons and its mechanisms were investigated. Cultured hippocampal neurons, which were exposed to OGD for 2 h followed by a 24 h reoxygenation, were used as an in vitro model of ischemia and reperfusion. 2-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) assay were used to confirm neural damage and to further evaluate the protective effects of OSC. The concentration of intracellular-free calcium [Ca2+]i and mitochondrial membrane potential (MMP) were measured to determine the intracellular mechanisms and to further estimate the degree of neuronal damage. Changes in expression of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, p-ERK1/2, p-JNK1/2, and p-p38 MAPK were also observed in the in vitro model. It was shown that OSC (0.8, 2, or 5 µmol/L) significantly attenuated the increased absorbance of MTT, and the release of LDH manifests the neuronal damage by the OGD/R. Meanwhile, the pretreatment of the neurons during the reoxygenation period with OSC significantly increased MMP; it also inhibited [Ca2+]i the elevation in a dose-dependent manner. Furthermore, the pretreatment with OSC (0.8, 2, or 5 µmol/L) significantly down-regulated expressions of IL-1β, TNF-α, p-ERK1/2, p-JNK1/2, and p-p38 MAPK in neonatal rat primary-cultured hippocampal neurons induced by OGD/R injury. In conclusion, OSC displays a protective effect on OGD-injured hippocampal neurons by attenuating expression of inflammatory factors via down-regulated the MAPK signaling pathway.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Ren-Yuan Chang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
- Pharmacy Department of Yulin First Hospital, Shaanxi, China
| | - Ning Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Jing Wang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Ru Zhou
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Xue Qi
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Yue Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Lin Ma
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Yang Niu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Yu-Xiang Li
- College of Nursing, Ningxia Medical University, Yinchuan, China
| | - Yan-Ping He
- General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, 750004, China.
| | - Jian-Qiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
- Ningxia Hui Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
34
|
Wei J, Zhang Y, Jia Q, Liu M, Li D, Zhang Y, Song L, Hu Y, Xian M, Yang H, Ding C, Huang L. Systematic investigation of transcription factors critical in the protection against cerebral ischemia by Danhong injection. Sci Rep 2016; 6:29823. [PMID: 27431009 PMCID: PMC4949467 DOI: 10.1038/srep29823] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 06/27/2016] [Indexed: 12/21/2022] Open
Abstract
Systematic investigations of complex pathological cascades during ischemic brain injury help to elucidate novel therapeutic targets against cerebral ischemia. Although some transcription factors (TFs) involved in cerebral ischemia, systematic surveys of their changes during ischemic brain injury have not been reported. Moreover, some multi-target agents effectively protected against ischemic stroke, but their mechanisms, especially the targets of TFs, are still unclear. Therefore, a comprehensive approach by integrating network pharmacology strategy and a new concatenated tandem array of consensus transcription factor response elements method to systematically investigate the target TFs critical in the protection against cerebral ischemia by a medication was first reported, and then applied to a multi-target drug, Danhong injection (DHI). High-throughput nature and depth of coverage, as well as high quantitative accuracy of the developed approach, make it more suitable for analyzing such multi-target agents. Results indicated that pre-B-cell leukemia transcription factor 1 and cyclic AMP-dependent transcription factor 1, along with six other TFs, are putative target TFs for DHI-mediated protection against cerebral ischemia. This study provides, for the first time, a systematic investigation of the target TFs critical to DHI-mediated protection against cerebral ischemia, as well as reveals more potential therapeutic targets for ischemic stroke.
Collapse
Affiliation(s)
- Junying Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiang Jia
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Defeng Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Yanzhen Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Minghua Xian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chen Ding
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
35
|
Liu Y, Chen L, Shen Y, Tan T, Xie N, Luo M, Li Z, Xie X. Curcumin Ameliorates Ischemia-Induced Limb Injury Through Immunomodulation. Med Sci Monit 2016; 22:2035-42. [PMID: 27302110 PMCID: PMC4913813 DOI: 10.12659/msm.896217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background The prevalence of peripheral arterial disease (PAD) is increasing worldwide. Currently, there is no effective treatment for PAD. Curcumin is an ingredient of turmeric that has antioxidant, anti-inflammation, and anticancer properties. In the present study we investigated the potential effect of curcumin in protecting against ischemic limb injury. Material/Methods We used an established hindlimb ischemia mouse model in our study. Curcumin was administrated through intraperitoneal (I.P.) injection. Immunohistochemical staining and ELISA assays were performed. Treadmill training was used to evaluate skeletal muscle functions of animals. Results Our experiments using in vivo treadmill training showed that curcumin treatment improved the running capacity of animals after ischemic injury. Histological analysis revealed that curcumin treatment significantly reduced the skeletal muscle damage and fibrosis associated with ischemic injury. In order to determine the cellular and molecular mechanisms underlying curcumin-mediated tissue protection, immunohistochemical staining and ELISA assays were performed. The results showed that curcumin treatment led to less macrophage infiltration and less local inflammatory responses as demonstrated by decreasing TNF-α, IL-1, and IL-6 levels. Further immunofluorescent staining of tissue slides indicated that curcumin treatment inhibited the NF-κB signaling pathway. Finally, curcumin can inhibit NF-κB activation induced by LPS in macrophages. Conclusions Our study results show that curcumin treatment can ameliorate hindlimb injury following ischemic surgery, which suggests that curcumin could be used for PAD treatment.
Collapse
Affiliation(s)
- Yang Liu
- Division of Geriatrics, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China (mainland)
| | - Lianyu Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China (mainland)
| | - Yi Shen
- Division of Geriatrics, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China (mainland)
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Nanzi Xie
- Division of Geriatrics, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China (mainland)
| | - Ming Luo
- Division of Geriatrics, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China (mainland)
| | - Zhihong Li
- Division of General Surgery, Pudong New Area District, Zhoupu Hospital, Shanghai, China (mainland)
| | - Xiaoyun Xie
- Division of Geriatrics, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China (mainland)
| |
Collapse
|
36
|
Shu Y, Yang Y, Zhang P. Neuroprotective effects of penehyclidine hydrochloride against cerebral ischemia/reperfusion injury in mice. Brain Res Bull 2016; 121:115-23. [PMID: 26802510 DOI: 10.1016/j.brainresbull.2016.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 12/15/2022]
Abstract
Various reports have suggested that penehyclidine hydrochloride (PHC), a new cholinergic antagonist, exhibits a variety of biological actions such as anti-tumor and cardioprotective effects. This study aimed to investigate the effects of PHC on cerebral ischemia/reperfusion (I/R) injury and evaluate whether the c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (p38MAPK) pathway is involved in the protective effects of PHC. Male C57BL/6 mice were randomly assigned to Sham group, ischemia/reperfusion (I/R) group, I/R+PHC (0.1mg/kg) group, and I/R+PHC (1mg/kg) group. Mice were subjected to 2h of transient middle cerebral artery occlusion, followed by 24h of reperfusion except the mice in the sham group. Neurological deficits, infarct volume, brain water content, blood-brain barrier (BBB) integrity, and neuronal apoptosis were evaluated. The levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), superoxide production, malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were measured. The expressions of the key proteins in the JNK/p38MAPK pathway were detected using the Western blot. The results suggested that compared to the I/R group, the PHC-treated group showed improved neurological deficits and BBB integrity, and reduced infarction volume, brain water content, and apoptosis. In addition, PHC significantly suppressed the levels of TNF-α, IL-1β, superoxide production, and MDA, and increased the levels of SOD and GSH-Px. Finally, PHC significantly downregulated the phosphorylation of JNK, p38MAPK, and c-Jun, indicating PHC protects against cerebral I/R injury by downregulating the JNK/p38MAPK signaling pathway.
Collapse
Affiliation(s)
- Ya Shu
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China; Department of Pain Treatment Pain Management, First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yin Yang
- The Second Department of Orthopedics, Xi'an Central Hospital, Xi'an, China
| | - Pengbo Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China.
| |
Collapse
|
37
|
Han J, Oh J, Ihm SH, Lee M. Peptide micelle-mediated curcumin delivery for protection of islet β-cells under hypoxia. J Drug Target 2016; 24:618-23. [DOI: 10.3109/1061186x.2015.1132220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jaesik Han
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Jungju Oh
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Sung-Hee Ihm
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Minhyung Lee
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| |
Collapse
|
38
|
The Anti-Inflammatory Compound Curcumin Enhances Locomotor and Sensory Recovery after Spinal Cord Injury in Rats by Immunomodulation. Int J Mol Sci 2015; 17:ijms17010049. [PMID: 26729105 PMCID: PMC4730294 DOI: 10.3390/ijms17010049] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 12/29/2022] Open
Abstract
Well known for its anti-oxidative and anti-inflammation properties, curcumin is a polyphenol found in the rhizome of Curcuma longa. In this study, we evaluated the effects of curcumin on behavioral recovery, glial scar formation, tissue preservation, axonal sprouting, and inflammation after spinal cord injury (SCI) in male Wistar rats. The rats were randomized into two groups following a balloon compression injury at the level of T9–T10 of the spinal cord, namely vehicle- or curcumin-treated. Curcumin was applied locally on the surface of the injured spinal cord immediately following injury and then given intraperitoneally daily; the control rats were treated with vehicle in the same manner. Curcumin treatment improved behavioral recovery within the first week following SCI as evidenced by improved Basso, Beattie, and Bresnahan (BBB) test and plantar scores, representing locomotor and sensory performance, respectively. Furthermore, curcumin treatment decreased glial scar formation by decreasing the levels of MIP1α, IL-2, and RANTES production and by decreasing NF-κB activity. These results, therefore, demonstrate that curcumin has a profound anti-inflammatory therapeutic potential in the treatment of spinal cord injury, especially when given immediately after the injury.
Collapse
|
39
|
Dong ZW, Chen J, Ruan YC, Zhou T, Chen Y, Chen Y, Tsang LL, Chan HC, Peng YZ. CFTR-regulated MAPK/NF-κB signaling in pulmonary inflammation in thermal inhalation injury. Sci Rep 2015; 5:15946. [PMID: 26515683 PMCID: PMC4626762 DOI: 10.1038/srep15946] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/30/2015] [Indexed: 12/17/2022] Open
Abstract
The mechanism underlying pulmonary inflammation in thermal inhalation injury remains elusive. Cystic fibrosis, also hallmarked with pulmonary inflammation, is caused by mutations in CFTR, the expression of which is temperature-sensitive. We investigated whether CFTR is involved in heat-induced pulmonary inflammation. We applied heat-treatment in 16HBE14o- cells with CFTR knockdown or overexpression and heat-inhalation in rats in vivo. Heat-treatment caused significant reduction in CFTR and, reciprocally, increase in COX-2 at early stages both in vitro and in vivo. Activation of ERK/JNK, NF-κB and COX-2/PGE2 were detected in heat-treated cells, which were mimicked by knockdown, and reversed by overexpression of CFTR or VX-809, a reported CFTR mutation corrector. JNK/ERK inhibition reversed heat-/CFTR-knockdown-induced NF-κB activation, whereas NF-κB inhibitor showed no effect on JNK/ERK. IL-8 was augmented by heat-treatment or CFTR-knockdown, which was abolished by inhibition of NF-κB, JNK/ERK or COX-2. Moreover, in vitro or in vivo treatment with curcumin, a natural phenolic compound, significantly enhanced CFTR expression and reversed the heat-induced increases in COX-2/PGE2/IL-8, neutrophil infiltration and tissue damage in the airway. These results have revealed a CFTR-regulated MAPK/NF-κB pathway leading to COX-2/PGE2/IL-8 activation in thermal inhalation injury, and demonstrated therapeutic potential of curcumin for alleviating heat-induced pulmonary inflammation.
Collapse
Affiliation(s)
- Zhi Wei Dong
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital, the Third Military Medical University, Chongqing, China
| | - Jing Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital, the Third Military Medical University, Chongqing, China
| | - Ye Chun Ruan
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Tao Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital, the Third Military Medical University, Chongqing, China
| | - Yu Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital, the Third Military Medical University, Chongqing, China
| | - YaJie Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital, the Third Military Medical University, Chongqing, China
| | - Lai Ling Tsang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Yi Zhi Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital, the Third Military Medical University, Chongqing, China
| |
Collapse
|
40
|
Prasad S, Tyagi AK. Curcumin and its analogues: a potential natural compound against HIV infection and AIDS. Food Funct 2015; 6:3412-9. [PMID: 26404185 DOI: 10.1039/c5fo00485c] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
No safe and effective cure currently exists for human immunodeficiency virus (HIV). However, antiretroviral therapy can prolong the lives of HIV patients and lowers the secondary infections. Natural compounds, which are considered to be pleiotropic molecules, could be useful against HIV. Curcumin, a yellow pigment present in the spice turmeric (Curcuma longa), can be used for the treatment of several diseases including HIV-AIDS because of its antioxidant, anti-inflammatory, anticancer, antiviral, and antibacterial nature. In this review we have summarized that how curcumin and its analogues inhibit the infection and replication of viral genes and prevent multiplicity of HIV. They are inhibitors of HIV protease and integrase. Curcumin also inhibits Tat transactivation of the HIV1-LTR genome, inflammatory molecules (interleukins, TNF-α, NF-κB, COX-2) and HIV associated various kinases including tyrosine kinase, PAK1, MAPK, PKC, cdk and others. In addition, curcumin enhances the effect of conventional therapeutic drugs and minimizes their side effects.
Collapse
Affiliation(s)
- Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
41
|
Curcumin attenuates brain edema in mice with intracerebral hemorrhage through inhibition of AQP4 and AQP9 expression. Acta Pharmacol Sin 2015; 36:939-48. [PMID: 26119880 DOI: 10.1038/aps.2015.47] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/08/2015] [Indexed: 12/13/2022] Open
Abstract
AIM Aquaporins (AQPs) are the water-channels that play important roles in brain water homeostasis and in cerebral edema induced by brain injury. In this study we investigated the relationship between AQPs and a neuroprotective agent curcumin that was effective in the treatment of brain edema in mice with intracerebral hemorrhage (ICH). METHODS ICH was induced in mice by autologous blood infusion. The mice immediately received curcumin (75, 150, 300 mg/kg, ip). The Rotarod test scores, brain water content and brain expression of AQPs were measured post ICH. Cultured primary mouse astrocytes were used for in vitro experiments. The expression of AQP1, AQP4 and AQP9 and NF-κB p65 were detected using Western blotting or immunochemistry staining. RESULTS Curcumin administration dose-dependently reduced the cerebral edema at d 3 post ICH, and significantly attenuated the neurological deficits at d 5 post ICH. Furthermore, curcumin dose-dependently decreased the gene and protein expression of AQP4 and AQP9, but not AQP1 post ICH. Treatment of the cultured astrocytes with Fe(2+) (10-100 μmol/L) dose-dependently increased the expression and nuclear translocation of NF-κB p65 and the expression of AQP4 and AQP9, which were partly blocked by co-treatment with curcumin (20 μmol/L) or the NF-κB inhibitor PDTC (10 μmol/L). CONCLUSION Curcumin effectively attenuates brain edema in mice with ICH through inhibition of the NF-κB pathway and subsequently the expression of AQP4 and AQP9. Curcumin may serve as a potential therapeutic agent for ICH.
Collapse
|
42
|
Zhao C, Zhang Y, Zou P, Wang J, He W, Shi D, Li H, Liang G, Yang S. Synthesis and biological evaluation of a novel class of curcumin analogs as anti-inflammatory agents for prevention and treatment of sepsis in mouse model. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1663-78. [PMID: 25834403 PMCID: PMC4370917 DOI: 10.2147/dddt.s75862] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A novel class of asymmetric mono-carbonyl analogs of curcumin (AMACs) were synthesized and screened for anti-inflammatory activity. These analogs are chemically stable as characterized by UV absorption spectra. In vitro, compounds 3f, 3m, 4b, and 4d markedly inhibited lipopolysaccharide (LPS)-induced expression of pro-inflammatory cytokines tumor necrosis factor-α and interleukin-6 in a dose-dependent manner, with IC50 values in low micromolar range. In vivo, compound 3f demonstrated potent preventive and therapeutic effects on LPS-induced sepsis in mouse model. Compound 3f downregulated the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 MAPK and suppressed IκBα degradation, which suggests that the possible anti-inflammatory mechanism of compound 3f may be through downregulating nuclear factor kappa binding (NF-κB) and ERK pathways. Also, we solved the crystal structure of compound 3e to confirm the asymmetrical structure. The quantitative structure–activity relationship analysis reveals that the electron-withdrawing substituents on aromatic ring of lead structures could improve activity. These active AMACs represent a new class of anti-inflammatory agents with improved stability, bioavailability, and potency compared to curcumin. Our results suggest that 3f may be further developed as a potential agent for prevention and treatment of sepsis or other inflammation-related diseases.
Collapse
Affiliation(s)
- Chengguang Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, People's Republic of China ; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yali Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, People's Republic of China ; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Peng Zou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, People's Republic of China
| | - Jian Wang
- Department of Orthopedics, The 1st Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Wenfei He
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Dengjian Shi
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Huameng Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Shulin Yang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, People's Republic of China
| |
Collapse
|
43
|
Wang X, Yu X, Vaughan W, Liu M, Guan Y. Novel drug-delivery approaches to the blood-brain barrier. Neurosci Bull 2015; 31:257-64. [PMID: 25595370 DOI: 10.1007/s12264-014-1498-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/21/2014] [Indexed: 11/30/2022] Open
Abstract
The blood-brain barrier (BBB) maintains homeostasis by blocking toxic molecules from the circulation, but drugs are blocked at the same time. When the dose is increased to enhance the drug concentration in the central nervous system, there are side-effects on peripheral organs. In recent years, genetic therapeutic agents and small molecules have been used in various strategies to penetrate the BBB while minimizing the damage to systemic organs. In this review, we describe several representative methods to circumvent or cross the BBB, including chemical and physical strategies.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | | | | | | | | |
Collapse
|
44
|
Ji MH, Qiu LL, Yang JJ, Zhang H, Sun XR, Zhu SH, Li WY, Yang JJ. Pre-administration of curcumin prevents neonatal sevoflurane exposure-induced neurobehavioral abnormalities in mice. Neurotoxicology 2014; 46:155-64. [PMID: 25447320 DOI: 10.1016/j.neuro.2014.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/06/2014] [Accepted: 11/09/2014] [Indexed: 12/14/2022]
Abstract
Sevoflurane, a commonly used inhaled anesthetic, can induce neuronal apoptosis in the developing rodent brain and correlate with functional neurological impairment later in life. However, the mechanisms underlying these deleterious effects of sevoflurane remain unclear and no effective treatment is currently available. Herein, the authors investigated whether curcumin can prevent the sevoflurane anesthesia-induced cognitive impairment in mice. Six-day-old C57BL/6 mice were exposed to 3% sevoflurane 2h daily for 3 consecutive days and were treated with curcumin at the dose of 20 mg/kg or vehicle 30 min before the sevoflurane anesthesia from postnatal days 6 (P6) to P8. Cognitive functions were evaluated by open field, Morris water maze, and fear conditioning tests on P61, P63-69, and P77-78, respectively. In another separate experiment, mice were killed on day P8 or P78, and the brain tissues were harvested and then subjected to biochemistry studies. Our results showed that repeated neonatal sevoflurane exposure led to significant cognitive impairment later in life, which was associated with increased neuronal apoptosis, neuroinflammation, oxidative nitrosative stress, and decreased memory related proteins. By contrast, pre-administration of curcumin ameliorated early neuronal apoptosis, neuroinflammation, oxidative nitrosative stress, memory related proteins, and later cognitive dysfunction. In conclusion, our data suggested that curcumin pre-administration can prevent the sevoflurane exposure-induced cognitive impairment later in life, which may be partly attributed to its ability to attenuate the neural apoptosis, inflammation, and oxidative nitrosative stress in mouse brain.
Collapse
Affiliation(s)
- Mu-Huo Ji
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Li-Li Qiu
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiao-Jiao Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China
| | - Hui Zhang
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiao-Ru Sun
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Si-Hai Zhu
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei-Yan Li
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China.
| | - Jian-Jun Yang
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China.
| |
Collapse
|