1
|
Marvik Å, Dudman SG. Clinical Evaluation of the VirClia IgM/IgG Chemiluminescence Tests for the Diagnosis of Tick-Borne Encephalitis in an Endemic Part of Norway. Viruses 2024; 16:1505. [PMID: 39339981 PMCID: PMC11437423 DOI: 10.3390/v16091505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
The aim of this study was to evaluate the clinical usefulness of VirClia IgM/IgG single-assay chemiluminescence tests for the diagnosis of tick-borne encephalitis (TBE) in an endemic part of Norway. Patients hospitalized at Vestfold or Telemark Hospitals with suspected infection in the central nervous system (CNS) in the period between May 2021 and December 2023 were included, with 85 TBE cases identified. The VirClia IgM assay was positive in the initial serum sample in 75/85 cases, giving a sensitivity of 88.2% (95% CI, 79.4-94.2). The ReaScan TBE IgM rapid test was positive in 80/85 cases, with an estimated sensitivity of 94.1% (95% CI, 86.8-98.1). Vaccine breakthrough infections were the predominant cause of non-reactive IgM cases. The calculated specificity for the VirClia IgM was 95.8% (95% CI, 92.5-98.0). In conclusion, the sensitivity of the VirClia IgM was non-inferior to the ReaScan TBE IgM rapid test. However, isolated IgM reactive results must be interpreted with caution, since false-reactive results occur.
Collapse
Affiliation(s)
- Åshild Marvik
- Department of Microbiology, Vestfold Hospital Trust, 3103 Tønsberg, Norway;
| | - Susanne Gjeruldsen Dudman
- Institute of Clinical Medicine, University of Oslo, 0313 Oslo, Norway
- Department of Microbiology, Oslo University Hospital, 0372 Oslo, Norway
| |
Collapse
|
2
|
Quarsten H, Andreassen ÅK, Paulsen KM, Diekmann MJ, Eikeland R, Helleren R, Bergström T, Noraas S, Lorentzen ÅR. No detection of tick-borne encephalitis virus RNA in blood, urine or saliva of hospitalised immunocompetent tick-borne encephalitis patients. PLoS One 2024; 19:e0305603. [PMID: 38913668 PMCID: PMC11195967 DOI: 10.1371/journal.pone.0305603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024] Open
Abstract
Tick-borne encephalitis (TBE) is usually diagnosed based on the presence of TBE virus (TBEV)-specific IgM and IgG antibodies in serum. However, antibodies induced by vaccination or cross-reactivity to previous flavivirus infections may result in false positive TBEV serology. Detection of TBEV RNA may be an alternative diagnostic approach to detect viral presence and circumvent the diagnostic difficulties present when using serology. Viral RNA in blood is commonly detectable only in the first viremic phase usually lasting up to two weeks, and not in the second neurologic phase, when the patients contact the health care system and undergo diagnostic work-up. TBEV RNA has previously been detected in urine in a few retrospective TBE cases in the neurologic phase, and furthermore RNA of other flaviviruses has been detected in patient saliva. In this study, blood, saliva and urine were collected from 31 hospitalised immunocompetent patients with pleocytosis and symptoms of aseptic meningitis and/or encephalitis, suspected to have TBE. We wanted to pursue if molecular testing of TBEV RNA in these patient materials may be useful in the diagnostics. Eleven of the 31 study patients were diagnosed with TBE based on ELISA detection of TBEV specific IgG and IgM antibodies. None of the study patients had TBEV RNA detectable in any of the collected patient material.
Collapse
MESH Headings
- Humans
- Encephalitis, Tick-Borne/diagnosis
- Encephalitis, Tick-Borne/urine
- Encephalitis, Tick-Borne/blood
- Encephalitis, Tick-Borne/virology
- Encephalitis, Tick-Borne/immunology
- Encephalitis Viruses, Tick-Borne/isolation & purification
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis Viruses, Tick-Borne/genetics
- Saliva/virology
- RNA, Viral/urine
- Male
- Female
- Middle Aged
- Adult
- Aged
- Immunoglobulin M/blood
- Immunoglobulin M/urine
- Immunoglobulin G/blood
- Immunoglobulin G/urine
- Antibodies, Viral/blood
- Aged, 80 and over
- Immunocompetence
- Hospitalization
Collapse
Affiliation(s)
- Hanne Quarsten
- Department of Medical Microbiology, Sørlandet Hospital Trust, Kristiansand, Norway
| | - Åshild K. Andreassen
- Division for Infection Control and Environmental Health, Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Katrine M. Paulsen
- Division for Infection Control and Environmental Health, Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Maria J. Diekmann
- Division for Infection Control and Environmental Health, Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Randi Eikeland
- The Norwegian National Advisory Unit on Tick-borne Diseases, Sørlandet Hospital Trust, Kristiansand, Norway
- Faculty of Health and Sport Science, University of Agder, Grimstad, Norway
| | - Rita Helleren
- Department of Clinical Medicine, Sørlandet Hospital Trust, Kristiansand, Norway
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sølvi Noraas
- Department of Medical Microbiology, Sørlandet Hospital Trust, Kristiansand, Norway
| | - Åslaug R. Lorentzen
- The Norwegian National Advisory Unit on Tick-borne Diseases, Sørlandet Hospital Trust, Kristiansand, Norway
- Department of Neurology, Sørlandet Hospital Trust, Kristiansand, Norway
| |
Collapse
|
3
|
Hu WT, Kaluzova M, Dawson A, Sotelo V, Papas J, Lemenze A, Shu C, Jomartin M, Nayyar A, Hussain S. Clinical and CSF single-cell profiling of post-COVID-19 cognitive impairment. Cell Rep Med 2024; 5:101561. [PMID: 38744274 PMCID: PMC11148803 DOI: 10.1016/j.xcrm.2024.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/15/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Natural history and mechanisms for persistent cognitive symptoms ("brain fog") following acute and often mild COVID-19 are unknown. In a large prospective cohort of people who underwent testing a median of 9 months after acute COVID-19 in the New York City/New Jersey area, we found that cognitive dysfunction is common; is not influenced by mood, fatigue, or sleepiness; and is correlated with MRI changes in very few people. In a subgroup that underwent cerebrospinal fluid analysis, there are no changes related to Alzheimer's disease or neurodegeneration. Single-cell gene expression analysis in the cerebrospinal fluid shows findings consistent with monocyte recruitment, chemokine signaling, cellular stress, and suppressed interferon response-especially in myeloid cells. Longitudinal analysis shows slow recovery accompanied by key alterations in inflammatory genes and increased protein levels of CXCL8, CCL3L1, and sTREM2. These findings suggest that the prognosis for brain fog following COVID-19 correlates with myeloid-related chemokine and interferon-responsive genes.
Collapse
Affiliation(s)
- William T Hu
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Center for Innovation in Health and Aging Research, Institute for Health, Health Care Policy, and Aging Research, New Brunswick, NJ, USA.
| | - Milota Kaluzova
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Alice Dawson
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Center for Innovation in Health and Aging Research, Institute for Health, Health Care Policy, and Aging Research, New Brunswick, NJ, USA
| | - Victor Sotelo
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Center for Innovation in Health and Aging Research, Institute for Health, Health Care Policy, and Aging Research, New Brunswick, NJ, USA
| | - Julia Papas
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Center for Innovation in Health and Aging Research, Institute for Health, Health Care Policy, and Aging Research, New Brunswick, NJ, USA
| | - Alexander Lemenze
- Department of Pathology and Laboratory Medicine, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Carol Shu
- Department of Medicine-Pulmonary and Critical Care, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Mini Jomartin
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Ashima Nayyar
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Sabiha Hussain
- Department of Medicine-Pulmonary and Critical Care, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
4
|
Gonzalo‐Nadal V, Kohl A, Rocchi M, Brennan B, Hughes J, Nichols J, Da Silva Filipe A, Dunlop JI, Fares M, Clark JJ, Tandavanitj R, Patel AH, Cloquell‐Miro A, Bongers J, Deacon J, Kaczmarska A, Stalin C, Liatis T, Irving J, Gutierrez‐Quintana R. Suspected tick-borne flavivirus meningoencephalomyelitis in dogs from the UK: six cases (2021). J Small Anim Pract 2024; 65:132-143. [PMID: 37956993 PMCID: PMC11497270 DOI: 10.1111/jsap.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/30/2023] [Accepted: 10/01/2023] [Indexed: 11/21/2023]
Abstract
OBJECTIVES Tick-borne encephalitis virus and louping ill virus are neurotropic flaviviruses transmitted by ticks. Epidemiologically, tick-borne encephalitis is endemic in Europe whereas louping ill's predominant geographical distribution is the UK. Rarely, these flaviviruses affect dogs causing neurological signs. This case series aimed to describe the clinical, clinicopathological, and imaging findings, as well as the outcomes in six dogs with meningoencephalitis and/or meningomyelitis caused by a flavivirus in the UK in 2021. MATERIALS AND METHODS Observational retrospective case-series study. Clinical data were retrieved from medical records of dogs with positive serological or immunohistochemical results from three different institutions from spring to winter 2021. RESULTS Six dogs were included in the study. All dogs presented an initial phase of pyrexia and/or lethargy followed by progressive signs of spinal cord and/or intracranial disease. Magnetic resonance imaging showed bilateral and symmetrical lesions affecting the grey matter of the thalamus, pons, medulla oblongata, and thoracic or lumbar intumescences with none or mild parenchymal and meningeal contrast enhancement. Serology for tick-borne encephalitis virus was positive in five dogs with the presence of seroconversion in two dogs. The viral distinction between flaviviruses was not achieved. One dog with negative serology presented positive immunohistochemistry at post-mortem examination. Three dogs survived but presented neurological sequelae. Three dogs were euthanased due to the rapid progression of the clinical signs or static neurological signs. CLINICAL SIGNIFICANCE These cases raise awareness of the presence of tick-borne encephalitis as an emergent disease or the increased prevalence of louping ill virus affecting dogs in the UK.
Collapse
Affiliation(s)
- V. Gonzalo‐Nadal
- Division of Small Animal Clinical Sciences, School of Veterinary Medicine, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - A. Kohl
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - M. Rocchi
- Moredun Research InstituteMidlothianUK
| | - B. Brennan
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - J. Hughes
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - J. Nichols
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | | | - J. I. Dunlop
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - M. Fares
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - J. J. Clark
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - R. Tandavanitj
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - A. H. Patel
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - A. Cloquell‐Miro
- Division of Small Animal Clinical Sciences, School of Veterinary Medicine, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - J. Bongers
- Division of Small Animal Clinical Sciences, School of Veterinary Medicine, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- Moorview VetsCramlingtonUK
| | | | - A. Kaczmarska
- Division of Small Animal Clinical Sciences, School of Veterinary Medicine, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - C. Stalin
- Division of Small Animal Clinical Sciences, School of Veterinary Medicine, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- Moorview VetsCramlingtonUK
| | - T. Liatis
- Queen Mother Hospital for Animals, Royal Veterinary CollegeUniversity of LondonLondonUK
| | - J. Irving
- Pathobiology and Population SciencesRoyal Veterinary CollegeHatfieldHertfordshireUK
- Harper & Keele Veterinary SchoolNewportShropshireUK
| | - R. Gutierrez‐Quintana
- Division of Small Animal Clinical Sciences, School of Veterinary Medicine, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
5
|
Ackermann-Gäumann R, Lang P, Zens KD. Defining the "Correlate(s) of Protection" to tick-borne encephalitis vaccination and infection - key points and outstanding questions. Front Immunol 2024; 15:1352720. [PMID: 38318179 PMCID: PMC10840404 DOI: 10.3389/fimmu.2024.1352720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Tick-borne Encephalitis (TBE) is a severe disease of the Central Nervous System (CNS) caused by the tick-borne encephalitis virus (TBEV). The generation of protective immunity after TBEV infection or TBE vaccination relies on the integrated responses of many distinct cell types at distinct physical locations. While long-lasting memory immune responses, in particular, form the basis for the correlates of protection against many diseases, these correlates of protection have not yet been clearly defined for TBE. This review addresses the immune control of TBEV infection and responses to TBE vaccination. Potential correlates of protection and the durability of protection against disease are discussed, along with outstanding questions in the field and possible areas for future research.
Collapse
Affiliation(s)
- Rahel Ackermann-Gäumann
- Microbiologie, ADMED Analyses et Diagnostics Médicaux, La Chaux-de-Fonds, Switzerland
- Swiss National Reference Center for Tick-transmitted Diseases, La Chaux-de-Fonds, Switzerland
| | - Phung Lang
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Kyra D. Zens
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
- Institute for Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Steininger P, Ensser A, Knöll A, Korn K. Results of Tick-Borne Encephalitis Virus (TBEV) Diagnostics in an Endemic Area in Southern Germany, 2007 to 2022. Viruses 2023; 15:2357. [PMID: 38140598 PMCID: PMC10748111 DOI: 10.3390/v15122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) is the most important tick-transmitted neurotropic flavivirus in Europe and Asia. Our analysis aimed to investigate the contribution of TBEV-specific antibody detection by serological assays and TBEV RNA detection by real-time PCR to the diagnosis of tick-borne encephalitis (TBE). We analyzed data from 3713 patients from 16 years of laboratory TBEV diagnostics in an endemic area in Southern Germany. During this period, 126 cases of TBE were diagnosed. TBEV-specific IgM ELISA tests showed a high clinical sensitivity (96.8%) and a very high clinical specificity (99.7%). In immunocompetent patients, TBE was reliably diagnosed by detection of TBEV IgM antibodies in serum. Intrathecal TBEV IgG antibody synthesis was detected in 46 of 84 (55%) cases by analysis of paired serum and cerebrospinal fluid (CSF) samples. None of the 87 immunocompetent TBE patients tested had detectable TBEV RNA in serum or CSF. In contrast, in two TBE patients without TBEV-specific antibodies, diagnosis could only be made by the detection of TBEV RNA in CSF. Both patients had previously been treated with the B cell-depleting antibody rituximab. Therefore, in patients with CNS infection and humoral immunodeficiency, it is necessary to include TBEV PCR in the diagnostic approach.
Collapse
Affiliation(s)
- Philipp Steininger
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.E.); (A.K.); (K.K.)
| | | | | | | |
Collapse
|
7
|
Worku DA. Tick-Borne Encephalitis (TBE): From Tick to Pathology. J Clin Med 2023; 12:6859. [PMID: 37959323 PMCID: PMC10650904 DOI: 10.3390/jcm12216859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Tick-borne encephalitis (TBE) is a viral arthropod infection, endemic to large parts of Europe and Asia, and is characterised by neurological involvement, which can range from mild to severe, and in 33-60% of cases, it leads to a post-encephalitis syndrome and long-term morbidity. While TBE virus, now identified as Orthoflavivirus encephalitidis, was originally isolated in 1937, the pathogenesis of TBE is not fully appreciated with the mode of transmission (blood, tick, alimentary), viral strain, host immune response, and age, likely helping to shape the disease phenotype that we explore in this review. Importantly, the incidence of TBE is increasing, and due to global warming, its epidemiology is evolving, with new foci of transmission reported across Europe and in the UK. As such, a better understanding of the symptomatology, diagnostics, treatment, and prevention of TBE is required to inform healthcare professionals going forward, which this review addresses in detail. To this end, the need for robust national surveillance data and randomised control trial data regarding the use of various antivirals (e.g., Galidesivir and 7-deaza-2'-CMA), monoclonal antibodies, and glucocorticoids is required to improve the management and outcomes of TBE.
Collapse
Affiliation(s)
- Dominic Adam Worku
- Infectious Diseases, Morriston Hospital, Heol Maes Eglwys, Morriston, Swansea SA6 6NL, UK;
- Public Health Wales, 2 Capital Quarter, Cardiff CF10 4BZ, UK
| |
Collapse
|
8
|
Usage of FTA® Classic Cards for Safe Storage, Shipment, and Detection of Arboviruses. Microorganisms 2022; 10:microorganisms10071445. [PMID: 35889164 PMCID: PMC9324231 DOI: 10.3390/microorganisms10071445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022] Open
Abstract
Infections caused by arthropod-borne RNA viruses are overrepresented among emerging infectious diseases. Effective methods for collecting, storing, and transporting clinical or biological specimens are needed worldwide for disease surveillance. However, many tropical regions where these diseases are endemic lack analytical facilities and possibility of continuous cold chains, which presents challenges from both a biosafety and material preservation perspective. Whatman® FTA® Classic Cards may serve as an effective and safe option for transporting hazardous samples at room temperature, particularly for RNA viruses classified as biosafety level (BSL) 2 and 3 pathogens, from sampling sites to laboratories. In this study, we investigated the biosafety and perseverance of representative alpha- and flaviviruses stored on FTA® cards. To evaluate the virus inactivation capacity of FTA® cards, we used Sindbis virus (SINV), chikungunya virus (CHIKV), and Japanese encephalitis virus (JEV). We inoculated susceptible cells with dilution series of eluates from viral samples stored on the FTA® cards and observed for cytopathic effect to evaluate the ability of the cards to inactivate viruses. All tested viruses were inactivated after storage on FTA® cards. In addition, we quantified viral RNA of JEV, SINV, and tick-borne encephalitis virus (TBEV) stored on FTA® cards at 4 °C, 25 °C, and 37 °C for 30 days using two reverse transcriptase quantitative PCR assays. Viral RNA of SINV stored on FTA® cards was not reduced at either 4 °C or 25 °C over a 30-day period, but degraded rapidly at 37 °C. For JEV and TBEV, degradation was observed at all temperatures, with the most rapid degradation occurring at 37 °C. Therefore, the use of FTA® cards provides a safe and effective workflow for the collection, storage, and analysis of BSL 2- and 3-virus RNA samples, but there is a risk of false negative results if the cards are stored at higher temperatures for long periods of time. Conscious usage of the cards can be useful in disease surveillance and research, especially in tropical areas where transportation and cold chains are problematic.
Collapse
|
9
|
Shin A, Tukhanova N, Ndenkeh J, Shapiyeva Z, Yegemberdiyeva R, Yeraliyeva L, Nurmakhanov T, Froeschl G, Hoelscher M, Musralina L, Toktasyn Y, Gulnara Z, Sansyzbayev Y, Aigul S, Abdiyeva K, Turebekov N, Wagner E, Peintner L, Essbauer S. Tick-borne encephalitis virus and West-Nile fever virus as causes of serous meningitis of unknown origin in Kazakhstan. Zoonoses Public Health 2022; 69:514-525. [PMID: 35322572 DOI: 10.1111/zph.12941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022]
Abstract
Flaviviruses are a family of viruses that cause many diseases in humans. Their similarity in the antigenic structure causes a cross-reaction, which complicates the precise diagnostic of disease causing agents. Tick-borne encephalitis virus (TBEV), a member of the flavivirus family, is the cause of tick-borne encephalitis (TBE). Worldwide the awareness of this disease is raising, however, in many countries such as the Republic of Kazakhstan (KZ) there is a lack of serological investigation of flaviviruses in humans. In our study, we focused on two TBE endemic regions of KZ (East Kazakhstan Oblast (EKO) and Almaty (AO)) and a region where TBE cases were registered only since 2010 (Akmola Oblast (AkO)). In KZ, up to 400 cases of serous meningitis of unknown origin were registered annually in the period from 2017 to 2019. Our goals were to calculate the prevalence of antibodies against TBEV in patients with suspected meningitis. We collected 179 sera and 130 cerebrospinal fluid (CSF) samples from patients and included a questionnaire with focus on socio-demographical factors and observed tick bites. The human samples were tested with TBEV and West-Nile fever virus (WNFV) IgM and IgG ELISA, by immunofluorescence assay using a flavivirus biochip, and TBEV-specific real-time RT-PCR. We found TBEV and WNFV antibodies in 31 samples by serological and molecular techniques. Seven serum samples out of 31 showed TBEV-specific antibodies, and three serum pairs had WNFV antibodies. Correlating the serological results with the information gained from the questionnaires it becomes apparent that the number of tick bites is a significant factor for a TBEV infection. This result has an impact on diagnostic in KZ and physicians should be aware that both flaviviruses play a role for serous meningitis of unknown origin in KZ.
Collapse
Affiliation(s)
- Anna Shin
- Center for International Health, Ludwig-Maximilians-Universität, Munich, Germany.,National Scientific Center for Extremeley Dangerous Infections, Almaty, Kazakhstan
| | - Nur Tukhanova
- Center for International Health, Ludwig-Maximilians-Universität, Munich, Germany.,National Scientific Center for Extremeley Dangerous Infections, Almaty, Kazakhstan
| | - Jackson Ndenkeh
- Center for International Health, Ludwig-Maximilians-Universität, Munich, Germany
| | - Zhanna Shapiyeva
- Scientific Practical Center of Sanitary Epidemiological Expertise and Monitoring, Almaty, Kazakhstan
| | | | | | - Talgat Nurmakhanov
- National Scientific Center for Extremeley Dangerous Infections, Almaty, Kazakhstan
| | - Guenter Froeschl
- Center for International Health, Ludwig-Maximilians-Universität, Munich, Germany.,Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Germany
| | - Lyazzat Musralina
- Al-Farabi Kazakh National University, Almaty, Kazakhstan.,Institute of Genetics and Physiology, Almaty, Kazakhstan
| | - Yerubayev Toktasyn
- National Scientific Center for Extremeley Dangerous Infections, Almaty, Kazakhstan
| | - Zhumabaeva Gulnara
- National Scientific Center for Extremeley Dangerous Infections, Almaty, Kazakhstan
| | - Yerlan Sansyzbayev
- PCR-CD Department, Children's City Clinical Infectious Hospital, Almaty, Kazakhstan
| | - Satayeva Aigul
- Scientific Practical Center of Sanitary Epidemiological Expertise and Monitoring, Almaty, Kazakhstan
| | | | - Nurkeldi Turebekov
- National Scientific Center for Extremeley Dangerous Infections, Almaty, Kazakhstan
| | - Edith Wagner
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Jena, Germany.,Department of Virology and Intracellular Agents, Bundeswehr Institute of Microbiology, German Centre for Infection Research, Munich Partner Site, Munich, Germany
| | - Lukas Peintner
- Department of Virology and Intracellular Agents, Bundeswehr Institute of Microbiology, German Centre for Infection Research, Munich Partner Site, Munich, Germany
| | - Sandra Essbauer
- Department of Virology and Intracellular Agents, Bundeswehr Institute of Microbiology, German Centre for Infection Research, Munich Partner Site, Munich, Germany
| |
Collapse
|
10
|
Alnefelt Y, Van Meervenne S, Varjonen K, Tidholm A, Rohdin C. Evaluation of antibodies in cerebrospinal fluid for the diagnosis of tick-borne encephalitis in dogs. Acta Vet Scand 2021; 63:32. [PMID: 34446031 PMCID: PMC8396403 DOI: 10.1186/s13028-021-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/16/2021] [Indexed: 11/10/2022] Open
Abstract
Tick-borne encephalitis (TBE) is caused by the neurotropic tick-borne encephalitis virus (TBEV). In dogs, this virus may affect the central nervous system (CNS), causing meningoencephalitis, meningomyelitis, radiculitis or any combination of these. Diagnosis of TBE relies on a combination of clinical signs of CNS disease and laboratory findings, including CSF pleocytosis and serum TBEV antibody titers. Exposure to TBEV does not necessarily cause clinical disease, and seroprevalence has been reported as high as 40% in endemic areas. This causes concerns of over-diagnosing TBE in dogs with CNS disease. By examining TBEV antibodies in dogs with and without neurological disease in a TBEV endemic area, this study aimed to evaluate the diagnostic value of TBEV antibodies in the cerebrospinal fluid (CSF) in dogs. Eighty-nine dogs were included in the study, 56 with neurological disease and 33 neurologically normal control dogs. A positive TBEV CSF and serum IgG antibody titer (> 126 U/mL) was found in 3/89 dogs (3.4%). A positive serum TBEV antibody titer was found in 11 of the 89 dogs (12.4%). None of the control dogs showed a positive CSF antibody titer, whilst two showed positive serum concentrations. A positive CSF IgG antibody titer supports a clinical diagnosis of TBE in patients with acute onset of CNS disease and may help reduce the risk of over-diagnosis.
Collapse
Affiliation(s)
- Yvonne Alnefelt
- Anicura Albano Small Animal Hospital, 182 36 Danderyd, Sweden
| | | | | | - Anna Tidholm
- Anicura Albano Small Animal Hospital, 182 36 Danderyd, Sweden
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Cecilia Rohdin
- Anicura Albano Small Animal Hospital, 182 36 Danderyd, Sweden
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| |
Collapse
|
11
|
Free Immunoglobulin Light Chains in Patients with Tick-Borne Encephalitis: Before and after Treatment. J Clin Med 2021; 10:jcm10132922. [PMID: 34209994 PMCID: PMC8269011 DOI: 10.3390/jcm10132922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Tick-borne encephalitis (TBE) is inflammation of the central nervous system (CNS) caused by a viral infection which may be associated with increased synthesis of immunoglobulins. It can lead to inter alia, breakdown of the blood-brain barrier (BBB), or even death and, unfortunately, treatment is only symptomatic. Therefore, the aim of the present study was assessment of the concentrations of free light chains (FLC) kappa (κ) and lambda (λ in the cerebrospinal fluid (CSF) and serum of patients with TBE. Methods: A total of 58 cerebrospinal fluid and serum sample pairs were analyzed. Samples were collected from patients with TBE before and after treatment. FLC were measured using the turbidimetric method. The values of κIgG-index, λIgG-index, κFLC-index and λFLC-index were calculated using relevant formulas. Results: Pre-treatment serum λFLC concentrations were higher in comparison to post-treatment levels. Moreover, it was observed that CSF λFLC, TBEV IgM, TBEV IgG, and serum TBEV IgG, as well as the values of λFLC-index, κFLC-index, and λIgG-index were elevated after treatment. In the total study group, the concentrations of CSF κFLC and λFLC, and values of four indexes: κFLC-index, λFLC-index, κIgG-index, and λIgG-index correlated with each other and with CSF TBEV IgM and IgG antibodies. The CSF level of TBEV IgG was also associated with serum IgG TBEV and CSF IgM TBEV antibodies. Additionally, serum κFLC correlated with serum and CSF λFLC. Conclusion: This is the first study that demonstrates statistically significant differences in serum and CSF λFLC, as well as in the calculated values of three algorithms: λIgG-index, κFLC-index, and λIgG-index prior to and following treatment of TBE. Our findings may indicate that these differences reflect the intrathecal synthesis of immunoglobulins and increased permeability of BBB in patients with TBE. Moreover, it could provide the basis for developing new therapeutic strategies.
Collapse
|
12
|
Edén A, Simrén J, Price RW, Zetterberg H, Gisslén M. Neurochemical biomarkers to study CNS effects of COVID-19: a narrative review and synthesis. J Neurochem 2021; 159:61-77. [PMID: 34170549 PMCID: PMC8420435 DOI: 10.1111/jnc.15459] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/09/2021] [Accepted: 06/20/2021] [Indexed: 12/01/2022]
Abstract
Neurological symptoms are frequently reported in patients suffering from COVID‐19. Common CNS‐related symptoms include anosmia, caused by viral interaction with either neurons or supporting cells in nasal olfactory tissues. Diffuse encephalopathy is the most common sign of CNS dysfunction, which likely results from the CNS consequences of the systemic inflammatory syndrome associated with severe COVID‐19. Additionally, microvascular injuries and thromboembolic events likely contribute to the neurologic impact of acute COVID‐19. These observations are supported by evidence of CNS immune activation in cerebrospinal fluid (CSF) and in autopsy tissue, along with the detection of microvascular injuries in both pathological and neuroimaging studies. The frequent occurrence of thromboembolic events in patients with COVID‐19 has generated different hypotheses, among which viral interaction with perivascular cells is particularly attractive, yet unproven. A distinguishing feature of CSF findings in SARS‐CoV‐2 infection is that clinical signs characteristic of neurotropic viral infections (CSF pleocytosis and blood–brain barrier injury) are mild or absent. Moreover, virus detection in CSF is rare and often of uncertain significance. In this review, we provide an overview of the neurological impact that occurs in the acute phase of COVID‐19, and the role of CSF biomarkers in the clinical management and research to better treat and understand the disease. In addition to aiding as diagnostic and prognostic tools during acute infection, the use of comprehensive and well‐characterized CSF and blood biomarkers will be vital in understanding the potential impact on the CNS in the rapidly increasing number of individuals recovering from COVID‐19.
Collapse
Affiliation(s)
- Arvid Edén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Richard W Price
- Department of Neurology, University of California San Francisco, San Francisco, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom.,Dementia Research Institute at UCL, London, United Kingdom
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| |
Collapse
|
13
|
Are other tick-borne infections overlooked in patients investigated for Lyme neuroborreliosis? A large retrospective study from South-eastern Sweden. Ticks Tick Borne Dis 2021; 12:101759. [PMID: 34161869 DOI: 10.1016/j.ttbdis.2021.101759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022]
Abstract
In Europe, the hard tick Ixodes ricinus is considered the most important vector of human zoonotic diseases. Human pathogenic agents spread by I. ricinus in Sweden include Borrelia burgdorferi sensu lato (s.l.), Anaplasma phagocytophilum, Rickettsia helvetica, the recently described Neoehrlichia mikurensis, Borrelia miyamotoi, tick-borne encephalitis virus (TBEV), and Babesia spp. (Babesia microti, Babesia venatorum and Babesia divergens). Since these pathogens share the same vector, co-infections with more than one tick-borne pathogen may occur and thus complicate the diagnosis and clinical management of the patient due to possibly altered symptomatology. Borrelia burgdorferi s.l., TBEV and B. miyamotoi are well-known to cause infections of the central nervous system (CNS), whereas the abilities of other tick-borne pathogens to invade the CNS are largely unknown. The aim of this study was to investigate the presence and clinical impact of tick-borne pathogens other than B. burgdorferi s.l. in the cerebrospinal fluid (CSF) and serum samples of patients who were under investigation for Lyme neuroborreliosis (LNB) in a tick-endemic region of South-eastern Sweden. CSF and serum samples from 600 patients, recruited from the Regions of Östergötland County, Jönköping County and Kalmar County in South-eastern Sweden and investigated for LNB during the period of 2009-2013, were retrospectively collected for analysis. The samples were analysed by real-time PCR for the presence of nucleic acid from B. burgdorferi s.l., B. miyamotoi, A. phagocytophilum, Rickettsia spp., N. mikurensis, TBEV and Babesia spp. Serological analyses were conducted in CSF and serum samples for all patients regarding B. burgdorferi s.l., and for the patients with CSF mononuclear pleocytosis, analyses of antibodies to B. miyamotoi, A. phagocytophilum, spotted fever group (SFG) rickettsiae, TBEV and B. microti in serum were performed. The medical charts of all the patients with CSF mononuclear pleocytosis and patients with positive PCR findings were reviewed. Of the 600 patients, 55 (9%) presented with CSF mononuclear pleocytosis, 13 (2%) of whom had Borrelia-specific antibodies in the CSF. One patient was PCR-positive for N. mikurensis, and another one was PCR-positive for Borrelia spp. in serum. No pathogens were detected by PCR in the CSF samples. Four patients had serum antibodies to B. miyamotoi, four patients to A. phagocytophilum, five patients to SFG rickettsiae, and six patients to TBEV. One patient, with antibodies to SFG rickettsiae, had both clinical and laboratory signs suggestive of a current infection. Nine patients had serum antibodies to more than one pathogen, although none of these was assessed as a current co-infection. We can conclude from this study that tick-borne co-infections are uncommon in patients who are being investigated for suspected LNB in South-eastern Sweden, an area endemic for borreliosis and TBE.
Collapse
|
14
|
Botelho-Nevers E, Gagneux-Brunon A, Velay A, Guerbois-Galla M, Grard G, Bretagne C, Mailles A, Verhoeven PO, Pozzetto B, Gonzalo S, Fafi-Kremer S, Leparc-Goffart I, Pillet S. Tick-Borne Encephalitis in Auvergne-Rhône-Alpes Region, France, 2017-2018. Emerg Infect Dis 2020; 25:1944-1948. [PMID: 31538929 PMCID: PMC6759258 DOI: 10.3201/eid2510.181923] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Three autochthonous cases of tick-borne encephalitis (TBE) acquired in rural areas of France where Lyme borreliosis, but not TBE, is endemic highlight the emergence of TBE in new areas. For patients with neurologic involvement who have been in regions where Ixodes ticks circulate, clinicians should test for TBE virus and other tickborne viruses.
Collapse
|
15
|
Velay A, Paz M, Cesbron M, Gantner P, Solis M, Soulier E, Argemi X, Martinot M, Hansmann Y, Fafi-Kremer S. Tick-borne encephalitis virus: molecular determinants of neuropathogenesis of an emerging pathogen. Crit Rev Microbiol 2019; 45:472-493. [PMID: 31267816 DOI: 10.1080/1040841x.2019.1629872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is a zoonotic agent causing severe encephalitis. The transmission cycle involves the virus, the Ixodes tick vector, and a vertebrate reservoir, such as small mammals (rodents, or shrews). Humans are accidentally involved in this transmission cycle. Tick-borne encephalitis (TBE) has been a growing public health problem in Europe and Asia over the past 30 years. The mechanisms involved in the development of TBE are very complex and likely multifactorial, involving both host and viral factors. The purpose of this review is to provide an overview of the current literature on TBE neuropathogenesis in the human host and to demonstrate the emergence of common themes in the molecular pathogenesis of TBE in humans. We discuss and review data on experimental study models and on both viral (molecular genetics of TBEV) and host (immune response, and genetic background) factors involved in TBE neuropathogenesis in the context of human infection.
Collapse
Affiliation(s)
- Aurélie Velay
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France.,INSERM, IRM UMR_S 1109 , Strasbourg , France
| | - Magali Paz
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France
| | - Marlène Cesbron
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France
| | - Pierre Gantner
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France.,INSERM, IRM UMR_S 1109 , Strasbourg , France
| | - Morgane Solis
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France.,INSERM, IRM UMR_S 1109 , Strasbourg , France
| | | | - Xavier Argemi
- Service des maladies infectieuses et tropicales, Hôpitaux Universitaires de Strasbourg , Strasbourg , France
| | - Martin Martinot
- Service de Médecine Interne et de Rhumatologie, Hôpitaux Civils de Colmar , Colmar , France
| | - Yves Hansmann
- Service des maladies infectieuses et tropicales, Hôpitaux Universitaires de Strasbourg , Strasbourg , France
| | - Samira Fafi-Kremer
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France.,INSERM, IRM UMR_S 1109 , Strasbourg , France
| |
Collapse
|
16
|
Seruyange E, Ljungberg K, Muvunyi CM, Gahutu JB, Katare S, Nyamusore J, Gwon YD, Evander M, Norder H, Liljeström P, Bergström T. Seroreactivity to Chikungunya and West Nile Viruses in Rwandan Blood Donors. Vector Borne Zoonotic Dis 2019; 19:731-740. [PMID: 31246538 DOI: 10.1089/vbz.2018.2393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Introduction: Chikungunya virus (CHIKV) and West Nile virus (WNV) have previously been reported from several African countries, including those bordering Rwanda where they may have originated. However, there have been no serosurveillance reports from Rwanda regarding these two viral pathogens. In this article, we present the first study of immunoglobulin G (IgG) seroreactivity of CHIKV and WNV in Rwandan blood donor samples. Methods: Blood donors from Rwanda (n = 874) and Sweden (n = 199) were tested for IgG reactivity against CHIKV, using an in-house enzyme-linked immunosorbent assay with the E1 envelope protein fused with p62 as antigen, and against WNV using a commercial kit. Data on mosquito distribution were obtained from the 2012 assessment of yellow fever virus circulation in Rwanda. Results: Seroreactivity to CHIKV was high in Rwanda (63.0%), when compared with Swedish donors, where only 8.5% were IgG positive. However, a cross-reactivity to O'nyong'nyong virus in neutralization test was noted in Rwandan donors. No significant difference in WNV seroreactivity was found (10.4% for Rwandan and 14.1% for Swedish donors). The relatively high seroreactivity to WNV among Swedish donors could partly be explained by cross-reactivity with tick-borne encephalitis virus prevalent in Sweden. Donors from the Eastern Province of Rwanda had the highest IgG reactivity to the two investigated viruses (86.7% for CHIKV and 33.3% for WNV). Five genera of mosquitoes were found in Rwanda where Culex was the most common (82.5%). The vector of CHIKV, Aedes, accounted for 9.6% of mosquitoes and this species was most commonly found in the Eastern Province. Conclusions: Our results showed high seroreactivity to CHIKV in Rwandan donors. The highest IgG reactivity to CHIKV, and to WNV, was found in the Eastern Province, the area reporting the highest number of mosquito vectors for these two viruses. Infection control by eliminating mosquito-breeding sites in population-dense areas is recommended, especially in eastern Rwanda.
Collapse
Affiliation(s)
- Eric Seruyange
- School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda.,Rwanda Military Hospital, Kigali, Rwanda.,Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karl Ljungberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Claude Mambo Muvunyi
- School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Jean Bosco Gahutu
- School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Swaibu Katare
- National Centre for Blood Transfusion, Rwanda Biomedical Centre, Kigali, Rwanda
| | - José Nyamusore
- Division of Epidemic Surveillance and Response, Rwanda Biomedical Center, Kigali, Rwanda
| | - Yong-Dae Gwon
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Magnus Evander
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Heléne Norder
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Peter Liljeström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Zhao Q, Li X, Zhang W, Chu C, Yao L, Zhang Y, Qian Q, Li M, Li S, Li N, Zhao X, Song H, Wang Y, Huang B. Epidemiological Characteristics and Spatial Analysis of Tick-Borne Encephalitis in Jilin Province, China. Am J Trop Med Hyg 2019; 101:189-197. [PMID: 31074410 DOI: 10.4269/ajtmh.18-0958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Tick-borne encephalitis (TBE) is a viral infectious disease and has become a reemerging public health threat in recent years in northeastern China. However, no studies has characterized the epidemiologic features and explored the spatial dynamics and environmental factors of TBE cases in Jilin Province. In this study, we have described the epidemiological features of 846 reported human TBE cases from 2006 to 2016 in Jilin Province. There was an obvious single peak pattern of TBE cases from May to July in Jilin Province. More than 60% of TBE cases occurred in farmers, and the people in 50- to 59-year-old group had the high incidence of the disease. The results of Getis-Ord Gi* statistics demonstrated that the human TBE cases were more clustered in the northeastern border including Dunhua and Yanji cities and Antu and Wangqing counties, and southern areas including Huinan, Jingyu, Jiangyuan, and Liuhe counties in Jilin Province. We demonstrated that the temporal dynamics of TBE in Jilin was significantly associated with the dynamics of meteorological factors especially after 2009. The results from the auto-logistic regression analysis showed that the percentage coverage of forest, temperature, and autoregressive term were significantly associated with the occurrence of human TBE cases in Jilin Province. Our findings will provide a scientific evidence for the targeted prevention and control programs.
Collapse
Affiliation(s)
- Qinglong Zhao
- Jilin Provincial Center for Disease Control and Prevention, Changchun, China
| | - Xinlou Li
- PLA Strategic Support Force Characteristic Medical Center, Beijing, China.,State Key Laboratory of Resources and Environmental Information System, Chinese Academy of Sciences, Beijing, China.,Center for Disease Control and Prevention of Aerospace System, Beijing, China
| | - Wenyi Zhang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Chenyi Chu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Laishun Yao
- Jilin Provincial Center for Disease Control and Prevention, Changchun, China
| | - Yang Zhang
- Jilin Provincial Center for Disease Control and Prevention, Changchun, China
| | - Quan Qian
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Meina Li
- The First Hospital of Jilin University, Changchun, China
| | - Shenlong Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Na Li
- PLA Strategic Support Force Characteristic Medical Center, Beijing, China.,Center for Disease Control and Prevention of Aerospace System, Beijing, China
| | - Xiaobo Zhao
- PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Haifeng Song
- PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Yong Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Biao Huang
- Jilin Provincial Center for Disease Control and Prevention, Changchun, China
| |
Collapse
|
18
|
Khristunova Y, Korotkova E, Kratochvil B, Barek J, Dorozhko E, Vyskocil V, Plotnikov E, Voronova O, Sidelnikov V. Preparation and Investigation of Silver Nanoparticle⁻Antibody Bioconjugates for Electrochemical Immunoassay of Tick-Borne Encephalitis. SENSORS 2019; 19:s19092103. [PMID: 31067666 PMCID: PMC6540590 DOI: 10.3390/s19092103] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/14/2022]
Abstract
A new simple electrochemical immunosensor approach for the determination of antibodies to tick-borne encephalitis virus (TBEV) in immunological products was developed and tested. The assay is performed by detecting the silver reduction signal in the bioconjugates with antibodies (Ab@AgNP). Here, signal is read by cathodic linear sweep voltammetry (CLSV) through the detection of silver chloride reduction on a gold–carbon composite electrode (GCCE). Covalent immobilization of the antigen on the electrode surface was performed after thiolation and glutarization of the GCCE. Specific attention has been paid to the selection of conditions for stabilizing both the silver nanoparticles and their Ab@AgNP. A simple flocculation test with NaCl was used to select the concentration of antibodies, and the additional stabilizer bovine serum albumin (BSA) was used for Ab@AgNP preparation. The antibodies to TBEV were quantified in the range from 50 IU·mL−1 to 1600 IU·mL−1, with a detection limit of 50 IU·mL−1. The coefficient of determination (r2) is 0.989. The electrochemical immunosensor was successfully applied to check the quality of immunological products containing IgG antibodies to TBEV. The present work paves the path for a novel method for monitoring TBEV in biological fluids.
Collapse
Affiliation(s)
- Yekaterina Khristunova
- Department of Chemical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia.
- Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Albertov 6, 12843 Prague 2, Czech Republic.
- Department of Solid State Chemistry, University of Chemistry and Technology, Prague, Technicka 5, 16628 Prague 6, Czech Republic.
| | - Elena Korotkova
- Department of Chemical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia.
| | - Bohumil Kratochvil
- Department of Chemical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia.
- Department of Solid State Chemistry, University of Chemistry and Technology, Prague, Technicka 5, 16628 Prague 6, Czech Republic.
| | - Jiri Barek
- Department of Chemical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia.
- Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Albertov 6, 12843 Prague 2, Czech Republic.
| | - Elena Dorozhko
- Department of Chemical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia.
| | - Vlastimil Vyskocil
- Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Albertov 6, 12843 Prague 2, Czech Republic.
| | - Evgenii Plotnikov
- Department of Chemical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia.
| | - Olesya Voronova
- Department of Chemical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia.
| | - Vladimir Sidelnikov
- Department of Chemical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia.
| |
Collapse
|
19
|
Veje M, Studahl M, Bergström T. Intrathecal complement activation by the classical pathway in tick-borne encephalitis. J Neurovirol 2019; 25:397-404. [PMID: 30850976 PMCID: PMC6647885 DOI: 10.1007/s13365-019-00734-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/15/2022]
Abstract
Tick-borne encephalitis (TBE) is one of the most prevalent viral central nervous system (CNS) infections in Eurasia and neurological sequelae are common. The immune responses are considered crucial for the pathogenesis. The aim of this study was to explore the activation of the complement system in TBE. The complement system is a part of the innate immune response in the CNS, which previously has been reported to be activated in other flavivirus infections. We analyzed complement factors in 44 paired cerebrospinal fluid (CSF) and serum samples from 20 cases of TBE in the acute and later stages, as well as in serum and CSF from 32 healthy controls. The concentrations of complement factors C1q, C3a, C3b, and C5a were determined with commercially available ELISA kits. Clinical data to categorize the severity of disease and outcome was retrieved from the medical records of the TBE patients. We found significantly higher concentrations of all of the analyzed complement factors in the CSF from TBE patients compared to the healthy controls. In particular, the marked increment of C1q concentrations in the CSF (p < 0,001 as compared to controls) indicated an intrathecal activation by the classical pathway. There was no correlation between complement factor concentrations in the CSF and severity of the disease in the acute phase or with sequelae at 6 months follow-up. We have found an intrathecal complement activation in TBE, and the marked increase of complement factor C1q indicated an activation by the classical pathway.
Collapse
Affiliation(s)
- Malin Veje
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Marie Studahl
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
20
|
Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res 2019; 164:23-51. [PMID: 30710567 DOI: 10.1016/j.antiviral.2019.01.014] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/10/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
Abstract
Tick-borne encephalitis (TBE) is an illness caused by tick-borne encephalitis virus (TBEV) infection which is often limited to a febrile illness, but may lead to very aggressive downstream neurological manifestations. The disease is prevalent in forested areas of Europe and northeastern Asia, and is typically caused by infection involving one of three TBEV subtypes, namely the European (TBEV-Eu), the Siberian (TBEV-Sib), or the Far Eastern (TBEV-FE) subtypes. In addition to the three main TBEV subtypes, two other subtypes; i.e., the Baikalian (TBEV-Bkl) and the Himalayan subtype (TBEV-Him), have been described recently. In Europe, TBEV-Eu infection usually results in only mild TBE associated with a mortality rate of <2%. TBEV-Sib infection also results in a generally mild TBE associated with a non-paralytic febrile form of encephalitis, although there is a tendency towards persistent TBE caused by chronic viral infection. TBE-FE infection is considered to induce the most severe forms of TBE. Importantly though, viral subtype is not the sole determinant of TBE severity; both mild and severe cases of TBE are in fact associated with infection by any of the subtypes. In keeping with this observation, the overall TBE mortality rate in Russia is ∼2%, in spite of the fact that TBEV-Sib and TBEV-FE subtypes appear to be inducers of more severe TBE than TBEV-Eu. On the other hand, TBEV-Sib and TBEV-FE subtype infections in Russia are associated with essentially unique forms of TBE rarely seen elsewhere if at all, such as the hemorrhagic and chronic (progressive) forms of the disease. For post-exposure prophylaxis and TBE treatment in Russia and Kazakhstan, a specific anti-TBEV immunoglobulin is currently used with well-documented efficacy, but the use of specific TBEV immunoglobulins has been discontinued in Europe due to concerns regarding antibody-enhanced disease in naïve individuals. Therefore, new treatments are essential. This review summarizes available data on the pathogenesis and clinical features of TBE, plus different vaccine preparations available in Europe and Russia. In addition, new treatment possibilities, including small molecule drugs and experimental immunotherapies are reviewed. The authors caution that their descriptions of approved or experimental therapies should not be considered to be recommendations for patient care.
Collapse
|
21
|
Klitting R, Fischer C, Drexler JF, Gould EA, Roiz D, Paupy C, de Lamballerie X. What Does the Future Hold for Yellow Fever Virus? (II). Genes (Basel) 2018; 9:E425. [PMID: 30134625 PMCID: PMC6162518 DOI: 10.3390/genes9090425] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023] Open
Abstract
As revealed by the recent resurgence of yellow fever virus (YFV) activity in the tropical regions of Africa and South America, YFV control measures need urgent rethinking. Over the last decade, most reported outbreaks occurred in, or eventually reached, areas with low vaccination coverage but that are suitable for virus transmission, with an unprecedented risk of expansion to densely populated territories in Africa, South America and Asia. As reflected in the World Health Organization's initiative launched in 2017, it is high time to strengthen epidemiological surveillance to monitor accurately viral dissemination, and redefine vaccination recommendation areas. Vector-control and immunisation measures need to be adapted and vaccine manufacturing must be reconciled with an increasing demand. We will have to face more yellow fever (YF) cases in the upcoming years. Hence, improving disease management through the development of efficient treatments will prove most beneficial. Undoubtedly, these developments will require in-depth descriptions of YFV biology at molecular, physiological and ecological levels. This second section of a two-part review describes the current state of knowledge and gaps regarding the molecular biology of YFV, along with an overview of the tools that can be used to manage the disease at the individual, local and global levels.
Collapse
Affiliation(s)
- Raphaëlle Klitting
- Unité des Virus Émergents (UVE: Aix-Marseille Univ⁻IRD 190⁻Inserm 1207⁻IHU Méditerranée Infection), 13385 Marseille CEDEX 05, France.
| | - Carlo Fischer
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany.
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany.
| | - Jan F Drexler
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany.
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany.
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119991 Moscow, Russia.
| | - Ernest A Gould
- Unité des Virus Émergents (UVE: Aix-Marseille Univ⁻IRD 190⁻Inserm 1207⁻IHU Méditerranée Infection), 13385 Marseille CEDEX 05, France.
| | - David Roiz
- UMR Maladies Infectieuses et Vecteurs: Écologie, Génétique Évolution et Contrôle (MIVEGEC: IRD, CNRS, Univ. Montpellier), 34394 Montpellier, France.
| | - Christophe Paupy
- UMR Maladies Infectieuses et Vecteurs: Écologie, Génétique Évolution et Contrôle (MIVEGEC: IRD, CNRS, Univ. Montpellier), 34394 Montpellier, France.
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ⁻IRD 190⁻Inserm 1207⁻IHU Méditerranée Infection), 13385 Marseille CEDEX 05, France.
| |
Collapse
|