1
|
Rajan R, Holla VV, Kamble N, Yadav R, Pal PK. Genetic heterogeneity of early onset Parkinson disease: The dilemma of clinico-genetic correlation. Parkinsonism Relat Disord 2024:107146. [PMID: 39313403 DOI: 10.1016/j.parkreldis.2024.107146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
With advances in genetic testing increasing proportion of early onset Parkinson disease (EOPD) are being identified to have an underlying genetic aetiology. This is can be in the form of either highly penetrant genes associated with phenotypes with monogenic or mendelian inheritance patterns or those genes known as risk factor genes which confer an increased risk of PD in an individual. Both of them can modify the phenotypic manifestation in a patient with PD. This improved knowledge has helped in deciphering the intricate role of various cellular pathways in the pathophysiology of PD including both early and late and even sporadic PD. However, the phenotypic and genotypic heterogeneity is a major challenge. Different deleterious alterations in a same gene can result in a spectrum of presentation spanning from juvenile to late onset and typical to atypical parkinsonism manifestation. Similarly, a single phenotype can occur due to abnormality in two or more different genes. This conundrum poses a dilemma in the clinical approach and in understanding the clinico-genetic correlation. Understanding the clinico-genetic correlation carries even more importance especially when genetic testing is either not accessible or affordable or in many regions both. In this narrative review, we aim to discuss briefly the approach to various PARK gene related EOPD and describe in detail the clinico-genetic correlation of individual type of PARK gene related genetic EOPD with respect to their classical clinical presentation, pathophysiology, investigation findings and treatment response to medication and surgery.
Collapse
Affiliation(s)
- Roopa Rajan
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Vikram V Holla
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India.
| |
Collapse
|
2
|
McGirr T, Onar O, Jafarnejad SM. Dysregulated ribosome quality control in human diseases. FEBS J 2024. [PMID: 38949989 DOI: 10.1111/febs.17217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Precise regulation of mRNA translation is of fundamental importance for maintaining homeostasis. Conversely, dysregulated general or transcript-specific translation, as well as abnormal translation events, have been linked to a multitude of diseases. However, driven by the misconception that the transient nature of mRNAs renders their abnormalities inconsequential, the importance of mechanisms that monitor the quality and fidelity of the translation process has been largely overlooked. In recent years, there has been a dramatic shift in this paradigm, evidenced by several seminal discoveries on the role of a key mechanism in monitoring the quality of mRNA translation - namely, Ribosome Quality Control (RQC) - in the maintenance of homeostasis and the prevention of diseases. Here, we will review recent advances in the field and emphasize the biological significance of the RQC mechanism, particularly its implications in human diseases.
Collapse
Affiliation(s)
- Tom McGirr
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Okan Onar
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
- Department of Biology, Faculty of Science, Ankara University, Turkey
| | | |
Collapse
|
3
|
Lei J, Aimaier G, Aisha Z, Zhang Y, Ma J. eEF1A1 regulates the expression and alternative splicing of genes associated with Parkinson's disease in U251 cells. Genes Genomics 2024; 46:817-829. [PMID: 38776049 DOI: 10.1007/s13258-024-01516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/12/2023] [Indexed: 06/27/2024]
Abstract
BACKGROUND Eukaryotic elongation factor 1A1 (eEF1A1) is an RNA-binding protein that is associated with PARK2 activity in cells, suggesting a possible role in Parkinson's disease (PD). OBJECTIVE To clear whether eEF1A1 plays a role in PD through transcriptional or posttranscriptional regulation. METHODS The GSE68719 dataset was downloaded from the GEO database, and the RNA-seq data of all brain tissue autopsies were obtained from 29 PD patients and 44 neurologically normal control subjects. To inhibit eEF1A1 from being expressed in U251 cells, siRNA was transfected into those cells, and RNA-seq high-throughput sequencing was used to determine the differentially expressed genes (DEGs) and differentially alternative splicing events (ASEs) resulting from eEF1A1 knockdown. RESULTS eEF1A1 was significantly overexpressed in PD brain tissue in the BA9 area. GO and KEGG enrichment analyses revealed that eEF1A1 knockdown significantly upregulated the expression of the genes CXCL10, NGF, PTX3, IL6, ST6GALNAC3, NUPR1, TNFRSF21, and CXCL2 and upregulated the alternative splicing of the genes ACOT7, DDX10, SHMT2, MYEF2, and NDUFAF5. These genes were enriched in pathways related to PD pathogenesis, such as apoptosis, inflammatory response, and mitochondrial dysfunction. CONCLUSION The results suggesting that eEF1A1 involved in the development of PD by regulating the differential expression and alternative splicing of genes, providing a theoretical basis for subsequent research.
Collapse
Affiliation(s)
- Jing Lei
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Xinshi District, Urumqi, Xinjiang, 830054, P.R. China
| | - Guliqiemu Aimaier
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Xinshi District, Urumqi, Xinjiang, 830054, P.R. China
| | - Zaolaguli Aisha
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Xinshi District, Urumqi, Xinjiang, 830054, P.R. China
| | - Yan Zhang
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Xinshi District, Urumqi, Xinjiang, 830054, P.R. China
| | - Jianhua Ma
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Xinshi District, Urumqi, Xinjiang, 830054, P.R. China.
- Xinjiang Medical University, Urumqi, Xinjiang, 830054, China.
| |
Collapse
|
4
|
Malamon JS, Farrell JJ, Xia LC, Dombroski BA, Das RG, Way J, Kuzma AB, Valladares O, Leung YY, Scanlon AJ, Lopez IAB, Brehony J, Worley KC, Zhang NR, Wang LS, Farrer LA, Schellenberg GD, Lee WP, Vardarajan BN. A comparative study of structural variant calling in WGS from Alzheimer's disease families. Life Sci Alliance 2024; 7:e202302181. [PMID: 38418088 PMCID: PMC10902710 DOI: 10.26508/lsa.202302181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
Detecting structural variants (SVs) in whole-genome sequencing poses significant challenges. We present a protocol for variant calling, merging, genotyping, sensitivity analysis, and laboratory validation for generating a high-quality SV call set in whole-genome sequencing from the Alzheimer's Disease Sequencing Project comprising 578 individuals from 111 families. Employing two complementary pipelines, Scalpel and Parliament, for SV/indel calling, we assessed sensitivity through sample replicates (N = 9) with in silico variant spike-ins. We developed a novel metric, D-score, to evaluate caller specificity for deletions. The accuracy of deletions was evaluated by Sanger sequencing. We generated a high-quality call set of 152,301 deletions of diverse sizes. Sanger sequencing validated 114 of 146 detected deletions (78.1%). Scalpel excelled in accuracy for deletions ≤100 bp, whereas Parliament was optimal for deletions >900 bp. Overall, 83.0% and 72.5% of calls by Scalpel and Parliament were validated, respectively, including all 11 deletions called by both Parliament and Scalpel between 101 and 900 bp. Our flexible protocol successfully generated a high-quality deletion call set and a truth set of Sanger sequencing-validated deletions with precise breakpoints spanning 1-17,000 bp.
Collapse
Affiliation(s)
- John S Malamon
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - John J Farrell
- Biomedical Genetics Section, Department of Medicine, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Li Charlie Xia
- https://ror.org/03mtd9a03 Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Beth A Dombroski
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rueben G Das
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jessica Way
- Broad Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amanda B Kuzma
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Otto Valladares
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yuk Yee Leung
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Allison J Scanlon
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Irving Antonio Barrera Lopez
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jack Brehony
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kim C Worley
- https://ror.org/02pttbw34 Human Genome Sequencing Center, and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Nancy R Zhang
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lindsay A Farrer
- Biomedical Genetics Section, Department of Medicine, Boston University School of Medicine, Boston University, Boston, MA, USA
- Departments of Neurology and Ophthalmology, Boston University School of Medicine, Boston University, Boston, MA, USA
- Departments of Epidemiology and Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Badri N Vardarajan
- https://ror.org/01esghr10 Gertrude H. Sergievsky Center and Taub Institute of Aging Brain, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
5
|
Buneeva O, Medvedev A. Ubiquitin Carboxyl-Terminal Hydrolase L1 and Its Role in Parkinson's Disease. Int J Mol Sci 2024; 25:1303. [PMID: 38279302 PMCID: PMC10816476 DOI: 10.3390/ijms25021303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), also known as Parkinson's disease protein 5, is a highly expressed protein in the brain. It plays an important role in the ubiquitin-proteasome system (UPS), where it acts as a deubiquitinase (DUB) enzyme. Being the smallest member of the UCH family of DUBs, it catalyzes the reaction of ubiquitin precursor processing and the cleavage of ubiquitinated protein remnants, thus maintaining the level of ubiquitin monomers in the brain cells. UCHL1 mutants, containing amino acid substitutions, influence catalytic activity and its aggregability. Some of them protect cells and transgenic mice in toxin-induced Parkinson's disease (PD) models. Studies of putative protein partners of UCHL1 revealed about sixty individual proteins located in all major compartments of the cell: nucleus, cytoplasm, endoplasmic reticulum, plasma membrane, mitochondria, and peroxisomes. These include proteins related to the development of PD, such as alpha-synuclein, amyloid-beta precursor protein, ubiquitin-protein ligase parkin, and heat shock proteins. In the context of the catalytic paradigm, the importance of these interactions is not clear. However, there is increasing understanding that UCHL1 exhibits various effects in a catalytically independent manner through protein-protein interactions. Since this protein represents up to 5% of the soluble protein in the brain, PD-related changes in its structure will have profound effects on the proteomes/interactomes in which it is involved. Growing evidence is accumulating that the role of UCHL1 in PD is obviously determined by a balance of canonic catalytic activity and numerous activity-independent protein-protein interactions, which still need better characterization.
Collapse
Affiliation(s)
| | - Alexei Medvedev
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia;
| |
Collapse
|
6
|
Niu F, Li Z, Ren Y, Li Z, Guan H, Li Y, Zhang Y, Li Y, Yang J, Qian L, Shi W, Fan X, Li J, Shi L, Yu Y, Xiong Y. Aberrant hyper-expression of the RNA binding protein GIGYF2 in endothelial cells modulates vascular aging and function. Redox Biol 2023; 65:102824. [PMID: 37517320 PMCID: PMC10400931 DOI: 10.1016/j.redox.2023.102824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023] Open
Abstract
Vascular endothelial cells (ECs) senescence plays a crucial role in vascular aging that promotes the initiation and progression of cardiovascular disease. The mutation of Grb10-interacting GYF protein 2 (GIGYF2) is strongly associated with the pathogenesis of aging-related diseases, whereas its role in regulating ECs senescence and dysfunction still remains elusive. In this study, we found aberrant hyperexpression of GIGYF2 in senescent human ECs and aortas of old mice. Silencing GIGYF2 in senescent ECs suppressed eNOS-uncoupling, senescence, and endothelial dysfunction. Conversely, in nonsenescent cells, overexpressing GIGYF2 promoted eNOS-uncoupling, cellular senescence, endothelial dysfunction, and activation of the mTORC1-SK61 pathway, which were ablated by rapamycin or antioxidant N-Acetyl-l-cysteine (NAC). Transcriptome analysis revealed that staufen double-stranded RNA binding protein 1 (STAU1) is remarkably downregulated in the GIGYF2-depleted ECs. STAU1 depletion significantly attenuated GIGYF2-induced cellular senescence, dysfunction, and inflammation in young ECs. Furthermore, we disclosed that GIGYF2 acting as an RNA binding protein (RBP) enhances STAU1 mRNA stability, and that the intron region of the late endosomal/lysosomal adaptor MAPK and mTOR activator 4 (LAMTOR4) could bind to STAU1 protein to upregulate LAMTOR4 expression. Immunofluorescence staining showed that GIGYF2 overexpression promoted the translocation of mTORC1 to lysosome. In the mice model, GIGYF2flox/flox Cdh-Cre+ mice protected aged mice from aging-associated vascular endothelium-dependent relaxation and arterial stiffness. Our work discloses that GIGYF2 serving as an RBP enhances the mRNA stability of STAU1 that upregulates LAMTOR4 expression through binding with its intron region, which activates the mTORC1-S6K1 signaling via recruitment of mTORC1 to the lysosomal membrane, ultimately leading to ECs senescence, dysfunction, and vascular aging. Disrupting the GIGYF2-STAU1-mTORC1 signaling cascade may represent a promising therapeutic approach against vascular aging and aging-related cardiovascular diseases.
Collapse
Affiliation(s)
- Fanglin Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Zhuozhuo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Zi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Hua Guan
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710018, PR China
| | - Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Yan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Yirong Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Junle Yang
- Department of Radiology, Xi' an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Lu Qian
- Department of Endocrinology, Xi' an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Wenzhen Shi
- Medical Research Center, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Xiaobin Fan
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Jinli Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Lele Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, PR China.
| |
Collapse
|
7
|
Elevated GIGYF2 expression suppresses tumor migration and enhances sensitivity to temozolomide in malignant glioma. Cancer Gene Ther 2022; 29:750-757. [PMID: 34059782 DOI: 10.1038/s41417-021-00353-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
Glioma is a common type of malignant and aggressive tumor in the brain. Despite progress on mechanistic studies, current understanding of the initiation and progression of glioma remains incomplete. GIGYF2 is a critical regulator in neural development and degeneration, however, its contribution in glioma is not yet elucidated. In this study, using an integrative approach spanning bioinformatic analysis and functional approaches, we explored the potential contribution of GIGYF2 in glioma. Bioinformatic data from public database and our cohort showed that GIGYF2 expression was closely associated with low glioma malignancy and better patient survival. Elevation of GIGYF2 expression impaired cell migration and enhanced temozolomide sensitivity of human glioma cells. We further establish its molecular mechanism by demonstrating that GIGYF2 inhibits MMP-9 mediated cell migration pathway and pro-survival AKT/Bax/Caspase-3 signaling. Our work identifies the suppressive role of GIGYF2 in gliomas, and clarifies the relationship between GIGYF2 expression and glioma malignancy, which may provide a potential target for future interventions.
Collapse
|
8
|
Delusions, Hallucinations, and Cognitive Decline in Middle Age: A Case of Dementia, GIGYF2 Gene Mutation, and 22q11 Duplication. Indian J Psychol Med 2022; 45:317-319. [PMID: 37152395 PMCID: PMC10159574 DOI: 10.1177/02537176221084867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
9
|
Nordgaard C, Tollenaere MAX, Val AMD, Bekker-Jensen DB, Blasius M, Olsen JV, Bekker-Jensen S. Regulation of the Golgi Apparatus by p38 and JNK Kinases during Cellular Stress Responses. Int J Mol Sci 2021; 22:9595. [PMID: 34502507 PMCID: PMC8431686 DOI: 10.3390/ijms22179595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
p38 and c-Jun N-terninal kinase (JNK) are activated in response to acute stress and inflammatory signals. Through modification of a plethora of substrates, these kinases profoundly re-shape cellular physiology for the optimal response to a harmful environment and/or an inflammatory state. Here, we utilized phospho-proteomics to identify several hundred substrates for both kinases. Our results indicate that the scale of signaling from p38 and JNK are of a similar magnitude. Among the many new targets, we highlight the regulation of the transcriptional regulators grb10-interacting GYF protein 1 and 2 (GIGYF1/2) by p38-dependent MAP kinase-activated protein kinase 2 (MK2) phosphorylation and 14-3-3 binding. We also show that the Golgi apparatus contains numerous substrates, and is a major target for regulation by p38 and JNK. When activated, these kinases mediate structural rearrangement of the Golgi apparatus, which positively affects protein flux through the secretory system. Our work expands on our knowledge about p38 and JNK signaling with important biological ramifications.
Collapse
Affiliation(s)
- Cathrine Nordgaard
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; (C.N.); (M.A.X.T.); (M.B.)
| | - Maxim A. X. Tollenaere
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; (C.N.); (M.A.X.T.); (M.B.)
- LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark
| | - Ana Martinez Del Val
- Mass Spectrometry for Quantitative Proteomics, Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; (A.M.D.V.); (D.B.B.-J.); (J.V.O.)
| | - Dorte B. Bekker-Jensen
- Mass Spectrometry for Quantitative Proteomics, Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; (A.M.D.V.); (D.B.B.-J.); (J.V.O.)
| | - Melanie Blasius
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; (C.N.); (M.A.X.T.); (M.B.)
| | - Jesper V. Olsen
- Mass Spectrometry for Quantitative Proteomics, Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; (A.M.D.V.); (D.B.B.-J.); (J.V.O.)
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; (C.N.); (M.A.X.T.); (M.B.)
| |
Collapse
|
10
|
Saini P, Rudakou U, Yu E, Ruskey JA, Asayesh F, Laurent SB, Spiegelman D, Fahn S, Waters C, Monchi O, Dauvilliers Y, Dupré N, Greenbaum L, Hassin-Baer S, Espay AJ, Rouleau GA, Alcalay RN, Fon EA, Postuma RB, Gan-Or Z. Association study of DNAJC13, UCHL1, HTRA2, GIGYF2, and EIF4G1 with Parkinson's disease. Neurobiol Aging 2020; 100:119.e7-119.e13. [PMID: 33239198 DOI: 10.1016/j.neurobiolaging.2020.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/05/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
Rare mutations in genes originally discovered in multigenerational families have been associated with increased risk of Parkinson's disease (PD). The involvement of rare variants in DNAJC13, UCHL1, HTRA2, GIGYF2, and EIF4G1 loci has been poorly studied or has produced conflicting results across cohorts. However, they are still being often referred to as "PD genes" and used in different models. To further elucidate the role of these 5 genes in PD, we fully sequenced them using molecular inversion probes in 2408 patients with PD and 3444 controls from 3 different cohorts. A total of 788 rare variants were identified across the 5 genes and 3 cohorts. Burden analyses and optimized sequence Kernel association tests revealed no significant association between any of the genes and PD after correction for multiple comparisons. Our results do not support an association of the 5 tested genes with PD. Combined with previous studies, it is unlikely that any of these genes plays an important role in PD. Their designation as "PARK" genes should be reconsidered.
Collapse
Affiliation(s)
- Prabhjyot Saini
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Uladzislau Rudakou
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Eric Yu
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Jennifer A Ruskey
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Farnaz Asayesh
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Sandra B Laurent
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Dan Spiegelman
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Oury Monchi
- Department of Clinical Neurosciences and Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Yves Dauvilliers
- Department of Neurology, National Reference Center for Narcolepsy, Sleep Unit, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Inserm U1061, Montpellier, France
| | - Nicolas Dupré
- Division of Neurosciences, CHU de Québec, Université Laval, Quebec City, Quebec, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Québec, Quebec, Canada
| | - Lior Greenbaum
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Neurology, The Movement Disorders Institute, Sheba Medical Center, Tel Hashomer, Israel
| | - Alberto J Espay
- Department of Neurology, Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Edward A Fon
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Ronald B Postuma
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
11
|
Abstract
Parkinson’s Disease (PD) is a complex neurodegenerative disorder that mainly results due to the loss of dopaminergic neurons in the substantia nigra of the midbrain. It is well known that dopamine is synthesized in substantia nigra and is transported to the striatumvianigrostriatal tract. Besides the sporadic forms of PD, there are also familial cases of PD and number of genes (both autosomal dominant as well as recessive) are responsible for PD. There is no permanent cure for PD and to date, L-dopa therapy is considered to be the best option besides having dopamine agonists. In the present review, we have described the genes responsible for PD, the role of dopamine, and treatment strategies adopted for controlling the progression of PD in humans.
Collapse
|
12
|
Cristina TP, Pablo M, Teresa PM, Lydia VD, Irene AR, Araceli AC, Inmaculada BB, Marta BT, Dolores BR, José CAM, Rocío GR, José GRP, Ismael HF, Silvia J, Labrador MAE, Lydia LM, Carlos MCJ, Posada IJ, Ana RS, Cristina RH, Javier DV, Gómez-Garre P. A genetic analysis of a Spanish population with early onset Parkinson's disease. PLoS One 2020; 15:e0238098. [PMID: 32870915 PMCID: PMC7462269 DOI: 10.1371/journal.pone.0238098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction Both recessive and dominant genetic forms of Parkinson’s disease have been described. The aim of this study was to assess the contribution of several genes to the pathophysiology of early onset Parkinson’s disease in a cohort from central Spain. Methods/patients We analyzed a cohort of 117 unrelated patients with early onset Parkinson’s disease using a pipeline, based on a combination of a next-generation sequencing panel of 17 genes previously related with Parkinson’s disease and other Parkinsonisms and CNV screening. Results Twenty-six patients (22.22%) carried likely pathogenic variants in PARK2, LRRK2, PINK1, or GBA. The gene most frequently mutated was PARK2, and p.Asn52Metfs*29 was the most common variation in this gene. Pathogenic variants were not observed in genes SNCA, FBXO7, PARK7, HTRA2, DNAJC6, PLA2G6, and UCHL1. Co-occurrence of pathogenic variants involving two genes was observed in ATP13A2 and PARK2 genes, as well as LRRK2 and GIGYF2 genes. Conclusions Our results contribute to the understanding of the genetic architecture associated with early onset Parkinson’s disease, showing both PARK2 and LRRK2 play an important role in Spanish Parkinson’s disease patients. Rare variants in ATP13A2 and GIGYF2 may contribute to PD risk. However, a large proportion of genetic components remains unknown. This study might contribute to genetic diagnosis and counseling for families with early onset Parkinson’s disease.
Collapse
Affiliation(s)
- Tejera-Parrado Cristina
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Mir Pablo
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- * E-mail: (PG-G); (MP)
| | - Periñán María Teresa
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Abreu-Rodríguez Irene
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | | | - Bernal-Bernal Inmaculada
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Bonilla-Toribio Marta
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Buiza-Rueda Dolores
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | | | | | - Huertas-Fernández Ismael
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Jesús Silvia
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Miguel A-Espinosa Labrador
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | | | - Ignacio J. Posada
- Servicio de Neurología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | - Del Val Javier
- Servicio de Neurología, Fundación Jiménez Díaz, Madrid, Spain
| | - Pilar Gómez-Garre
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- * E-mail: (PG-G); (MP)
| |
Collapse
|
13
|
Genetic predispositions of Parkinson's disease revealed in patient-derived brain cells. NPJ PARKINSONS DISEASE 2020; 6:8. [PMID: 32352027 PMCID: PMC7181694 DOI: 10.1038/s41531-020-0110-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/20/2020] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent neurological disorder and has been the focus of intense investigations to understand its etiology and progression, but it still lacks a cure. Modeling diseases of the central nervous system in vitro with human induced pluripotent stem cells (hiPSC) is still in its infancy but has the potential to expedite the discovery and validation of new treatments. Here, we discuss the interplay between genetic predispositions and midbrain neuronal impairments in people living with PD. We first summarize the prevalence of causal Parkinson's genes and risk factors reported in 74 epidemiological and genomic studies. We then present a meta-analysis of 385 hiPSC-derived neuronal lines from 67 recent independent original research articles, which point towards specific impairments in neurons from Parkinson's patients, within the context of genetic predispositions. Despite the heterogeneous nature of the disease, current iPSC models reveal converging molecular pathways underlying neurodegeneration in a range of familial and sporadic forms of Parkinson's disease. Altogether, consolidating our understanding of robust cellular phenotypes across genetic cohorts of Parkinson's patients may guide future personalized drug screens in preclinical research.
Collapse
|
14
|
Valera ET, Neder L, Queiroz RG, Santos AC, Sousa GR, Oliveira RS, Santos MV, Machado HR, Tone LG. Perinatal complex low- and high-grade glial tumor harboring a novel GIGYF2-ALK fusion. Pediatr Blood Cancer 2020; 67:e28015. [PMID: 31556208 DOI: 10.1002/pbc.28015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Elvis T Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Luciano Neder
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Rosane G Queiroz
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Antonio C Santos
- Department of Oncology and Image, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Graziella R Sousa
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Ricardo S Oliveira
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Marcelo V Santos
- Division of Pediatric Neurosurgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Hélio R Machado
- Division of Pediatric Neurosurgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Luiz Gonzaga Tone
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Montaut S, Tranchant C, Drouot N, Rudolf G, Guissart C, Tarabeux J, Stemmelen T, Velt A, Fourrage C, Nitschké P, Gerard B, Mandel JL, Koenig M, Chelly J, Anheim M. Assessment of a Targeted Gene Panel for Identification of Genes Associated With Movement Disorders. JAMA Neurol 2019; 75:1234-1245. [PMID: 29913018 DOI: 10.1001/jamaneurol.2018.1478] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Importance Movement disorders are characterized by a marked genotypic and phenotypic heterogeneity, complicating diagnostic work in clinical practice and molecular diagnosis. Objective To develop and evaluate a targeted sequencing approach using a customized panel of genes involved in movement disorders. Design, Setting and Participants We selected 127 genes associated with movement disorders to create a customized enrichment in solution capture array. Targeted high-coverage sequencing was applied to DNA samples taken from 378 eligible patients at 1 Luxembourgian, 1 Algerian, and 25 French tertiary movement disorder centers between September 2014 and July 2016. Patients were suspected of having inherited movement disorders because of early onset, family history, and/or complex phenotypes. They were divided in 5 main movement disorder groups: parkinsonism, dystonia, chorea, paroxysmal movement disorder, and myoclonus. To compare approaches, 23 additional patients suspected of having inherited cerebellar ataxia were included, on whom whole-exome sequencing (WES) was done. Data analysis occurred from November 2015 to October 2016. Main Outcomes and Measures Percentages of individuals with positive diagnosis, variants of unknown significance, and negative cases; mutational frequencies and clinical phenotyping of genes associated with movement disorders. Results Of the 378 patients (of whom 208 were male [55.0%]), and with a median (range) age at disease onset of 31 (0-84) years, probable pathogenic variants were identified in 83 cases (22.0%): 46 patients with parkinsonism (55% of 83 patients), 21 patients (25.3%) with dystonia, 7 patients (8.4%) with chorea, 7 patients (8.4%) with paroxysmal movement disorders, and 2 patients (2.4%) with myoclonus as the predominant phenotype. Some genes were mutated in several cases in the cohort. Patients with pathogenic variants were significantly younger (median age, 27 years; interquartile range [IQR], 5-36 years]) than the patients without diagnosis (median age, 35 years; IQR, 15-46 years; P = .04). Diagnostic yield was significantly lower in patients with dystonia (21 of 135; 15.6%; P = .03) than in the overall cohort. Unexpected genotype-phenotype correlations in patients with pathogenic variants deviating from the classic phenotype were highlighted, and 49 novel probable pathogenic variants were identified. The WES analysis of the cohort of 23 patients with cerebellar ataxia led to an overall diagnostic yield of 26%, similar to panel analysis but at a cost 6 to 7 times greater. Conclusions and Relevance High-coverage sequencing panel for the delineation of genes associated with movement disorders was efficient and provided a cost-effective diagnostic alternative to whole-exome and whole-genome sequencing.
Collapse
Affiliation(s)
- Solveig Montaut
- Département de Neurologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Christine Tranchant
- Département de Neurologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Gabrielle Rudolf
- Département de Neurologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Claire Guissart
- EA7402, Laboratoire de Génétique Moléculaire, Institut de Recherche Clinique, Montpellier University Hospital, France
| | - Julien Tarabeux
- Laboratoire de Diagnostic Génétique, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Tristan Stemmelen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Amandine Velt
- Laboratoire de Diagnostic Génétique, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Cécile Fourrage
- Institut Imagine, Imagine Bioinformatics Platform, Paris Descartes University, Paris, France
| | - Patrick Nitschké
- Institut Imagine, Imagine Bioinformatics Platform, Paris Descartes University, Paris, France
| | - Bénédicte Gerard
- Laboratoire de Diagnostic Génétique, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jean-Louis Mandel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Laboratoire de Diagnostic Génétique, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Michel Koenig
- EA7402, Laboratoire de Génétique Moléculaire, Institut de Recherche Clinique, Montpellier University Hospital, France
| | - Jamel Chelly
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Laboratoire de Diagnostic Génétique, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Mathieu Anheim
- Département de Neurologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | | |
Collapse
|
16
|
Amaya Ramirez CC, Hubbe P, Mandel N, Béthune J. 4EHP-independent repression of endogenous mRNAs by the RNA-binding protein GIGYF2. Nucleic Acids Res 2019; 46:5792-5808. [PMID: 29554310 PMCID: PMC6009589 DOI: 10.1093/nar/gky198] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/07/2018] [Indexed: 11/12/2022] Open
Abstract
Initially identified as a factor involved in tyrosine kinase receptor signaling, Grb10-interacting GYF protein 2 (GIGYF2) has later been shown to interact with the 5′ cap-binding protein 4EHP as part of a translation repression complex, and to mediate post-transcriptional repression of tethered reporter mRNAs. A current model proposes that GIGYF2 is indirectly recruited to mRNAs by specific RNA-binding proteins (RBPs) leading to translation repression through its association with 4EHP. Accordingly, we recently observed that GIGYF2 also interacts with the miRNA-induced silencing complex and probably modulates its translation repression activity. Here we have further investigated how GIGYF2 represses mRNA function. In a tethering reporter assay, we identify three independent domains of GIGYF2 with repressive activity. In this assay, GIGYF2-mediated repression is independent of 4EHP but largely dependent on the CCR4/NOT complex that GIGYF2 recruits through multiple interfaces. Importantly, we show that GIGYF2 is an RBP and identify for the first time endogenous mRNA targets that recapitulate 4EHP-independent repression. Altogether, we propose that GIGYF2 has two distinct mechanisms of repression: one depends on 4EHP binding and mainly affects translation; the other is 4EHP-independent and involves the CCR4/NOT complex and its deadenylation activity.
Collapse
Affiliation(s)
- Cinthia C Amaya Ramirez
- CellNetworks Junior Research Group Posttranscriptional Regulation of mRNA Expression and Localization, Heidelberg University, D-69120 Heidelberg, Germany.,Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany
| | - Petra Hubbe
- CellNetworks Junior Research Group Posttranscriptional Regulation of mRNA Expression and Localization, Heidelberg University, D-69120 Heidelberg, Germany.,Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany
| | - Nicolas Mandel
- CellNetworks Junior Research Group Posttranscriptional Regulation of mRNA Expression and Localization, Heidelberg University, D-69120 Heidelberg, Germany.,Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany
| | - Julien Béthune
- CellNetworks Junior Research Group Posttranscriptional Regulation of mRNA Expression and Localization, Heidelberg University, D-69120 Heidelberg, Germany.,Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
17
|
Kochmanski J, VanOeveren SE, Patterson JR, Bernstein AI. Developmental Dieldrin Exposure Alters DNA Methylation at Genes Related to Dopaminergic Neuron Development and Parkinson's Disease in Mouse Midbrain. Toxicol Sci 2019; 169:593-607. [PMID: 30859219 PMCID: PMC6542339 DOI: 10.1093/toxsci/kfz069] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human and animal studies have shown that exposure to the organochlorine pesticide dieldrin is associated with increased risk of Parkinson's disease (PD). Despite previous work showing a link between developmental dieldrin exposure and increased neuronal susceptibility to MPTP toxicity in male C57BL/6 mice, the mechanism mediating this effect has not been identified. Here, we tested the hypothesis that developmental exposure to dieldrin increases neuronal susceptibility via genome-wide changes in DNA methylation. Starting at 8 weeks of age and prior to mating, female C57BL/6 mice were exposed to 0.3 mg/kg dieldrin by feeding (every 3 days) throughout breeding, gestation, and lactation. At 12 weeks of age, pups were sacrificed and ventral mesencephalon, containing primarily substantia nigra, was microdissected. DNA was isolated and dieldrin-related changes in DNA methylation were assessed via reduced representation bisulfite sequencing. We identified significant, sex-specific differentially methylated CpGs (DMCs) and regions (DMRs) by developmental dieldrin exposure (false discovery rate < 0.05), including DMCs at the Nr4a2 and Lmx1b genes, which are involved in dopaminergic neuron development and maintenance. Developmental dieldrin exposure had distinct effects on the male and female epigenome. Together, our data suggest that developmental dieldrin exposure establishes sex-specific poised epigenetic states early in life. These poised epigenomes may mediate sensitivity to subsequent toxic stimuli and contribute to the development of late-life neurodegenerative disease, including PD.
Collapse
Affiliation(s)
- Joseph Kochmanski
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503
| | - Sarah E VanOeveren
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503
| | - Joseph R Patterson
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503
| | - Alison I Bernstein
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503
| |
Collapse
|
18
|
A Meta-Analysis of GBA-Related Clinical Symptoms in Parkinson's Disease. PARKINSONS DISEASE 2018; 2018:3136415. [PMID: 30363648 PMCID: PMC6180987 DOI: 10.1155/2018/3136415] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/04/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022]
Abstract
Background GBA gene had been proved to be a crucial gene to the risk of PD. Numerous studies had discussed about the unique clinical characteristics of PD patients with GBA carriers (GBA + PD). However, there was lack of updated comprehensive analysis on the topic. In order to clarify the association between GBA variants and the clinical phenotypes of PD, we conducted this comprehensive meta-analysis. Method Medline, Embase, and Cochrane were used to perform the searching. Strict selection criteria were followed in screening for new published articles or data. Revman 5.3 software was applied to perform the total statistical analysis, and funnel plots in the software were used to assess the publication biases. Results A total of 26 articles including 931 GBA + PD and 14861 GBA noncarriers of PD (GBA - PD) were involved in the final meta-analysis, and 14 of them were either newly added publications or related data newly analyzed compared with the version published in 2015. Then, a series of symptoms containing depression, orthostatic hypotension, motor fluctuation, wearing-off, and freezing were newly analyzed due to more articles eligible. Besides, clinical features like family history, AAO, UPDRS-III, H-Y, and dementia previously analyzed were updated with new data added. Significant statistical differences were found in wearing-off, family history, AAO, UPDRS-III, and dementia (OR: 1.14, 1.65; MD: -3.61, 2.17; OR: 2.44; p: 0.03, <0.00001, <0.00001, 0.003, and <0.00001). Depression was slightly associated with GBA + PD (OR: 1.47; p: 0.04). Clinical symptoms such as H-Y, orthostatic hypotension, motor fluctuation, and freezing did not feature GBA + PD. Conclusion Our results demonstrated that there were unique clinical features in GBA + PD which can help the management of the whole duration of PD patients.
Collapse
|
19
|
The genetics of Parkinson disease. Ageing Res Rev 2018; 42:72-85. [PMID: 29288112 DOI: 10.1016/j.arr.2017.12.007] [Citation(s) in RCA: 347] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022]
Abstract
About 15% of patients with Parkinson disease (PD) have family history and 5-10% have a monogenic form of the disease with Mendelian inheritance. To date, at least 23 loci and 19 disease-causing genes for parkinsonism have been found, but many more genetic risk loci and variants for sporadic PD phenotype have been identified in various association studies. Investigating the mutated protein products has uncovered potential pathogenic pathways that provide insights into mechanisms of neurodegeneration in familial and sporadic PD. To commemorate the 200th anniversary of Parkinson's publication of An Essay on the Shaking Palsy, we provide a comprehensive and critical overview of the current clinical, neuropathological, and genetic understanding of genetic forms of PD. We also discuss advances in screening for genetic PD-related risk factors and how they impact genetic counseling and contribute to the development of potential disease-modifying therapies.
Collapse
|
20
|
Association of variants in microRNA with Parkinson’s disease in Chinese Han population. Neurol Sci 2018; 39:353-357. [DOI: 10.1007/s10072-017-3210-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
|
21
|
Wu Z, Huang S, Zhang X, Wu D, Xia S, Li X. Regulation of plant immune receptor accumulation through translational repression by a glycine-tyrosine-phenylalanine (GYF) domain protein. eLife 2017; 6:e23684. [PMID: 28362261 PMCID: PMC5403212 DOI: 10.7554/elife.23684] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 03/14/2017] [Indexed: 01/12/2023] Open
Abstract
Plant immunity is tightly regulated to ensure proper defense against surrounding microbial pathogens without triggering autoimmunity, which negatively impacts plant growth and development. Immune receptor levels are intricately controlled by RNA processing and post-translational modification events, such as ubiquitination. It remains unknown whether, and if yes, how, plant immune receptor homeostasis is regulated at the translational level. From a mutant, snc1-enhancing (muse) forward genetic screen, we identified MUSE11/EXA1, which negatively regulates nucleotide-binding leucine-rich repeat (NLR) receptor mediated defence. EXA1 contains an evolutionarily conserved glycine-tyrosine-phenylalanine (GYF) domain that binds proline-rich sequences. Genetic and biochemical analysis revealed that loss of EXA1 leads to heightened NLR accumulation and enhanced resistance against virulent pathogens. EXA1 also associates with eIF4E initiation factors and the ribosome complex, likely contributing to the proper translation of target proteins. In summary, our study reveals a previously unknown mechanism of regulating NLR homeostasis through translational repression by a GYF protein.
Collapse
Affiliation(s)
- Zhongshou Wu
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Shuai Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Xiaobo Zhang
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Hunan Provincial Key Laboratory of Phytohormones, Hunan Agricultural University, Changsha, China
| | - Di Wu
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones, Hunan Agricultural University, Changsha, China
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Botany, University of British Columbia, Vancouver, Canada
| |
Collapse
|
22
|
Parkinson's Disease and Cognitive Impairment. PARKINSONS DISEASE 2016; 2016:6734678. [PMID: 28058128 PMCID: PMC5183770 DOI: 10.1155/2016/6734678] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/14/2016] [Indexed: 11/21/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease primarily characterized by the hallmarks of motor symptoms, such as tremor, bradykinesia, rigidity, and postural instability. However, through clinical investigations in patients and experimental findings in animal models of Parkinson's disease for years, it is now well recognized that Parkinson's disease is more than just a motor-deficit disorder. The majority of Parkinson's disease patients suffer from nonmotor disabilities, for instance, cognitive impairment, autonomic dysfunction, sensory dysfunction, and sleep disorder. So far, anti-PD prescriptions and surgical treatments have been mainly focusing on motor dysfunctions, leaving cognitive impairment a marginal clinical field. Within the nonmotor symptoms, cognitive impairment is one of the most common and significant aspects of Parkinson's disease, and cognitive deficits such as dysexecutive syndrome and visuospatial disturbances could seriously affect the quality of life, reduce life expectancy, prolong the duration of hospitalization, and therefore increase burdens of caregiver and medical costs. In this review, we have done a retrospective study of the recent related researches on epidemiology, clinical manifestation and diagnosis, genetics, and potential treatment of cognitive deficits in Parkinson's disease, aiming to provide a summary of cognitive impairment in Parkinson's disease and make it easy for clinicians to tackle this challenging issue in their future practice.
Collapse
|