1
|
Ziaka M, Exadaktylos A. Gut-derived immune cells and the gut-lung axis in ARDS. Crit Care 2024; 28:220. [PMID: 38965622 PMCID: PMC11225303 DOI: 10.1186/s13054-024-05006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
The gut serves as a vital immunological organ orchestrating immune responses and influencing distant mucosal sites, notably the respiratory mucosa. It is increasingly recognized as a central driver of critical illnesses, with intestinal hyperpermeability facilitating bacterial translocation, systemic inflammation, and organ damage. The "gut-lung" axis emerges as a pivotal pathway, where gut-derived injurious factors trigger acute lung injury (ALI) through the systemic circulation. Direct and indirect effects of gut microbiota significantly impact immune responses. Dysbiosis, particularly intestinal dysbiosis, termed as an imbalance of microbial species and a reduction in microbial diversity within certain bodily microbiomes, influences adaptive immune responses, including differentiating T regulatory cells (Tregs) and T helper 17 (Th17) cells, which are critical in various lung inflammatory conditions. Additionally, gut and bone marrow immune cells impact pulmonary immune activity, underscoring the complex gut-lung interplay. Moreover, lung microbiota alterations are implicated in diverse gut pathologies, affecting local and systemic immune landscapes. Notably, lung dysbiosis can reciprocally influence gut microbiota composition, indicating bidirectional gut-lung communication. In this review, we investigate the pathophysiology of ALI/acute respiratory distress syndrome (ARDS), elucidating the role of immune cells in the gut-lung axis based on recent experimental and clinical research. This exploration aims to enhance understanding of ALI/ARDS pathogenesis and to underscore the significance of gut-lung interactions in respiratory diseases.
Collapse
Affiliation(s)
- Mairi Ziaka
- Clinic of Geriatric Medicine, Center of Geriatric Medicine and Rehabilitation, Kantonsspital Baselland, Bruderholz, Switzerland.
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Qianqian Z, Gui M, Min Y, Qingfeng Z, Xiufen X, Zejun F, Yahong L, Mingwei Y. Effect of ω-9MUFAs in Fat Emulsion on Serum Interleukin-6 in Rats with Lipopolysaccharide-induced Lung Injury. Comb Chem High Throughput Screen 2024; 27:877-884. [PMID: 37464819 DOI: 10.2174/1386207326666230718154641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023]
Abstract
AIM This study aimed to investigate how ω-9 MUFAs in fat emulsion affect serum IL- 6 levels in rats with lipopolysaccharide (LPS)-induced lung injury. BACKGROUND Research suggests that acute lung injury (ALI) develops acute respiratory distress syndrome (ARDS) due to the activation of many inflammatory factors. ALI may be treated by reducing inflammation. Fat emulsion is used in parenteral nutrition for critically ill patients to regulate the body's inflammatory response. It is mostly made up of ω-9 MUFAs (Clinoleic), which can regulate the inflammatory response. OBJECTIVE The effect of ω-9MUFAs on the secretion of IL-6 in ALI rats was studied in order to provide a basis for the rational use of fat emulsion in clinical practice and provide new ideas for the diagnosis and treatment of ALI. METHODS The control, model, and -9MUFAs groups consisted of 18 female Sprageue-Dawley (SD) young rats (180 ± 20 g). The SD young rats received normal saline and were not operated. LPS-induced ALI animals received tail vein injections of normal saline. SD young rats were first triggered with acute lung injury by LPS (3 mg/kg) and then injected with 3 mg/kg of ω-9MUFAs via the tail vein. The expression levels of IL-6, an activator of signal transduction transcription 3 (STAT3), transforming growth factor-β (TGF-β), and glycoprotein 130 (GP130) in serum and lung tissues were determined by ELISA and Western blot methods. RESULTS Compared with the model group, the survival rate of rats in the ω-9 MUFAs group was significantly increased, and the difference was statistically significant (p<0.05). Compared with the model group, the lung pathology of rats in the ω-9 MUFAs group was significantly improved, and the expression levels of IL-6, TGF-β1, GP130, IL-1 and other proteins were significantly decreased. The difference was statistically significant (p<0.05). CONCLUSION In LPS-induced lung injury, ω-9MUFAs may alleviate symptoms by inhibiting the IL-6/GP130/STAT3 pathway.
Collapse
Affiliation(s)
- Zheng Qianqian
- Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, Taizhou, China
| | - Mei Gui
- Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, Taizhou, China
| | - Yang Min
- Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, Taizhou, China
| | - Zhang Qingfeng
- Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, Taizhou, China
| | - Xu Xiufen
- Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, Taizhou, China
| | - Fang Zejun
- Central Laboratory, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, Taizhou, China
| | - Li Yahong
- Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, Taizhou, China
| | - Ye Mingwei
- Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, Taizhou, China
| |
Collapse
|
3
|
Saki N, Javan M, Moghimian-Boroujeni B, Kast RE. Interesting effects of interleukins and immune cells on acute respiratory distress syndrome. Clin Exp Med 2023; 23:2979-2996. [PMID: 37330918 DOI: 10.1007/s10238-023-01118-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a medical condition characterized by widespread inflammation in the lungs with consequent proportional loss of gas exchange function. ARDS is linked with severe pulmonary or systemic infection. Several factors, including secretory cytokines, immune cells, and lung epithelial and endothelial cells, play a role in the development and progression of this disease. The present study is based on Pubmed database information (1987-2022) using the words "Acute respiratory distress syndrome", "Interleukin", "Cytokines" and "Immune cells". Cytokines and immune cells play an important role in this disease, with particular emphasis on the balance between pro-inflammatory and anti-inflammatory factors. Neutrophils are one of several important mediators of Inflammation, lung tissue destruction, and malfunction during ARDS. Some immune cells, such as macrophages and eosinophils, play a dual role in releasing inflammatory mediators, recruitment inflammatory cells and the progression of ARDS, or releasing anti-inflammatory mediators, clearing the lung of inflammatory cells, and helping to improve the disease. Different interleukins play a role in the development or inhibition of ARDS by helping to activate various signaling pathways, helping to secrete other inflammatory or anti-inflammatory interleukins, and playing a role in the production and balance between immune cells involved in ARDS. As a result, immune cells and, inflammatory cytokines, especially interleukins play an important role in the pathogenesis of this disease Therefore, understanding the relevant mechanisms will help in the proper diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Javan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Bahareh Moghimian-Boroujeni
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, 61357-15794, Iran.
| | | |
Collapse
|
4
|
Liang TY, Lu LH, Tang SY, Zheng ZH, Shi K, Liu JQ. Current status and prospects of basic research and clinical application of mesenchymal stem cells in acute respiratory distress syndrome. World J Stem Cells 2023; 15:150-164. [PMID: 37180997 PMCID: PMC10173811 DOI: 10.4252/wjsc.v15.i4.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common and clinically devastating disease that causes respiratory failure. Morbidity and mortality of patients in intensive care units are stubbornly high, and various complications severely affect the quality of life of survivors. The pathophysiology of ARDS includes increased alveolar-capillary membrane permeability, an influx of protein-rich pulmonary edema fluid, and surfactant dysfunction leading to severe hypoxemia. At present, the main treatment for ARDS is mechanical treatment combined with diuretics to reduce pulmonary edema, which primarily improves symptoms, but the prognosis of patients with ARDS is still very poor. Mesenchymal stem cells (MSCs) are stromal cells that possess the capacity to self-renew and also exhibit multilineage differentiation. MSCs can be isolated from a variety of tissues, such as the umbilical cord, endometrial polyps, menstrual blood, bone marrow, and adipose tissues. Studies have confirmed the critical healing and immunomodulatory properties of MSCs in the treatment of a variety of diseases. Recently, the potential of stem cells in treating ARDS has been explored via basic research and clinical trials. The efficacy of MSCs has been shown in a variety of in vivo models of ARDS, reducing bacterial pneumonia and ischemia-reperfusion injury while promoting the repair of ventilator-induced lung injury. This article reviews the current basic research findings and clinical applications of MSCs in the treatment of ARDS in order to emphasize the clinical prospects of MSCs.
Collapse
Affiliation(s)
- Tian-Yu Liang
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, China
| | - Li-Hai Lu
- Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Si-Yu Tang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Zi-Hao Zheng
- Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Kai Shi
- Department of Respiratory Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang Province, China
| | - Jing-Quan Liu
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, China.
| |
Collapse
|
5
|
Fukui M, Harada N, Takamochi K, Hayashi T, Matsunaga T, Hattori A, Kawagoe I, Suzuki K. The balance between lung regulatory T cells and Th17 cells is a risk indicator for the acute exacerbation of interstitial lung disease after surgery: a case-control study. BMC Pulm Med 2023; 23:70. [PMID: 36814205 PMCID: PMC9945823 DOI: 10.1186/s12890-023-02362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Acute exacerbation (AE) of interstitial lung disease (ILD) (AE-ILD) is a life-threatening condition and the leading cause of 30-day mortality among patients who underwent pulmonary resection for lung cancer in Japan. This study was conducted to clarify the characteristics of the immune environment of lung tissues before the onset of AE-ILD. METHODS This retrospective matched case-control study compared the immune phenotypes of helper T cells in lung tissues from patients with and without AE-ILD after surgery. In total, 135 patients who underwent surgical resection for lung cancer and were pathologically diagnosed with idiopathic interstitial pneumonia (IIP) at our institute between 2009 and 2018 were enrolled. Thirteen patients with AE-IIP and 122 patients without AE (non-AE) were matched using a propensity score analysis, and 12 cases in each group were compared. We evaluated the percentages of T helper (Th)1, Th2, Th17, regulatory T (Treg), and CD8 cells in CD3+ T cells and the Th1:Th2, Th17:Treg, and CD8:Treg ratios in patients with AE by immunostaining of lung tissues in the non-tumor area. RESULTS We found a significant difference in the lung Th17:Treg ratio between the AE and non-AE groups (1.47 and 0.79, p = 0.041). However, we detected no significant differences in the percentages of lung Th1 (21.3% and 29.0%), Th2 (34.2% and 42.7%), Th17 (22.3% and 21.6%), Treg (19.6% and 29.1%), and CD8+ T cells (47.2% and 42.2%) of CD3+ T cells between the AE and non-AE groups. CONCLUSION The ratio of Th17:Treg cells in lung tissues was higher in participants in the AE group than in those in the non-AE group. CLINICAL TRIAL REGISTRATION This study was approved by the ethics committee of our institute (2,016,095).
Collapse
Affiliation(s)
- Mariko Fukui
- Department of General Thoracic Surgery, Juntendo University School of Medicine, 1-3, Hondo 3-chome, Bunkyo-ku, 113-8431, Tokyo, Japan.
| | - Norihiro Harada
- grid.258269.20000 0004 1762 2738Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuya Takamochi
- grid.258269.20000 0004 1762 2738Department of General Thoracic Surgery, Juntendo University School of Medicine, 1-3, Hondo 3-chome, Bunkyo-ku, 113-8431 Tokyo, Japan
| | - Takuo Hayashi
- grid.258269.20000 0004 1762 2738Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takeshi Matsunaga
- grid.258269.20000 0004 1762 2738Department of General Thoracic Surgery, Juntendo University School of Medicine, 1-3, Hondo 3-chome, Bunkyo-ku, 113-8431 Tokyo, Japan
| | - Aritoshi Hattori
- grid.258269.20000 0004 1762 2738Department of General Thoracic Surgery, Juntendo University School of Medicine, 1-3, Hondo 3-chome, Bunkyo-ku, 113-8431 Tokyo, Japan
| | - Izumi Kawagoe
- grid.258269.20000 0004 1762 2738Anesthesiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kenji Suzuki
- grid.258269.20000 0004 1762 2738Department of General Thoracic Surgery, Juntendo University School of Medicine, 1-3, Hondo 3-chome, Bunkyo-ku, 113-8431 Tokyo, Japan
| |
Collapse
|
6
|
IL-33 Deficiency Attenuates Lung Inflammation by Inducing Th17 Response and Impacting the Th17/Treg Balance in LPS-Induced ARDS Mice via Dendritic Cells. J Immunol Res 2022; 2022:9543083. [PMID: 36570798 PMCID: PMC9788894 DOI: 10.1155/2022/9543083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022] Open
Abstract
Objectives The characteristic pathophysiological feature of acute respiratory distress syndrome (ARDS) is a dysregulated inflammatory response. T helper 17 (Th17) cells in the lung are inflammatory cells that contribute to pulmonary inflammatory cascades. In addition, Th17/regulatory T cells (Treg cells) also play an important role in the inflammatory process. Dendritic cells (DCs) can regulate the differentiation of CD4+ T cells, including Th17 and Treg cells. Recent evidence revealed that interleukin-33 (IL-33) signaling could activate and mature DCs. Therefore, the aim of this study was to investigate the effects of IL-33 on inflammation and immunoregulation by inducing the Th17 response and influencing the Th17/Treg balance in LPS-induced ARDS. Methods IL-33 gene knockout mice and the administration of recombinant mouse IL-33 (rmIL-33) were used to investigate the role of IL-33 and the underlying mechanisms in an LPS-induced ARDS model. Hematoxylin and eosin (H&E) staining, wet/dry (W/D) weight ratios, cell counts, and the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-17 (IL-17), and interleukin-10 (IL-10) in bronchoalveolar lavage fluid (BALF) were investigated. The levels of IL-33, orphan nuclear receptor gamma t (RORγt), and forkhead transcription factor protein 3 (FOXP3) protein in lung tissue were evaluated by Western blotting. The mRNA expression levels of IL-33 and RORγt were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Th17 and Treg cell frequencies were determined by flow cytometry. The levels of IL-6 in the supernatant in a dendritic cell culture system were examined by ELISA. Results Increased expression of IL-33 was observed in mice with LPS-induced ARDS. IL-33 deficiency significantly inhibited inflammation and attenuated LPS-induced ARDS, whereas pretreatment with rmIL-33 aggravated pulmonary inflammatory response. Furthermore, depletion of IL-33 inhibited Th17 cells, significantly decreased RORγt mRNA and protein expression and IL-17 levels in BALF, and led to less differentiation of T cells into Th17 cells than Treg cells. Moreover, IL-33-/- DCs secreted less IL-6 and IL-23 than normal control DCs. Conclusion IL-33 deficiency alleviated lung injury in the LPS-induced ARDS model, which was closely related to suppressing Th17 responses and regulating the Th17/Treg balance. The expansion of Th17 cells and imbalance in Th17/Treg cells may be associated with IL-6 and IL-23 secreted from IL-33-activated DCs.
Collapse
|
7
|
Mesenchymal Stem Cell-Secreted TGF-β1 Restores Treg/Th17 Skewing Induced by Lipopolysaccharide and Hypoxia Challenge via miR-155 Suppression. Stem Cells Int 2022; 2022:5522828. [PMID: 35313652 PMCID: PMC8934213 DOI: 10.1155/2022/5522828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Regulatory T cell (Treg)/T helper (Th) 17 skewing is important in the development of acute respiratory distress syndrome (ARDS). Immunomodulatory effects of mesenchymal stem cell- (MSC-) secreted transforming growth factor- (TGF-) β1 on CD4+ T cells are environment-sensitive and lack discussion in hypoxic and inflammatory conditions. Methods. Mouse splenic CD4+ T cells were precoated with anti-CD3 (5 μg/ml) and anti-CD28 (2 μg/ml) overnight. RAW264.7 cells were added as antigen-presenting cells (APCs). T cells with and without RAW264.7 cells were treated with various LPS concentrations of 0, 10, 100, and 1000 ng/ml or/and at hypoxia condition of 5% O2. Based on LPS (100 ng/ml) and hypoxia conditions (5% O2) as stimuli, MSCs were set as direct coculture or indirect coculture by transwell system. Anti-TGF-β1 neutralization antibody was added to explore the role of TGF-β1 among the soluble factors secreted by MSCs; miR-155 overexpression of CD4+ T cells was performed by transfection, and then, cells were added to the MSC-CD4+ T cell coculture system in hypoxic- and LPS-stimulated condition. After 48 hours, cells or supernatants were collected for detection of frequency of Treg and Th17 subsets, CD4+ T cell apoptosis and proliferation capacity assay by flow cytometry, secretion of INF-γ, IL-17A, IL-21, TGF-β1, and IL-10 by ELISA, and levels of miR-155, Rorc, Foxp3, and Ptpn2 mRNA expression of CD4+ T cells by RT-PCR. Results. MSCs could restore skewed Treg/Th17 induced by LPS and hypoxia compared to groups without MSCs with increased secretion of TGF-β1, IL-10, and IL-17A (
) and attenuate the increased expression of miR-155 in CD4+ T cells via cell-to-cell contact mechanism while TGF-β1 neutralization significantly inhibited the effects of MSCs restoring skewed Treg/Th17 and abolished its effect on miR-155 expression in CD4+ T cells. Conclusions. These findings suggested miR-155 suppression of CD4+ T cells mediated MSC-secreted TGF-β1 modulating skewed Treg/Th17 induced by LPS-hypoxia challenge, providing evidence when proposing future T lymphocyte-targeted cell therapy in a specific condition.
Collapse
|
8
|
Tung ML, Tan B, Cherian R, Chandra B. Anti-phospholipid syndrome and COVID-19 thrombosis: connecting the dots. Rheumatol Adv Pract 2021; 5:rkaa081. [PMID: 33615129 PMCID: PMC7882149 DOI: 10.1093/rap/rkaa081] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
As the coronavirus disease 2019 (COVID-19) pandemic, which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is spreading rapidly worldwide, it has emerged as a leading cause of mortality, resulting in >1 million deaths over the past 10 months. The pathophysiology of COVID-19 remains unclear, posing a great challenge to the medical management of patients. Recent studies have reported an unusually high prevalence of thromboembolic events in COVID-19 patients, although the mechanism remains elusive. Several studies have reported the presence of aPLs in COVID-19 patients. We have noticed similarities between COVID-19 and APS, which is an autoimmune prothrombotic disease that is often associated with an infective aetiology. Molecular mimicry and endothelial dysfunction could plausibly explain the mechanism of thrombogenesis in acquired APS. In this review, we discuss the clinicopathological similarities between COVID-19 and APS, and the potential role of therapeutic targets based on the anti-phospholipid model for COVID-19 disease.
Collapse
Affiliation(s)
- Moon Ley Tung
- Department of Hematology and Oncology, National University Cancer Institute
- Yong Loo Lin School of Medicine, National University of Singapore
| | - Bryce Tan
- Department of Medicine, National University Hospital
| | - Robin Cherian
- Yong Loo Lin School of Medicine, National University of Singapore
- Department of Cardiology, National University Heart Centre Singapore
| | - Bharatendu Chandra
- Yong Loo Lin School of Medicine, National University of Singapore
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
| |
Collapse
|
9
|
Idiopathic CD4 T Cell Lymphocytopenia: A Case of Overexpression of PD-1/PDL-1 and CTLA-4. Infect Dis Rep 2021; 13:72-81. [PMID: 33450836 PMCID: PMC7839055 DOI: 10.3390/idr13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 11/29/2022] Open
Abstract
Idiopathic CD4 T cell lymphocytopenia (ICL) is a rare entity characterized by CD4 T cell count of <300 cells/mm3 along with opportunistic infection for which T cell marker expression remains to be fully explored. We report an ICL case for which T lymphocyte phenotype and its costimulatory molecules expression was analyzed both ex vivo and after overnight stimulation through CD3/CD28. The ICL patient was compared to five healthy controls. We observed higher expression of inhibitory molecules PD-1/PDL-1 and CTLA-4 on CD4 T cells and increased regulatory T cells in ICL, along with high activation and low proliferation of CD4 T cells. The alteration in the expression of both the costimulatory pathway and the apoptotic pathway might participate to down-regulate both CD4 T cell functions and numbers observed in ICL.
Collapse
|
10
|
Norton DL, Ceppe A, Tune MK, McCravy M, Devlin T, Drummond MB, Carson SS, Vincent BG, Hagan RS, Dang H, Doerschuk CM, Mock JR. Bronchoalveolar Tregs are associated with duration of mechanical ventilation in acute respiratory distress syndrome. J Transl Med 2020; 18:427. [PMID: 33176790 PMCID: PMC7656499 DOI: 10.1186/s12967-020-02595-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/29/2020] [Indexed: 02/02/2023] Open
Abstract
Background Foxp3+ regulatory T cells (Tregs) play essential roles in immune homeostasis and repair of damaged lung tissue. We hypothesized that patients whose lung injury resolves quickly, as measured by time to liberation from mechanical ventilation, have a higher percentage of Tregs amongst CD4+ T cells in either airway, bronchoalveolar lavage (BAL) or peripheral blood samples. Methods We prospectively enrolled patients with ARDS requiring mechanical ventilation and collected serial samples, the first within 72 h of ARDS diagnosis (day 0) and the second 48–96 h later (day 3). We analyzed immune cell populations and cytokines in BAL, tracheal aspirates and peripheral blood, as well as cytokines in plasma, obtained at the time of bronchoscopy. The study cohort was divided into fast resolvers (FR; n = 8) and slow resolvers (SR; n = 5), based on the median number of days until first extubation for all participants (n = 13). The primary measure was the percentage of CD4+ T cells that were Tregs. Results The BAL of FR contained more Tregs than SR. This finding did not extend to Tregs in tracheal aspirates or blood. BAL Tregs expressed more of the full-length FOXP3 than a splice variant missing exon 2 compared to Tregs in simultaneously obtained peripheral blood. Conclusion Tregs are present in the bronchoalveolar space during ARDS. A greater percentage of CD4+ cells were Tregs in the BAL of FR than SR. Tregs may play a role in the resolution of ARDS, and enhancing their numbers or functions may be a therapeutic target.
Collapse
Affiliation(s)
- Dustin L Norton
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Section of Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Agathe Ceppe
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Miriya K Tune
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew McCravy
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Thomas Devlin
- Department of Respiratory Care, University of North Carolina, Chapel Hill, NC, USA
| | - M Bradley Drummond
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Shannon S Carson
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Benjamin G Vincent
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.,Division of Hematology/Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Robert S Hagan
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Claire M Doerschuk
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Jason R Mock
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA. .,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA. .,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA. .,Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina School of Medicine, Marsico Hall 7203, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
11
|
Mesenchymal stem cells alleviate LPS-induced acute lung injury by inhibiting the proinflammatory function of Ly6C + CD8 + T cells. Cell Death Dis 2020; 11:829. [PMID: 33024074 PMCID: PMC7538431 DOI: 10.1038/s41419-020-03036-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
Abstract
Systemic inflammatory processes, including alveolar injury, cytokine induction, and neutrophil accumulation, play key roles in the pathophysiology of acute lung injury (ALI). The immunomodulatory effects of mesenchymal stem cells (MSCs) can contribute to the treatment of inflammatory disorders. In previous studies, the focus was on innate immune cells and the effects of MSCs on ALI through CD8+ T cells remain unclear. In the present study, lipopolysaccharide (LPS) was used to induce ALI in mice. ALI mice were treated with MSCs via intratracheal instillation. Survival rate, histopathological changes, protein levels, total cell count, cytokine levels, and chemokine levels in alveolar lavage fluid were used to determine the efficacy of MSCs. Mass cytometry and single-cell RNA sequencing (scRNA-seq) were used to characterize the CD8+ T cells in the lungs. Ly6C- CD8+ T cells are prevalent in normal mice, whereas a specialized effector phenotype expressing a high level of Ly6C is predominant in advanced disease. MSCs significantly mitigated ALI and improved survival. MSCs decreased the infiltration of CD8+ T cells, especially Ly6C+ CD8+ T cells into the lungs. Mass cytometry revealed that CD8+ T cells expressing high Ly6C and CXCR3 levels caused tissue damage in the lungs of ALI mice, which was alleviated by MSCs. The scRNA-seq showed that Ly6C+ CD8+ T cells exhibited a more activated phenotype and decreased expression of proinflammatory factors that were enriched the most in immune chemotaxis after treatment with MSCs. We showed that CD8+ T cells play an important role in MSC-mediated ALI remission, and both infiltration quantity and proinflammatory function were inhibited by MSCs, indicating a potential mechanism for therapeutic intervention.
Collapse
|
12
|
Chen Y, Huang B, Zhao Y, Qi D, Wang D. Increased p300/CBP expression in acute respiratory distress syndrome is associated with interleukin-17 and prognosis. CLINICAL RESPIRATORY JOURNAL 2020; 14:791-799. [PMID: 32298537 DOI: 10.1111/crj.13197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 01/11/2023]
Abstract
PURPOSE Transcription co-activator p300/CBP, a histone acetyltransferase, has a central role in tumours, inflammation and neurodegenerative diseases. We investigated the effect of p300/CBP and its association with various IL-17-related indicators and prognosis in patients with acute respiratory distress syndrome (ARDS). MATERIALS AND METHODS We enrolled 45 adult ARDS patients who were followed for 28 days and 22 healthy controls. The mRNA expression of p300, CBP, RORγt and Foxp3 and the plasma levels of several cytokines were measured. RESULT The mRNA levels of p300, CBP and RORγt, and plasma concentration of IL-17, IL-6, were higher in acute ARDS patients (P < 0.05) compared with controls, and the mean levels of p300, CBP and IL-6 in non-survivors were higher than in survivors (P < 0.05). The expression of p300 was associated with the level of RORγt, IL-17 and disease prognosis. CONCLUSION The levels of p300, RORγt mRNA and plasma concentration of IL-6 and IL-17 in acute ARDS patients were increased compared with controls. Increased p300/CBP expression may be an independent risk factor for 28-day mortality in ARDS.
Collapse
Affiliation(s)
- Yan Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Respiratory and Critical Care Medicine, The Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Bin Huang
- Department of General Surgery, The Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Yan Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Di Qi
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daoxin Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Thomas G, Frederick E, Hausburg M, Goldberg L, Hoke M, Roshon M, Mains C, Bar-Or D. The novel immunomodulatory biologic LMWF5A for pharmacological attenuation of the "cytokine storm" in COVID-19 patients: a hypothesis. Patient Saf Surg 2020; 14:21. [PMID: 32431755 PMCID: PMC7220573 DOI: 10.1186/s13037-020-00248-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A common complication of viral pulmonary infections, such as in the ongoing COVID-19 pandemic, is a phenomenon described as a "cytokine storm". While poorly defined, this hyperinflammatory response results in diffuse alveolar damage. The low molecular weight fraction of commercial human serum albumin (LMWF5A), a novel biologic in development for osteoarthritis, demonstrates beneficial in vitro immunomodulatory effects complimentary to addressing inflammation, thus, we hypothesize that LMWF5A could improve the clinical outcomes of COVID-19 by attenuating hyperinflammation and the potential development of a cytokine storm. PRESENTATION OF THE HYPOTHESIS A variety of human in vitro immune models indicate that LMWF5A reduces the production of pro-inflammatory cytokines implicated in cytokine storm associated with COVID-19. Furthermore, evidence suggests LMWF5A also promotes the production of mediators required for resolving inflammation and enhances the barrier function of endothelial cultures. TESTING THE HYPOTHESIS A randomized controlled trial, to evaluate the safety and efficacy of nebulized LMWF5A in adults with Acute Respiratory Distress Syndrome (ARDS) secondary to COVID-19 infection, was developed and is currently under review by the Food and Drug Administration. IMPLICATIONS OF HYPOTHESIS If successful, this therapy may attenuate the cytokine storm observed in these patients and potentially reduce mortality, increase ventilation free days, improve oxygenation parameters and consequently lessen the burden on patients and the intensive care unit. CONCLUSIONS In conclusion, in vitro findings suggest that the immunomodulatory effects of LMWF5A make it a viable candidate for treating cytokine storm and restoring homeostasis to the immune response in COVID-19.
Collapse
Affiliation(s)
- Gregory Thomas
- Ampio Pharmaceuticals, Inc, 373 Inverness Pkwy #200, Englewood, CO 80112 USA
| | - Elizabeth Frederick
- Ampio Pharmaceuticals, Inc, 373 Inverness Pkwy #200, Englewood, CO 80112 USA
| | - Melissa Hausburg
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden, Englewood, CO 80113 USA
- Trauma Research Department, St. Anthony Hospital, 11600 W 2nd Pl, Lakewood, CO 80228 USA
- Trauma Research Department, Medical City Plano, 3901 W 15th St, Plano, TX 75075 USA
- Trauma Research Department, Penrose Hospital, 2222 N Nevada Ave, Colorado Springs, CO 80907 USA
- Trauma Research Department, Research Medical Center, 2316 E Meyer Blvd, Kansas City, MO 64132 USA
- Trauma Research Department, Wesley Medical Center, 550 N Hillside St, Wichita, KS 67214 USA
| | - Laura Goldberg
- Ampio Pharmaceuticals, Inc, 373 Inverness Pkwy #200, Englewood, CO 80112 USA
| | - Marshall Hoke
- Ampio Pharmaceuticals, Inc, 373 Inverness Pkwy #200, Englewood, CO 80112 USA
| | - Michael Roshon
- Emergency Department, Penrose Hospital, Colorado Springs, Colorado USA
| | | | - David Bar-Or
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden, Englewood, CO 80113 USA
- Trauma Research Department, St. Anthony Hospital, 11600 W 2nd Pl, Lakewood, CO 80228 USA
- Trauma Research Department, Medical City Plano, 3901 W 15th St, Plano, TX 75075 USA
- Trauma Research Department, Penrose Hospital, 2222 N Nevada Ave, Colorado Springs, CO 80907 USA
- Trauma Research Department, Research Medical Center, 2316 E Meyer Blvd, Kansas City, MO 64132 USA
- Trauma Research Department, Wesley Medical Center, 550 N Hillside St, Wichita, KS 67214 USA
- Department of Molecular Biology, Rocky Vista University, 8401 S Chambers Rd, Parker, CO 80134 USA
- Swedish Medical Center, 501 E. Hampden Ave. Rm 4-454, Englewood, CO 80013 USA
| |
Collapse
|
14
|
Halter S, Aimade L, Barbié M, Brisson H, Rouby JJ, Langeron O, Klatzmann D, Rosenzwajg M, Monsel A. T regulatory cells activation and distribution are modified in critically ill patients with acute respiratory distress syndrome: A prospective single-centre observational study. Anaesth Crit Care Pain Med 2020; 39:35-44. [DOI: 10.1016/j.accpm.2019.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 12/28/2022]
|
15
|
Aquaporin 4 Blockade Attenuates Acute Lung Injury Through Inhibition of Th17 Cell Proliferation in Mice. Inflammation 2020; 42:1401-1412. [PMID: 30945038 DOI: 10.1007/s10753-019-01002-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Acute lung injury (ALI) is a syndrome characterized by damage to the alveolar-capillary wall, pulmonary edema and recruitment of inflammatory cells. Previous studies have indicated that aquaporin 4 (AQP4) plays a key role in brain edema formation and resolution. However, the role of AQP4 in the development and progression of ALI is not clear and needs to be resolved. In our current study, mouse ALI was induced by intratracheal instillation of lipopolysaccharide (LPS) at a concentration of 30 mg/kg. For the inhibition of AQP4, 200 mg/kg of TGN-020 (Sigma, USA) was administered intraperitoneally every 6 h starting at 30 min before intratracheal instillation of LPS. The results of the present work indicate, for the first time, that mice treated with the AQP4 inhibitor TGN-020 had attenuated LPS-induced lung injury, reduced proinflammatory cytokine release (including IL-1α, IL-1β, IL-6, TNF-α, IL-23, and IL-17A), and an improved survival rate. Additionally, we found that the attenuated lung injury scores, increased survival rate, and decreased BALF total protein concentration in TGN-020-treated mice were all abrogated by rIL-17A administration. Furthermore, TGN-020 treatment downregulated the phosphorylation of PI3K and Akt, increased the expression of SOCS3, and decreased the expression of p-STAT3 and RORγt. In conclusion, inhibition of AQP4 by TGN-020 has a detectable protective effect against lung tissue injury induced by LPS, and this effect is associated with inhibition of IL-17A through the downregulation of the PI3K/Akt signaling pathway and upregulation of SOCS3 protein.
Collapse
|
16
|
Trent B, Fisher J, Soong L. Scrub Typhus Pathogenesis: Innate Immune Response and Lung Injury During Orientia tsutsugamushi Infection. Front Microbiol 2019; 10:2065. [PMID: 31555249 PMCID: PMC6742975 DOI: 10.3389/fmicb.2019.02065] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/22/2019] [Indexed: 01/28/2023] Open
Abstract
Scrub typhus is an understudied, potentially lethal disease caused by infection with Orientia tsutsugamushi. Despite causing an estimated 1 million cases per year and an increasing global presence, mechanisms of scrub typhus pathogenesis remain unclear. One of the most life-threatening conditions that can arise in scrub typhus patients is acute respiratory distress syndrome (ARDS). The development of ARDS is a complex process; some of its pathological hallmarks, including prolonged recruitment of inflammatory immune cells to the lung and vasculature damage, have been observed in humans and/or animal models of O. tsutsugamushi infection. Although different cell types and mechanisms may contribute to ARDS development during O. tsutsugamushi infection, this review highlights our current evidence of pulmonary endothelial activation and damage, the potential roles of neutrophils and macrophages in the lung, and the knowledge gaps in this field. Continued investigation of the lung microenvironment and cellular interactions will help elucidate disease pathogenesis and possible treatment during scrub typhus.
Collapse
Affiliation(s)
- Brandon Trent
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - James Fisher
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Lynn Soong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
17
|
IL-35 interferes with splenic T cells in a clinical and experimental model of acute respiratory distress syndrome. Int Immunopharmacol 2018; 67:386-395. [PMID: 30584968 PMCID: PMC8057607 DOI: 10.1016/j.intimp.2018.12.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/25/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening critical care syndrome with uncontrolled inflammation that is a central issue. Its main characteristic is inflammatory mediators and cytokines as well as agglutinating chemokines that injure target cells. Interleukin (IL)-35 is a newly identified IL-12 cytokine family member with structural similarities to other IL-12, IL-23, and IL-27 cytokines but unique immunological functions. How IL-35 functions in ARDS is unclear. The purpose of our study was to determine what role IL-35 played in the development of ARDS. Here we found serum IL-35 concentrations were significantly elevated in patients with ARDS relative to healthy people. Moreover, we established a mouse model of lipopolysaccharide- and cecal ligation and puncture-induced ARDS treated with neutralizing antibodies (anti-IL-35 Ebi3 or anti-IL-35 P35); the results showed that lung injury occurred more often than in untreated models and the inflammatory cytokines CXCL-1, tumor necrosis factor alpha, IL-6, and IL-17A increased significantly after neutralizing antibody treatment in bronchoalveolar lavage fluid and serum. Therefore IL-35 can protect against the development of ARDS. Even more interesting in our study was that we discovered IL-35 expression differed between lung and spleen across different ARDS models, which further demonstrated that the spleen likely has an important role in extrapulmonary ARDS model only, improving the ratio of CD4+/CD4+CD25+Foxp3+(Tregs). Meanwhile in our clinical work, we also found that the concentration of IL-35 and the ratio of CD4+/Treg in the serum are higher and the mortality is lower than those with the spleen deficiency in patients with extrapulmonary ARDS. Therefore, IL-35 is protective in ARDS by promoting the ratio of splenic CD4+/Tregs in extrapulmonary ARDS, and as such, may be a therapeutic target.
Collapse
|
18
|
Verjans E, Kanzler S, Ohl K, Rieg AD, Ruske N, Schippers A, Wagner N, Tenbrock K, Uhlig S, Martin C. Initiation of LPS-induced pulmonary dysfunction and its recovery occur independent of T cells. BMC Pulm Med 2018; 18:174. [PMID: 30466430 PMCID: PMC6251177 DOI: 10.1186/s12890-018-0741-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/14/2018] [Indexed: 12/19/2022] Open
Abstract
Background The acute respiratory distress syndrome (ARDS) is a serious disease in critically ill patients that is characterized by pulmonary dysfunctions, hypoxemia and significant mortality. Patients with immunodeficiency (e.g. SCID with T and B cell deficiency) are particularly susceptible to the development of severe ARDS. However, the role of T cells on pulmonary dysfunctions in immune-competent patients with ARDS is only incompletely understood. Methods Wild-type (wt) and RAG2−/− mice (lymphocyte deficient) received intratracheal instillations of LPS (4 mg/kg) or saline. On day 1, 4 and 10 lung mechanics and bronchial hyperresponsiveness towards acetylcholine were measured with the flexiVent ventilation set-up. The bronchoalveolar lavage fluid (BALF) was examined for leukocytes (FACS analysis) and pro-inflammatory cytokines (ELISA). Results In wt mice, lung mechanics, body weight and body temperature deteriorated in the LPS-group during the early phase (up to d4); these alterations were accompanied by increased leukocyte numbers and inflammatory cytokine levels in the BALF. During the late phase (day 10), both lung mechanics and the cell/cytokine homeostasis recovered in LPS-treated wt mice. RAG2−/− mice experienced changes in body weight, lung mechanics, BAL neutrophil numbers, BAL inflammatory cytokines levels that were comparable to wt mice. Conclusion Following LPS instillation, lung mechanics deteriorate within the first 4 days and recover towards day 10. This response is not altered by the lack of T lymphocytes suggesting that T cells play only a minor role for the initiation, propagation or recovery of LPS-induced lung dysfunctions or function of T lymphocytes can be compensated by other immune cells, such as alveolar macrophages. Electronic supplementary material The online version of this article (10.1186/s12890-018-0741-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eva Verjans
- Department of Pediatrics, Medical Faculty, RWTH Aachen, Aachen, Germany. .,Institute of Pharmacology and Toxicology, RWTH Aachen, Aachen, Germany.
| | - Stephanie Kanzler
- Institute of Pharmacology and Toxicology, RWTH Aachen, Aachen, Germany
| | - Kim Ohl
- Department of Pediatrics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Annette D Rieg
- Institute of Pharmacology and Toxicology, RWTH Aachen, Aachen, Germany.,Department of Anaesthesiology, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Nadine Ruske
- Institute of Pharmacology and Toxicology, RWTH Aachen, Aachen, Germany
| | - Angela Schippers
- Department of Pediatrics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Norbert Wagner
- Department of Pediatrics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Klaus Tenbrock
- Department of Pediatrics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, RWTH Aachen, Aachen, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, RWTH Aachen, Aachen, Germany
| |
Collapse
|
19
|
Ménoret A, Buturla JA, Xu MM, Svedova J, Kumar S, Rathinam VAK, Vella AT. T cell-directed IL-17 production by lung granular γδ T cells is coordinated by a novel IL-2 and IL-1β circuit. Mucosal Immunol 2018; 11:1398-1407. [PMID: 29907868 PMCID: PMC6668340 DOI: 10.1038/s41385-018-0037-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/29/2018] [Accepted: 04/20/2018] [Indexed: 02/04/2023]
Abstract
Immune-mediated lung is considered the result of an exacerbated innate injury immune response, although a role for adaptive lymphocytes is emerging. αβ T cells specific for S. aureus enterotoxin A orchestrate a Tγδ17 response during lung injury. However, the mechanism driving IL-17 production is unclear. Here, we show a role for IL-2 triggering IL-17 production by lung granular γδ T cells as IL-17 synthesis and neutrophil recruitment was reduced by IL-2 blocking mAbs in vitro and in vivo. Mass cytometry analysis revealed that lung γδ T cells responded directly to IL-2 as evident from STAT5 phosphorylation and RoRγt expression. IL-2 receptor blocking mAbs and JAK inhibition impaired STAT5 phosphorylation and IL-17 release. Moreover, inhalation of S. aureus enterotoxin A induced IL-2 secretion and caspase-1-dependent IL-1β activation to drive IL-17 production. This T-cell-mediated inflammasome-dependent IL-17 response is maximum when lung Tγδ17 cells were sequentially stimulated first with IL-2 then IL-1β. Interestingly, when IL-2 is given therapeutically to cancer patients it carries a known risk of lung injury that is largely indistinguishable from that seen in sepsis. Hence, this novel mechanism reveals therapeutic targets treating both acute lung injury and high-dose IL-2 toxicity in cancer.
Collapse
Affiliation(s)
- Antoine Ménoret
- Department of Immunology, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA;,Institute for Systems Genomics, UConn Health, 400 Farmington Avenue, Farmington, CT 06030, USA and
| | - James A. Buturla
- Department of Internal Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Maria M. Xu
- Department of Immunology, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Julia Svedova
- Department of Immunology, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Sanjeev Kumar
- Department of Immunology, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Vijay A. K. Rathinam
- Department of Immunology, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Anthony T. Vella
- Department of Immunology, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| |
Collapse
|
20
|
Chen Y, Wang D, Zhao Y, Huang B, Cao H, Qi D. p300 promotes differentiation of Th17 cells via positive regulation of the nuclear transcription factor RORγt in acute respiratory distress syndrome. Immunol Lett 2018; 202:8-15. [PMID: 30009847 DOI: 10.1016/j.imlet.2018.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/31/2018] [Accepted: 07/09/2018] [Indexed: 01/05/2023]
Abstract
Acute respiratory distress syndrome (ARDS) has been the major cause of acute respiratory failure in critical patients and one of the leading causes of death worldwide for several decades. Th17 cells are involved in the occurrence and progression of ARDS. Furthermore, histone acetyltransferase (HAT) p300 is a transcriptional coactivator, and its activity is closely related to cancer and inflammatory diseases. p300 and histone deacetylase 1 (HDAC1) interact with and stabilize the nuclear transcription factor retinoic acid-related orphan receptor gamma t (RORγt) and participate in the regulation of RORγt-mediated IL-17 transcription in T helper 17 (Th17) cell differentiation by acetylation and deacetylation. However, the effect of p300 on RORγt and Th17 cells in ARDS is not well reported. Therefore, we aimed to investigate the clinical features of p300 and its effect on RORγt and Th17 cells in patients with ARDS as well as in lipopolysaccharide-induced acute lung injury (ALI) mouse models. Overexpression of p300 and RORγt mRNA was found in the peripheral blood mononuclear cells from patients with ARDS, especially among non-survivors, compared to that in healthy individuals (P < 0.05). Moreover, the decline of FOXP3 mRNA level correlated with survival and increased RORγt mRNA levels corelated with infection (P < 0.05). Immunohistochemical analysis revealed high p300 and RORγt expression in ALI mouse lung tissues. Inhibitor-mediated knockdown of p300 reduced lung tissue inflammation and lung injury score (P < 0.05). Western blotting and ELISA revealed that p300 inhibitor caused a decrease in the mRNA and protein levels of RORγt as well as interleukin 17 (IL-17) production in ALI mouse lung tissues (P < 0.05). Thus, our findings suggest that p300 may play a key role in ARDS by positively regulating RORγt transcription and is a potential new immunotherapy target for ARDS.
Collapse
Affiliation(s)
- Yan Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daoxin Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yan Zhao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Huang
- Department of General Surgery, The Second Clinical School of North Sichuan Medical College, Nanchong, Sichuan province, China
| | - Haiquan Cao
- Intensive Care Unit (ICU), The Second Clinical School of North Sichuan Medical College, Nanchong, Sichuan province, China
| | - Di Qi
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Zhang S, Chen X, Devshilt I, Yun Q, Huang C, An L, Dorjbat S, He X. Fennel main constituent, trans‑anethole treatment against LPS‑induced acute lung injury by regulation of Th17/Treg function. Mol Med Rep 2018; 18:1369-1376. [PMID: 29901094 PMCID: PMC6072219 DOI: 10.3892/mmr.2018.9149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/25/2018] [Indexed: 01/05/2023] Open
Abstract
Fennel, commonly used in traditional Chinese medicine, is known as Foeniculum vulgare Mill. And its clinical application has been shown to target many biological systems including gastroenterology, endocrinology, gynecology and respiratory. The main constituent of the fennel essential oil is trans-anethole, which has been described to have anti-inflammatory and antibacterial activities. The aim of the present study was to define the anti-inflammatory influence in acute lung injury (ALI)-bearing mice. For 3 days, ALI-bearing mice were induced by lipopolysaccharide (LPS) suspension in normal saline (24 mg/kg). On the fourth day, the trans-anethole was administrated (36.4, 72.8 or 145.6 mg/kg) as well as dexamethasone (5 mg/kg) once per day for 7 consecutive days in mice. Following the completion of drug administration mice were sacrificed. Hematoxylin and eosin staining was performed in the lung paraffin section, for comparisons between monocyte and eosinophil cells in bronchoalveolar lavage fluid. The relative gene expression of interleukin (IL)-10 and IL-17 was determined by reverse transcription-quantitative polymerase chain reaction. These two cytokines and the proportion of T helper 17 (Th17) cells and T regulatory (Treg) cells were determined by flow cytometry. The main constituent of fennel, trans-anethole, eliminated LPS-induced histopathological changes, decreased the number of inflammatory cells and resulted in a notable reduction in IL-17 mRNA expression. In addition, trans-anethole increased IL-10 mRNA expression in isolated lung tissues and resulted in a marked elevation in Treg cells and reduction in Th17 cells in spleen tissues. The results of the present study indicated that the main constituent of fennel, trans-anethole may be an anti-inflammation component, which influenced the regulation of Th17/Treg responses. Therefore, this medicinal herb may support a healing effect on diseases of inflammatory.
Collapse
Affiliation(s)
- Sichao Zhang
- School of Chinese Materia Medica, Tianjin University Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Xi Chen
- School of Chinese Materia Medica, Tianjin University Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Ichinkhorloo Devshilt
- School of Chinese Materia Medica, Tianjin University Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Qi Yun
- Xinjiang Tefeng Pharmaceutical Co., Ltd., Urumqi, Xinjiang 830054, P.R. China
| | - Cong Huang
- School of Chinese Materia Medica, Tianjin University Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Lijun An
- School of Chinese Materia Medica, Tianjin University Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Sosorburam Dorjbat
- School of Chinese Materia Medica, Tianjin University Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Xin He
- School of Chinese Materia Medica, Tianjin University Traditional Chinese Medicine, Tianjin 300193, P.R. China
| |
Collapse
|
22
|
Wnt/β-catenin pathway promotes acute lung injury induced by LPS through driving the Th17 response in mice. Biochem Biophys Res Commun 2018; 495:1890-1895. [DOI: 10.1016/j.bbrc.2017.12.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 12/11/2017] [Indexed: 12/19/2022]
|
23
|
Ding Q, Liu GQ, Zeng YY, Zhu JJ, Liu ZY, Zhang X, Huang JA. Role of IL-17 in LPS-induced acute lung injury: an in vivo study. Oncotarget 2017; 8:93704-93711. [PMID: 29212183 PMCID: PMC5706829 DOI: 10.18632/oncotarget.21474] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/20/2017] [Indexed: 01/20/2023] Open
Abstract
To assess the clinical significance of IL-17 in patients with sepsis-induced acute respiratory distress syndrome (ARDS) and to investigate the effects of IL-17 blocking in a mouse model of acute lung injury (ALI). Significantly increased IL-17 level was found in patients with sepsis-related ARDS compared to healthy controls, whereas significantly increased plasma IL-17 level was also observed in non-survivors compared to that in survivors. According to the data from the mouse ALI model, we found significantly increased IL-17 level in lung tissue lysates, mouse bronchoalveolar lavage fluid (mBALF) and plasma at 6, 12 and 24 h after ALI. Histological analyses revealed that reduced sign of pathological changes and lung injury score in the lungs at 48 h after IL-17 blocking antibody administration. Reduced level of proinflammatory tumor necrosis factor α and increased level of anti-inflammatory factor interleukin-10 were found in both mBALF and plasma. Moreover, IL-17 blocking antibody administration attenuated the expression of RORγt and activity of PI3K-Akt pathway. Increased IL-17 was presented in patients with sepsis-induced ARDS and IL-17 may serve as a biomarker to indicate the severity of ARDS. Moreover, IL-17 antibody administration could relieve the ALI symptom by affecting RORγt level and PI3K pathway.
Collapse
Affiliation(s)
- Qi Ding
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215006, China
| | - Gao-Qin Liu
- Clinical Immunology Laboratory of Jiangsu Province, Suzhou 215006, China
| | - Yuan-Yuan Zeng
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jian-Jie Zhu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ze-Yi Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xueguang Zhang
- Clinical Immunology Laboratory of Jiangsu Province, Suzhou 215006, China
| | - Jian-An Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Clinical Immunology Laboratory of Jiangsu Province, Suzhou 215006, China
| |
Collapse
|
24
|
Svedova J, Ménoret A, Mittal P, Ryan JM, Buturla JA, Vella AT. Therapeutic blockade of CD54 attenuates pulmonary barrier damage in T cell-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2017; 313:L177-L191. [PMID: 28473322 DOI: 10.1152/ajplung.00050.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 12/19/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a serious, often fatal condition without available pharmacotherapy. Although the role of innate cells in ARDS has been studied extensively, emerging evidence suggests that T cells may be involved in disease etiology. Staphylococcus aureus enterotoxins are potent T-cell mitogens capable of triggering life-threatening shock. We demonstrate that 2 days after inhalation of S. aureus enterotoxin A, mice developed T cell-mediated increases in vascular permeability, as well as expression of injury markers and caspases in the lung. Pulmonary endothelial cells underwent sequential phenotypic changes marked by rapid activation coinciding with inflammatory events secondary to T-cell priming, followed by reductions in endothelial cell number juxtaposing simultaneous T-cell expansion and cytotoxic differentiation. Although initial T-cell activation influenced the extent of lung injury, CD54 (ICAM-1) blocking antibody administered well after enterotoxin exposure substantially attenuated pulmonary barrier damage. Thus CD54-targeted therapy may be a promising candidate for further exploration into its potential utility in treating ARDS patients.
Collapse
Affiliation(s)
- Julia Svedova
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut
| | - Antoine Ménoret
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut; and
| | - Payal Mittal
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut
| | - Joseph M Ryan
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut
| | - James A Buturla
- Department of Internal Medicine, UConn Health, Farmington, Connecticut
| | - Anthony T Vella
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut;
| |
Collapse
|
25
|
Jiang Z, Zhou Q, Gu C, Li D, Zhu L. Depletion of circulating monocytes suppresses IL-17 and HMGB1 expression in mice with LPS-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2016; 312:L231-L242. [PMID: 27913426 DOI: 10.1152/ajplung.00389.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 12/26/2022] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is an important cause of mortality in critically ill patients. Macrophages play an important role in the pathogenesis of ALI/ARDS. To investigate the role and underlying mechanisms of circulating monocytes and resident alveolar macrophages (AMs) in ALI/ARDS, we depleted circulating monocytes and AMs by clodronate-loaded liposome (CL) in a lipopolysaccharide (LPS)-induced ALI/ARDS mouse model. Our results indicated that depletion of circulating monocytes by intravenous injection of CL 2 days before intratracheal LPS treatment significantly suppressed the acute lung injury in mice with ALI/ARDS, accompanied with significant reduction in neutrophil influx, interleukin-17, monocyte chemoattractant protein 1, high-mobility group box 1 protein, suppressor of cytokine signaling 3, and surfactant protein D (SP-D) in the lungs of 2 days intratracheal LPS-treated mice. In contrast, depletion of AMs by intratracheal delivery of CL enhanced the acute lung injury in association with upregulation of these mediators. Blocking monocyte chemoattractant protein 1 signaling by intraperitoneal instillation of anti-mouse CCL2 neutralizing antibody significantly reduced acute lung injury and neutrophil influx. In addition, SP-D was upregulated by mediators released from AMs because primary murine type II alveolar epithelial cells expressed more SP-D after treatment with bronchoalveolar lavage from LPS-treated mice or the conditioned media from LPS-treated RAW 264.7 cells. The results indicated that circulating monocytes are proinflammatory, but AMs have anti-inflammatory functions in the early phase of ALI/ARDS. The study provided a molecular basis for the treatment of ALI/ARDS through modulation of circulating monocytes and AMs.
Collapse
Affiliation(s)
- Zhilong Jiang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qianlin Zhou
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenlin Gu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dandan Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Efficacy of β-Lactam-plus-Macrolide Combination Therapy in a Mouse Model of Lethal Pneumococcal Pneumonia. Antimicrob Agents Chemother 2016; 60:6146-54. [PMID: 27480866 DOI: 10.1128/aac.01024-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/26/2016] [Indexed: 01/19/2023] Open
Abstract
Community-acquired pneumonia is a common disease with considerable morbidity and mortality, for which Streptococcus pneumoniae is accepted as a leading cause. Although β-lactam-plus-macrolide combination therapy for this disease is recommended in several guidelines, the clinical efficacy of this strategy against pneumococcal pneumonia remains controversial. In this study, we examined the effects of β-lactam-plus-macrolide combination therapy on lethal mouse pneumococcal pneumonia and explored the mechanisms of action in vitro and in vivo We investigated survival, lung bacterial burden, and cellular host responses in bronchoalveolar lavage fluids obtained from mice infected with pneumonia and treated with ceftriaxone, azithromycin, or both in combination. Although in vitro synergy was not observed, significant survival benefits were demonstrated with combination treatment. Lung neutrophil influx was significantly lower in the ceftriaxone-plus-azithromycin-treated group than in the ceftriaxone-treated group, whereas no differences in the lung bacterial burden were observed on day 3 between the ceftriaxone-plus-azithromycin-treated group and the ceftriaxone-treated group. Notably, the analysis of cell surface markers in the ceftriaxone-plus-azithromycin combination group exhibited upregulation of presumed immune checkpoint ligand CD86 and major histocompatibility complex class II in neutrophils and CD11b-positive CD11c-positive (CD11b(+) CD11c(+)) macrophages and dendritic cells, as well as downregulation of immune checkpoint receptors cytotoxic-T lymphocyte-associated antigen 4 and programmed death 1 in T helper and T regulatory cells. Our data demonstrate that the survival benefits of ceftriaxone-plus-azithromycin therapy occur through modulation of immune checkpoints in mouse pneumococcal pneumonia. In addition, immune checkpoint molecules may be a novel target class for future macrolide research.
Collapse
|
27
|
Chen K, Kolls JK. Innate Lymphoid Cells and Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2016; 193:350-2. [PMID: 26871668 DOI: 10.1164/rccm.201510-2101ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Kong Chen
- 1 Richard King Mellon Foundation Institute for Pediatric Research Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center Pittsburgh, Pennsylvania
| | - Jay K Kolls
- 1 Richard King Mellon Foundation Institute for Pediatric Research Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center Pittsburgh, Pennsylvania
| |
Collapse
|
28
|
赵 燕, 程 黎, 宋 志, 邓 欣, 何 婧, 邓 旺, 王 导. [Role of interleukin-17 in alveolar fluid clearance in mice with acute lung injury]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2016; 37:494-498. [PMID: 28446402 PMCID: PMC6744096 DOI: 10.3969/j.issn.1673-4254.2017.04.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the role of interleukin-17 (IL-17) in alveolar fluid clearance in mice with acute lung injury (ALI) and explore the possible mechanism. METHODS Sixteen IL-17-knockout mice and 16 wild-type mice were both randomized for intratracheal instillation of PBS (control) on lipopolysaccharide (LPS) to induce ALI. Forty-eight hours after the treatments, the wet-dry ratio (W/D) of the lungs, IL-8 in the bronchoalveolar lavage fluid (BALF) and histopathological changes of the lung tissues were examined. The expressions of epithelial sodium channel α subunit (α-ENaC) was detected with Western blotting and liver kinase B1 (LKB1) was detected with immunohistochemistry. RESULTS Compared with wild-type mice treated with LPS, IL-17 knockout mice showed significantly decreased W/D of the lungs (9.739∓3.3 vs 5.351∓0.56) and IL-8 level in the BALF (67.50∓7.33 vs 41.00∓3.16 pg/mL) following LPS challenge. Pathological examination revealed reduced alveolar edema fluid aggregations and lower lung injury score in IL-17 knockout mice with also higher expression levels of ENaC and LKB1 compared with the wild-type mice. CONCLUSION Knocking out IL-17 in mice not only alleviates inflammation of the lung tissue following ALI but also reduces the loss of ENaC protein and promotes alveolar fluid clearance, mechanism of which is probably associated with LKB1.
Collapse
Affiliation(s)
- 燕 赵
- 重庆医科大学附属第二医院呼吸内科,重庆 400016Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - 黎 程
- 重庆医科大学附属第二医院呼吸内科,重庆 400016Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - 志新 宋
- 重庆医科大学临床检验诊断学教育部重点实验室,重庆 400010Key Laboratory of Diagnostic Medicine of the Ministry of Education, Chongqing Medical University, Chongqing 400010, China
| | - 欣雨 邓
- 重庆医科大学附属第二医院呼吸内科,重庆 400016Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - 婧 何
- 重庆医科大学附属第二医院呼吸内科,重庆 400016Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - 旺 邓
- 重庆医科大学附属第二医院呼吸内科,重庆 400016Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - 导新 王
- 重庆医科大学附属第二医院呼吸内科,重庆 400016Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
29
|
Yan Z, Xiaoyu Z, Zhixin S, Di Q, Xinyu D, Jing X, Jing H, Wang D, Xi Z, Chunrong Z, Daoxin W. Rapamycin attenuates acute lung injury induced by LPS through inhibition of Th17 cell proliferation in mice. Sci Rep 2016; 6:20156. [PMID: 26888095 PMCID: PMC4757870 DOI: 10.1038/srep20156] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/30/2015] [Indexed: 12/20/2022] Open
Abstract
Th17 cells have been confirmed to increase neutrophils through cytokine secretions. ALI/ARDS are characterized as neutrophil infiltration in inflammation cases; however, there is conflicting information concerning the role of Th17 cells in ALI/ARDS, as well as their potential treatment value. We measured Th17-linear cytokines in the plasma of patients with sepsis-related ARDS. The consistently high levels of IL-17 and IL-22 in the nonsurvivors suggested that overreaction of the Th17-mediated immune response may be a risk factor for poor outcomes. Th17 linear cytokines were also increased in an LPS-induced murine model of acute lung injury, along with neutrophil accumulation. The mice that completely lacked IL-17 failed to accumulate and activate neutrophils. Lung inflammation was obviously attenuated in the IL-17(-)/(-) mice. Meanwhile, the neutrophil count was markedly increased in the healthy WT mice challenged with recombinant IL-22 and IL-17. Rapamycin attenuated lung injury by inhibiting the differentiation of Th17 cells through RORγt and STAT3 dysfunction. Furthermore, we demonstrated that SOCS3 and Gfi1, which were responsible for the molecular suppression of RORγt and STAT3, were up-regulated by rapamycin. These results point toward a pivotal view to treatment of ALI through weakening the proliferation of Th17 cells with rapamycin.
Collapse
Affiliation(s)
- Zhao Yan
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Zhang Xiaoyu
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Song Zhixin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing 400010, China
| | - Qi Di
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Deng Xinyu
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Xia Jing
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - He Jing
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Deng Wang
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Zhong Xi
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Zhang Chunrong
- Department of Emergency Medicine, the Yongchuan Affiliated Hospital of Chongqing Medical University, 439 Xuanhua Road, Yongchuan District, Chongqing 402160, China
| | - Wang Daoxin
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| |
Collapse
|
30
|
Sakaguchi R, Chikuma S, Shichita T, Morita R, Sekiya T, Ouyang W, Ueda T, Seki H, Morisaki H, Yoshimura A. Innate-like function of memory Th17 cells for enhancing endotoxin-induced acute lung inflammation through IL-22. Int Immunol 2015; 28:233-43. [PMID: 26647405 DOI: 10.1093/intimm/dxv070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/20/2015] [Indexed: 02/06/2023] Open
Abstract
Lipopolysaccharide (LPS)-induced acute lung injury (ALI) is known as a mouse model of acute respiratory distress syndrome; however, the function of T-cell-derived cytokines in ALI has not yet been established. We found that LPS challenge in one lung resulted in a rapid induction of innate-type pro-inflammatory cytokines such as IL-6 and TNF-α, followed by the expression of T-cell-type cytokines, including IL-17, IL-22 and IFN-γ. We discovered that IL-23 is important for ALI, since blockage of IL-23 by gene disruption or anti-IL-12/23p40 antibody treatment reduced neutrophil infiltration and inflammatory cytokine secretion into the bronchoalveolar lavage fluid (BALF). IL-23 was mostly produced from F4/80(+)CD11c(+) alveolar macrophages, and IL-23 expression was markedly reduced by the pre-treatment of mice with antibiotics, suggesting that the development of IL-23-producing macrophages required commensal bacteria. Unexpectedly, among T-cell-derived cytokines, IL-22 rather than IL-17 or IFN-γ played a major role in LPS-induced ALI. IL-22 protein levels were higher than IL-17 in the BALF after LPS instillation, and the major source of IL-22 was memory Th17 cells. Lung memory CD4(+) T cells had a potential to produce IL-22 at higher levels than IL-17 in response to IL-1β plus IL-23 without TCR stimulation. Our study revealed an innate-like function of the lung memory Th17 cells that produce IL-22 in response to IL-23 and are involved in exaggeration of ALI.
Collapse
Affiliation(s)
- Ryota Sakaguchi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan Department of Anesthesiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takashi Shichita
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan PRESTO (Precursory Research for Embryonic Science and Technology), Chiyoda-ku, Tokyo 102-0075, Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takashi Sekiya
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Wenjun Ouyang
- Department of Immunology, Genentech, 1 DNA Way, San Francisco, CA 94080, USA
| | - Tomomi Ueda
- Department of Anesthesiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroyuki Seki
- Department of Anesthesiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroshi Morisaki
- Department of Anesthesiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|