1
|
Saadh MJ, Mustafa AN, Mustafa MA, S RJ, Dabis HK, Prasad GVS, Mohammad IJ, Adnan A, Idan AH. The role of gut-derived short-chain fatty acids in Parkinson's disease. Neurogenetics 2024; 25:307-336. [PMID: 39266892 DOI: 10.1007/s10048-024-00779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
The emerging function of short-chain fatty acids (SCFAs) in Parkinson's disease (PD) has been investigated in this article. SCFAs, which are generated via the fermentation of dietary fiber by gut microbiota, have been associated with dysfunction of the gut-brain axis and, neuroinflammation. These processes are integral to the development of PD. This article examines the potential therapeutic implications of SCFAs in the management of PD, encompassing their capacity to modulate gastrointestinal permeability, neuroinflammation, and neuronal survival, by conducting an extensive literature review. As a whole, this article emphasizes the potential therapeutic utility of SCFAs as targets for the management and treatment of PD.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | - Mohammed Ahmed Mustafa
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | | | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra, Pradesh-531162, India
| | - Imad Jassim Mohammad
- College of Health and Medical Technology, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Ahmed Adnan
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
2
|
Yang JY, Baek SE, Yoon JW, Kim HS, Kwon Y, Yeom E. Nesfatin-1 ameliorates pathological abnormalities in Drosophila hTau model of Alzheimer's disease. Biochem Biophys Res Commun 2024; 727:150311. [PMID: 38950494 DOI: 10.1016/j.bbrc.2024.150311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/07/2024] [Accepted: 06/23/2024] [Indexed: 07/03/2024]
Abstract
In human Alzheimer's disease (AD), the aggregation of tau protein is considered a significant hallmark, along with amyloid-beta. The formation of neurofibrillary tangles due to aberrant phosphorylation of tau disrupts microtubule stability, leading to neuronal toxicity, dysfunction, and subsequent cell death. Nesfatin-1 is a neuropeptide primarily known for regulating appetite and energy homeostasis. However, the function of Nesfatin-1 in a neuroprotective role has not been investigated. In this study, we aimed to elucidate the effect of Nesfatin-1 on tau pathology using the Drosophila model system. Our findings demonstrate that Nesfatin-1 effectively mitigates the pathological phenotypes observed in Drosophila human Tau overexpression models. Nesfatin-1 overexpression rescued the neurodegenerative phenotypes in the adult fly's eye and bristle. Additionally, Nesfatin-1 improved locomotive behavior, neuromuscular junction formation, and lifespan in the hTau AD model. Moreover, Nesfatin-1 controls tauopathy by reducing the protein level of hTau. Overall, this research highlights the potential therapeutic applications of Nesfatin-1 in ameliorating the pathological features associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Jae-Yoon Yang
- School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea; School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
| | - Si-Eun Baek
- School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea; School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
| | - Jong-Won Yoon
- School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea; School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
| | - Hyo-Sung Kim
- School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea; School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
| | - Younghwi Kwon
- KNU-G LAMP Project Group, KNU-Institute of Basic Sciences, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Eunbyul Yeom
- School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea; School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea; KNU-G LAMP Project Group, KNU-Institute of Basic Sciences, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
3
|
Zhou S, Nao J. Nesfatin-1: A Biomarker and Potential Therapeutic Target in Neurological Disorders. Neurochem Res 2024; 49:38-51. [PMID: 37740893 DOI: 10.1007/s11064-023-04037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Nesfatin-1 is a novel adipocytokine consisting of 82 amino acids with anorexic and anti-hyperglycemic properties. Further studies of nesfatin-1 have shown it to be closely associated with neurological disorders. Changes in nesfatin-1 levels are closely linked to the onset, progression and severity of neurological disorders. Nesfatin-1 may affect the development of neurological disorders and can indicate disease evolution and prognosis, thus informing the choice of treatment options. In addition, regulation of the expression or level of nesfatin-1 can improve the level of neuroinflammation, apoptosis, oxidative damage and other indicators. It is demonstrated that nesfatin-1 is involved in neuroprotection and may be a therapeutic target for neurological disorders. In this paper, we will also discuss the role of nesfatin-1 as a biomarker in neurological diseases and its potential mechanism of action in neurological diseases, providing new ideas for the diagnosis and treatment of neurological diseases.
Collapse
Affiliation(s)
- Siyu Zhou
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
4
|
Zhang Y, Xu S, Qian Y, Mo C, Ai P, Yang X, Xiao Q. Sodium butyrate ameliorates gut dysfunction and motor deficits in a mouse model of Parkinson's disease by regulating gut microbiota. Front Aging Neurosci 2023; 15:1099018. [PMID: 36761177 PMCID: PMC9905700 DOI: 10.3389/fnagi.2023.1099018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Background A growing body of evidence showed that gut microbiota dysbiosis might be associated with the pathogenesis of Parkinson's disease (PD). Microbiota-targeted interventions could play a protective role in PD by regulating the gut microbiota-gut-brain axis. Sodium butyrate (NaB) could improve gut microbiota dysbiosis in PD and other neuropsychiatric disorders. However, the potential mechanism associated with the complex interaction between NaB and gut microbiota-gut-brain communication in PD needs further investigation. Methods C57BL/6 mice were subjected to a rotenone-induced PD model and were treated intragastrically with NaB for 4 weeks. The gut function and motor function were evaluated. The α-synuclein expression in colon and substantia nigra were detected by western blotting. Tyrosine hydroxylase (TH)-positive neurons in substantia nigra were measured by immunofluorescence. Moreover, gut microbiota composition was analyzed by 16S rRNA sequencing. Fecal short chain fatty acids (SCFAs) levels were determined by liquid chromatography tandem mass spectrometry (LC-MS). The levels of glucagon like peptide-1 (GLP-1) in tissues and serum were evaluated using enzyme-linked immunosorbent assay (ELISA). Results NaB ameliorated gut dysfunction and motor deficits in rotenone-induced mice. Meanwhile, NaB protected against rotenone-induced α-synuclein expression in colon and substantia nigra, and prevented the loss of TH-positive neurons. In addition, NaB could remodel gut microbiota composition, and regulate gut SCFAs metabolism, and restore GLP-1 levels in colon, serum, and substantia nigra in PD mice. Conclusion NaB could ameliorate gut dysfunction and motor deficits in rotenone-induced PD mice, and the mechanism might be associated with the regulation of gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoqing Xu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwei Qian
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengjun Mo
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Penghui Ai
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Qin Xiao, ; Xiaodong Yang,
| | - Qin Xiao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Qin Xiao, ; Xiaodong Yang,
| |
Collapse
|
5
|
Searching for Biomarkers in the Blood of Patients at Risk of Developing Parkinson's Disease at the Prodromal Stage. Int J Mol Sci 2023; 24:ijms24031842. [PMID: 36768161 PMCID: PMC9915927 DOI: 10.3390/ijms24031842] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Parkinson's disease (PD) is diagnosed many years after its onset, under a significant degradation of the nigrostriatal dopaminergic system, responsible for the regulation of motor function. This explains the low effectiveness of the treatment of patients. Therefore, one of the highest priorities in neurology is the development of the early (preclinical) diagnosis of PD. The aim of this study was to search for changes in the blood of patients at risk of developing PD, which are considered potential diagnostic biomarkers. Out of 1835 patients, 26 patients were included in the risk group and 20 patients in the control group. The primary criteria for inclusion in a risk group were the impairment of sleep behavior disorder and sense of smell, and the secondary criteria were neurological and mental disorders. In patients at risk and in controls, the composition of plasma and the expression of genes of interest in lymphocytes were assessed by 27 indicators. The main changes that we found in plasma include a decrease in the concentrations of l-3,4-dihydroxyphenylalanine (L-DOPA) and urates, as well as the expressions of some types of microRNA, and an increase in the total oxidative status. In turn, in the lymphocytes of patients at risk, an increase in the expression of the DA D3 receptor gene and the lymphocyte activation gene 3 (LAG3), as well as a decrease in the expression of the Protein deglycase DJ-1 gene (PARK7), were observed. The blood changes we found in patients at risk are considered candidates for diagnostic biomarkers at the prodromal stage of PD.
Collapse
|
6
|
Sun X, Xue L, Wang Z, Xie A. Update to the Treatment of Parkinson's Disease Based on the Gut-Brain Axis Mechanism. Front Neurosci 2022; 16:878239. [PMID: 35873830 PMCID: PMC9299103 DOI: 10.3389/fnins.2022.878239] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/20/2022] [Indexed: 12/27/2022] Open
Abstract
Gastrointestinal (GI) symptoms represented by constipation were significant non-motor symptoms of Parkinson’s disease (PD) and were considered early manifestations and aggravating factors of the disease. This paper reviewed the research progress of the mechanism of the gut-brain axis (GBA) in PD and discussed the roles of α-synuclein, gut microbiota, immune inflammation, neuroendocrine, mitochondrial autophagy, and environmental toxins in the mechanism of the GBA in PD. Treatment of PD based on the GBA theory has also been discussed, including (1) dietary therapy, such as probiotics, vitamin therapy, Mediterranean diet, and low-calorie diet, (2) exercise therapy, (3) drug therapy, including antibiotics; GI peptides; GI motility agents, and (4) fecal flora transplantation can improve the flora. (5) Vagotomy and appendectomy were associated but not recommended.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Xue
- Recording Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zechen Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Behl T, Madaan P, Sehgal A, Singh S, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bungau S. Demystifying the Neuroprotective Role of Neuropeptides in Parkinson's Disease: A Newfangled and Eloquent Therapeutic Perspective. Int J Mol Sci 2022; 23:4565. [PMID: 35562956 PMCID: PMC9099669 DOI: 10.3390/ijms23094565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) refers to one of the eminently grievous, preponderant, tortuous nerve-cell-devastating ailments that markedly impacts the dopaminergic (DArgic) nerve cells of the midbrain region, namely the substantia nigra pars compacta (SN-PC). Even though the exact etiopathology of the ailment is yet indefinite, the existing corroborations have suggested that aging, genetic predisposition, and environmental toxins tremendously influence the PD advancement. Additionally, pathophysiological mechanisms entailed in PD advancement encompass the clumping of α-synuclein inside the lewy bodies (LBs) and lewy neurites, oxidative stress, apoptosis, neuronal-inflammation, and abnormalities in the operation of mitochondria, autophagy lysosomal pathway (ALP), and ubiquitin-proteasome system (UPS). The ongoing therapeutic approaches can merely mitigate the PD-associated manifestations, but until now, no therapeutic candidate has been depicted to fully arrest the disease advancement. Neuropeptides (NPs) are little, protein-comprehending additional messenger substances that are typically produced and liberated by nerve cells within the entire nervous system. Numerous NPs, for instance, substance P (SP), ghrelin, neuropeptide Y (NPY), neurotensin, pituitary adenylate cyclase-activating polypeptide (PACAP), nesfatin-1, and somatostatin, have been displayed to exhibit consequential neuroprotection in both in vivo and in vitro PD models via suppressing apoptosis, cytotoxicity, oxidative stress, inflammation, autophagy, neuronal toxicity, microglia stimulation, attenuating disease-associated manifestations, and stimulating chondriosomal bioenergetics. The current scrutiny is an effort to illuminate the neuroprotective action of NPs in various PD-experiencing models. The authors carried out a methodical inspection of the published work procured through reputable online portals like PubMed, MEDLINE, EMBASE, and Frontier, by employing specific keywords in the subject of our article. Additionally, the manuscript concentrates on representing the pathways concerned in bringing neuroprotective action of NPs in PD. In sum, NPs exert substantial neuroprotection through regulating paramount pathways indulged in PD advancement, and consequently, might be a newfangled and eloquent perspective in PD therapy.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (A.S.); (S.S.)
| | - Piyush Madaan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (A.S.); (S.S.)
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (M.A.); (H.A.A.)
| | - Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (M.A.); (H.A.A.)
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
8
|
Altaş M, Uca AU, Akdağ T, Odabaş FÖ, Tokgöz OS. Serum levels of irisin and nesfatin-1 in multiple sclerosis. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:161-167. [PMID: 35195223 DOI: 10.1590/0004-282x-anp-2020-0520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is an inflammatory and neurodegenerative autoimmune chronic neurological disease. Currently, there are no effective serum biomarkers to verify MS diagnosis, to assess disease prognosis, and evaluate response to MS treatment. OBJECTIVE The present study is a preliminary assessment of irisin and nesfatin-1 serum levels in patients with relapsing- remitting MS (RRMS). METHODS A total of 86 participants, 42 patients with RRMS diagnosis and 44 healthy controls were included in the study. The serum irisin and nesfatin-1 parameters of the patients and control group members were analyzed. RESULTS Irisin and nesfatin-1 levels of the RRMS patients were significantly lower than the controls (z: -3.82, p<0.001; z: -4.79, p<0.001, respectively) The cut-off level of irisin is 10.390 (ng/mL) (sensitivity: 84.1%, specificity: 71.4%, AUC: 0.800), and the cut-off level of nestatin-1 is 7.155 (ng/mL) (sensitivity: 68.2%, specificity: 64.3%, AUC: 0.739) in the ROC analysis. For these cut-off levels in the case-control groups, the lower irisin and nesfatin-1 levels are the independent variables for MS patients (OR 9.723, 95%CI 2.884-32.785, p<0.001; OR 3.992, 95%CI 1.336-11.928, p<0.001) respectively. CONCLUSION The present study revealed lower irisin and nesfatin-1 levels in patients with RRMS. These findings suggest that the decreased levels of irisin and nesfatin-1 peptides may contribute to MS pathogenesis such as inflammation, oxidative stress, and apoptosis in MS, leading to demyelination, axonal damage with neuronal loss, and gliosis.
Collapse
Affiliation(s)
- Mustafa Altaş
- Necmettin Erbakan University, Meram Faculty of Medicine, Department of Neurology, Konya, Turkey
| | - Ali Ulvi Uca
- Necmettin Erbakan University, Meram Faculty of Medicine, Department of Neurology, Konya, Turkey
| | - Turan Akdağ
- Necmettin Erbakan University, Meram Vocational School, Konya, Turkey
| | - Faruk Ömer Odabaş
- University of Health Sciences, Konya City Hospital, Department of Neurology, Konya, Turkey
| | - Osman Serhat Tokgöz
- Necmettin Erbakan University, Meram Faculty of Medicine, Department of Neurology, Konya, Turkey
| |
Collapse
|
9
|
Liu M, Jiao Q, Du X, Bi M, Chen X, Jiang H. Potential Crosstalk Between Parkinson's Disease and Energy Metabolism. Aging Dis 2021; 12:2003-2015. [PMID: 34881082 PMCID: PMC8612621 DOI: 10.14336/ad.2021.0422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/22/2021] [Indexed: 01/22/2023] Open
Abstract
Parkinson's disease (PD) is characterized by the accumulation of alpha-synuclein (α-Syn) in the substantia nigra (SN) and the degeneration of nigrostriatal dopaminergic (DAergic) neurons. Some studies have reported that the pathology of PD originates from the gastrointestinal (GI) tract, which also serves as an energy portal, and develops upward along the neural pathway to the central nervous system (CNS), including the dorsal motor nucleus of vagus (DMV), SN, and hypothalamus, which are also involved in energy metabolism control. Therefore, we discuss the alterations of nuclei that regulate energy metabolism in the development of PD. In addition, due to their anti-inflammatory, antiapoptotic and antioxidative roles, metabolism-related peptides are involved in the progression of PD. Furthermore, abnormal glucose and lipid metabolism are common in PD patients and exacerbate the pathological changes in PD. Therefore, in this review, we attempt to explain the correlation between PD and energy metabolism, which may provide possible strategies for PD treatment.
Collapse
Affiliation(s)
- Meiqiu Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Dotania K, Tripathy M, Rai U. A comparative account of nesfatin-1 in vertebrates. Gen Comp Endocrinol 2021; 312:113874. [PMID: 34331938 DOI: 10.1016/j.ygcen.2021.113874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 12/17/2022]
Abstract
Nesfatin-1 was discovered as an anorexigenic peptide derived from proteolytic cleavage of the prepropeptide, nucleobindin 2 (NUCB2). It is widely expressed in central as well as peripheral tissues and is known to have pleiotropic effects such as regulation of feeding, reproduction, cardiovascular functions and maintenance of glucose homeostasis. In order to execute its multifaceted role, nesfatin-1 employs diverse signaling pathways though its receptor has not been identified till date. Further, nesfatin-1 is reported to be under the regulatory effect of feeding state, nutritional status as well as several metabolic and reproductive hormones. This peptide has also been associated with variety of human diseases, especially metabolic, reproductive, cardiovascular and mental disorders. The current review is aimed to present a consolidated picture and highlight lacunae for further investigation in order to develop a deeper comprehensive understanding on physiological significance of nesfatin-1 in vertebrates.
Collapse
Affiliation(s)
| | - Mamta Tripathy
- Department of Zoology, Kalindi College, University of Delhi, Delhi 110008, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
11
|
Cheng Y, Liu J, Ling Z. Short-chain fatty acids-producing probiotics: A novel source of psychobiotics. Crit Rev Food Sci Nutr 2021; 62:7929-7959. [PMID: 33955288 DOI: 10.1080/10408398.2021.1920884] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Psychobiotics-live microorganisms with potential mental health benefits, which can modulate the microbiota-gut-brain-axis via immune, humoral, neural, and metabolic pathways-are emerging as novel therapeutic options for the effective treatment of psychiatric disorders Recently, microbiome studies have identified numerous putative psychobiotic strains, of which short-chain fatty acids (SCFAs) producing bacteria have attracted special attention from neurobiologists. Recent studies have highlighted that SCFAs-producing bacteria such as Lactobacillus, Bifidobacterium and Clostridium have a very specific function in various psychiatric disorders, suggesting that these bacteria can be potential novel psychobiotics. SCFAs, potential mediators of microbiota-gut-brain axis, might modulate function of neurological processes. While the specific roles and mechanisms of SCFAs-producing bacteria of microbiota-targeted interventions on neuropsychiatric disease are largely unknown. This Review summarizes existing knowledge on the neuroprotective effects of the SCFAs-producing bacteria in neurological disorders via modulating microbiota-gut-brain axis and illustrate their possible mechanisms by which SCFAs-producing bacteria may act on these disorders, which will shed light on the SCFAs-producing bacteria as a promising novel source of psychobiotics.
Collapse
Affiliation(s)
- Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Institute of Microbe & Host Health, Linyi University, Linyi, Shandong, China
| |
Collapse
|
12
|
Chen H, Li X, Ma H, Zheng W, Shen X. Reduction in Nesfatin-1 Levels in the Cerebrospinal Fluid and Increased Nigrostriatal Degeneration Following Ventricular Administration of Anti-nesfatin-1 Antibody in Mice. Front Neurosci 2021; 15:621173. [PMID: 33613183 PMCID: PMC7890421 DOI: 10.3389/fnins.2021.621173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Nesfatin-1 is one of several brain-gut peptides that have a close relationship with the central dopaminergic system. Our previous studies have shown that nesfatin-1 is capable of protecting nigral dopaminergic neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. A recent study also revealed a reduced blood level of nesfatin-1 in patients with Parkinson’s disease (PD). The current study was designed to investigate whether reduced nesfatin-1 in cerebrospinal fluid (CSF) induces nigrostriatal system degeneration. An intra-cerebroventricular (ICV) injection technique was used to administer anti-nesfatin-1 antibody directly into the lateral ventricle of the brain. Enzyme-linked immunosorbent assay (ELISA) results showed that ICV injection of anti-nesfatin-1 antibody into the lateral ventricle of the brain once daily for 2 weeks caused a significant reduction in nesfatin-1 levels in the CSF (93.1%). Treatment with anti-nesfatin-1 antibody resulted in a substantial loss (23%) of TH-positive (TH+) dopaminergic neurons in the substantia nigra pars compacta (SNpc), as shown by immunofluorescence staining, a depletion in dopamine and its metabolites in the striatum detected by high-performance liquid chromatography (HPLC), and obvious nuclear shrinkage and mitochondrial lesions in dopaminergic neurons in the SNpc detected by transmission electron microscopy (TEM). Furthermore, the results from our Western blot and ELISA experiments demonstrated that anti-nesfatin-1 antibody injection induced an upregulation of caspase-3 activation, increased the expression of p-ERK, and elevated brain-derived neurotrophic factor (BDNF) levels in the SNpc. Taken together, these observations suggest that reduced nesfatin-1 in the brain may induce nigrostriatal dopaminergic system degeneration; this effect may be mediated via mitochondrial dysfunction-related apoptosis. Our data support a role of nesfatin-1 in maintaining the normal physiological function of the nigrostriatal dopaminergic system.
Collapse
Affiliation(s)
- Huanhuan Chen
- Department of Epidemiology and Health Statistics, Medical School of Qingdao University, Qingdao, China
| | - Xuelian Li
- Department of Epidemiology and Health Statistics, Medical School of Qingdao University, Qingdao, China
| | - Hui Ma
- Department of Epidemiology and Health Statistics, Medical School of Qingdao University, Qingdao, China
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
| | - Xiaoli Shen
- Department of Epidemiology and Health Statistics, Medical School of Qingdao University, Qingdao, China.,School of Health Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
13
|
Sun J, Li H, Jin Y, Yu J, Mao S, Su KP, Ling Z, Liu J. Probiotic Clostridium butyricum ameliorated motor deficits in a mouse model of Parkinson's disease via gut microbiota-GLP-1 pathway. Brain Behav Immun 2021; 91:703-715. [PMID: 33148438 DOI: 10.1016/j.bbi.2020.10.014] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 12/16/2022] Open
Abstract
A connection between gut microbiota and Parkinson's disease (PD) indicates that dysbiosis of the gut microbiota might represent a risk factor for PD. Microbiota-targeted interventions, including probiotic Clostridium butyricum (Cb), have been recently shown to have favorable effects in PD by regulating microbiota-gut-brain axis. However, the potential beneficial roles and its mechanisms of Cb on PD were still unknown. Male C57BL/6 mice were subjected to a PD model-induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and were treated intragastrically with Cb for 4 weeks. The motor functions were assessed by a series of behavioral tests including pole test, beam walking teat, forced swimming test and open field test. The dopaminergic neuron loss, synaptic plasticity and microglia activation, as well as the levels of colonic glucagon-like peptide-1 (GLP-1), colonic G protein-coupled receptors GPR41/43 and cerebral GLP-1 receptors were assessed. Gut microbial composition was assessed by 16S rRNA sequencing analysis. Our results showed that oral administration of Cb could improve motor deficits, dopaminergic neuron loss, synaptic dysfunction and microglia activation in the MPTP-induced mice. Meanwhile, Cb treatment could reverse the dysbiosis of gut microbiota and the decreased levels of colonic GLP-1, colonic GPR41/43 and cerebral GLP-1 receptor in the MPTP-induced mice. These findings indicated that the neuroprotective mechanism of Cb on PD might be related to the improvement of abnormal gut microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Jing Sun
- Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Haijun Li
- Department of Neurology, Taizhou Second People's Hospital, Taizhou, Zhejiang 317000, China
| | - Yangjie Jin
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiaheng Yu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shiyin Mao
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Kuan-Pin Su
- Department of Psychiatry and Mind-Body Interface Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.
| | - Jiaming Liu
- Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
14
|
Abstract
Nesfatin-1 was identified as a satiety factor involved in the regulation of metabolism. Altered levels of circulating nesfatin-1 had been observed in a variety of diseases characterized by energy imbalance. However, there was no published data about nesfatin-1 levels in acromegaly.We evaluated serum nesfatin-1 levels in 13 patients with acromegaly at baseline and postoperatively, and in 21 age- and body mass index (BMI)-matched healthy subjects.Compared with the healthy subjects, patients with acromegaly had significantly increased levels of serum insulin, high-density lipoprotein cholesterol, triglyceride, and growth hormone (GH). Moreover, the acromegaly group had nesfatin-1 levels higher than controls (1.96 ± 0.56 ng/mL vs 0.61 ± 0.10 ng/mL, P = .004). There was a positive correlation of serum nesfatin-1 levels with diastolic blood pressure (r = 0.579, P = .038) and homeostasis model assessment of insulin resistance (HOMA-IR) (r = 0.598, P = .031) in patients with acromegaly. While a successful surgery decreased serum GH levels, the serum nesfatin-1 levels did not change in acromegaly (P = .965). At last, we compared serum GH/nesfatin-1 levels with predictive markers for aggressive behaviors in pituitary adenomas. There was no relationship between serum nesfatin-1 levels and tumor's size, Ki-67 index, mutant p53, or MGMT proteins. However, increased serum GH levels were positively correlated with tumors' size (P = .023) and mutant p53 proteins expression (P = .028).Circulating nesfatin-1 was increased in acromegaly, which was involved in metabolism regulation.
Collapse
|
15
|
Qiu X, Huang Y, Cen L, Chen X, Lu T, Shen Y, Xu P, Wang J, Xiao Y. Association of GLP-1 receptor gene polymorphisms with sporadic Parkinson's disease in Chinese Han population. Neurosci Lett 2020; 728:135004. [PMID: 32334107 DOI: 10.1016/j.neulet.2020.135004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/08/2020] [Accepted: 04/19/2020] [Indexed: 10/24/2022]
Abstract
The Glucagon Like Peptide 1 Receptor (GLP1R) plays a critical role in selective death of dopaminergic neurons and development of Parkinson's disease (PD). However, little is known about genetic associations of GLP1R gene polymorphisms with PD susceptibility. Therefore, this study aimed to verify whether GLP1R polymorphisms contribute to PD risk in a Chinese Han population. We recruited 518 individuals comprising 259 sporadic PD patients and 259 healthy controls. All of the participants were genotyped for two possibly functional polymorphisms located in GLP1R (rs3765467 and rs6923761) using the Sequenom MassARRAY platform. The frequency of the rs3765467 GG genotype was significantly higher in the PD group compared with that in the control group (OR = 1.444, 95 % CI: 1.015-2.055, p = 0.041). Subgroup analysis revealed that male patients and late-onset patients with the rs3765467 GG genotype suffered an increased risk of PD compared with healthy controls (p = 0.021 and p = 0.012, respectively). However, the genotype and allele frequencies for rs6923761 were not significantly different between PD and healthy subjects. Our results indicate that the GLP1R rs3765467 GG genotype is a potential risk factor for PD, especially for male and late-onset PD patients in the Chinese Han population.
Collapse
Affiliation(s)
- Xiaohui Qiu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanning Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Luan Cen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tanli Lu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuefei Shen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Yousheng Xiao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|