1
|
Gao Y, Wu T, Pu L, Ji X, Wang Z, Wang F, Wang C, Song X, Qiu W. Identification of vancomycin exposure target in neonates: how much is enough? J Antimicrob Chemother 2024:dkae374. [PMID: 39450856 DOI: 10.1093/jac/dkae374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
OBJECTIVES Vancomycin is commonly used in neonates with the same pharmacokinetics/pharmacodynamics (PK/PD) target as adults. However, no evidence supports this practice, and the association between trough concentrations and treatment outcomes has been widely questioned. This study aimed to identify the optimal PK/PD predictor and assess the correlation between AUC/MIC, trough concentration and the vancomycin efficacy in neonates. METHODS This study retrospectively collected neonates who used vancomycin and constructed a population pharmacokinetic (PPK) model to estimate the AUC. Logistic analyses were used to identify the variables related to efficacy. Classification and regression tree analysis was used to explore thresholds. The correlation between trough concentration and AUC/MIC on the first day was analysed using a linear regression model. RESULTS PPK modelling involved 131 neonates. Postmenstrual age and current weight were included in the covariate analysis. Forty-eight patients were included in the efficacy analysis, 13 of whom were infected with MRSA. The best-performance PK/PD target for efficacy was AUC0-24 h/MIC ≥ 331. The trough concentration was correlated with AUC0-24 h/MIC (r2 = 0.32), but individual differences existed. AUC0-24 h/MIC ranged up to 2.5-fold for a given trough concentration. CONCLUSIONS AUC0-24 h/MIC ≥ 331 was the optimal target of vancomycin efficacy in neonates. The trough concentration was not a reliable predictor of efficacy and AUC0-24 h/MIC. AUC-guided dosage adjustments are more valuable in clinical applications.
Collapse
Affiliation(s)
- Yuan Gao
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu Province, China
| | - Tong Wu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu Province, China
| | - Libin Pu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu Province, China
| | - Xingfang Ji
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu Province, China
| | - Zhipeng Wang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu Province, China
| | - Fan Wang
- Department of Neonatology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Chang Wang
- Pharmacy Department, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Xia Song
- Pharmacy Department, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Wen Qiu
- Pharmacy Department, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
- National Drug Clinical Trial Institution, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| |
Collapse
|
2
|
Vander Elst Z, Laenen A, Deberdt J, Delemarre L, Vermeersch P, Frans G, Naulaers G, Gijsen M, Dreesen E, Spriet I, Allegaert K, Smits A. Human serum albumin: prediction model and reference values for preterm and term neonates. Pediatr Res 2024:10.1038/s41390-024-03634-1. [PMID: 39394426 DOI: 10.1038/s41390-024-03634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Human serum albumin (HSA) concentrations may alter HSA-bound drug distribution. This study aims to describe longitudinal real-world HSA trends, and to develop a prediction model for HSA concentrations using a large neonatal cohort. METHODS Patients admitted to the neonatal intensive care unit of the University Hospitals Leuven (postnatal age (PNA) ≤28days) were retrospectively included. Using linear mixed models, covariate effects on HSA were explored. A multivariable prediction model was developed (backward model selection procedure, 1% significance level). RESULTS In total, 848 neonates were included [median(interquartile range) gestational age (GA) 35(32-38)weeks, birth weight (BW) 2400(1640-3130)grams]. Median HSA concentration was 32.3(28.7-35.6)g/L. Longitudinal analyses demonstrated increasing HSA concentrations with PNA and GA for most GA groups. Univariable analyses revealed significant associations of HSA with PNA, GA, BW, current weight, total and direct bilirubin, total plasma proteins, respiratory support, mechanical ventilation, sepsis, ibuprofen use, and C-reactive protein (p-values < 0.05). A high-performance (R2 = 76.3%) multivariable HSA prediction model was developed, and PNA- and GA-dependent HSA centiles were provided. CONCLUSION Population-specific HSA centiles and an accurate neonatal HSA prediction model were developed, incorporating both maturational and non-maturational covariates. These results can enhance future clinical care and pharmacokinetic analyses to improve pharmacotherapy of HSA-bound drugs in neonates, respectively. IMPACT To improve future pharmacokinetic modeling initiatives, a high-performance human serum albumin (HSA) prediction model was developed for (pre)term neonates, using a large, single-center cohort of real-world data. This prediction model integrates both maturational and non-maturational covariates, resulting in accurate HSA predictions in neonates. Additionally, HSA centiles based on postnatal and gestational age were developed, which can be easily applied in clinical practice when interpreting HSA concentrations of neonates. In general, unbound drug fractions are higher in neonates compared to older populations. To improve pharmacotherapy of HSA-bound drugs in neonates, the obtained results can be integrated in future pharmacokinetic-pharmacodynamic analyses.
Collapse
Affiliation(s)
- Zoë Vander Elst
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Annouschka Laenen
- Leuven Biostatistics and Statistical Bioinformatics Centre (L-Biostat), KU Leuven, Leuven, Belgium
| | | | | | - Pieter Vermeersch
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Glynis Frans
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Gunnar Naulaers
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Matthias Gijsen
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Pharmacy Department, UZ Leuven, Leuven, Belgium
| | - Erwin Dreesen
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Isabel Spriet
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Pharmacy Department, UZ Leuven, Leuven, Belgium
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, The Netherlands
| | - Anne Smits
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Cree ML, Abdul-Aziz MH, Schlapbach LJ, Roberts JA, Parker SL. The impact of extracorporeal support on antimicrobial pharmacokinetics in critically ill neonatal and paediatric patients: A systematic review. Int J Antimicrob Agents 2024; 64:107311. [PMID: 39197687 DOI: 10.1016/j.ijantimicag.2024.107311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/24/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
OBJECTIVES Infections represent a major risk for critically ill neonatal and paediatric patients requiring extracorporeal life-saving support such as extracorporeal membrane oxygenation (ECMO) and/or continuous renal replacement therapies (CRRT). Patient outcomes rely on achieving target antimicrobial concentrations. In critically ill adults on extracorporeal support, suboptimal antimicrobial concentrations have been shown to be common. Our objective was to systematically review antimicrobial pharmacokinetic studies in critically ill term neonatal and paediatric patients receiving ECMO and/or CRRT and compare them to similar cohorts of patients not receiving ECMO or CRRT. METHODS Studies published between 1990 and 2022 were identified through systematic searches in PUBMED, Embase, Web of Science, Medline, Google Scholar and CINAHL. Studies were included which provided antimicrobial pharmacokinetic parameters (volume of distribution and clearance) in the neonatal and paediatric patients receiving ECMO and/or CRRT. Studies were excluded if no antimicrobial pharmacokinetic parameters were described or could be calculated. RESULTS Forty-four pharmacokinetic studies were identified describing 737 patients, with neonatal patients recruited in 70% of the ECMO studies and <1% of the CRRT studies. Of all the studies, 50% were case reports or case series. The pharmacokinetics were altered for gentamicin, daptomycin, ceftolozane, micafungin, voriconazole, cefepime, fluconazole, piperacillin, and vancomycin, although considerable patient variability was described. CONCLUSION Significant gaps remain in our understanding of the pharmacokinetic alterations in neonatal and paediatric patients receiving ECMO and CRRT support.
Collapse
Affiliation(s)
- Michele L Cree
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Pharmacy Department, Queensland Children's Hospital, Brisbane, Australia
| | - Mohd Hafiz Abdul-Aziz
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Luregn J Schlapbach
- Pediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, Australia; Centre for Children's Health Research, The University of Queensland, Brisbane Australia; Department of Intensive Care and Neonatology, and Children`s Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Jason A Roberts
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Department of Intensive Care Medicine, Royal Brisbane & Women's Hospital, Brisbane Australia; Faculty of Medicine, Centre for Translational Anti-infective Pharmacodynamics, The University of Queensland, Brisbane, Australia; Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France; Pharmacy Department, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Suzanne L Parker
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
4
|
Shuai W, Cao J, Qian M, Tang Z. Physiologically Based Pharmacokinetic Modeling of Vancomycin in Critically Ill Neonates: Assessing the Impact of Pathophysiological Changes. J Clin Pharmacol 2024. [PMID: 39092894 DOI: 10.1002/jcph.6107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
Dosing vancomycin for critically ill neonates is challenging owing to substantial alterations in pharmacokinetics (PKs) caused by variability in physiology, disease, and clinical interventions. Therefore, an adequate PK model is needed to characterize these pathophysiological changes. The intent of this study was to develop a physiologically based pharmacokinetic (PBPK) model that reflects vancomycin PK and pathophysiological changes in neonates under intensive care. PK-sim software was used for PBPK modeling. An adult model (model 0) was established and verified using PK profiles from previous studies. A neonatal model (model 1) was then extrapolated from model 0 by scaling age-dependent parameters. Another neonatal model (model 2) was developed based not only on scaled age-dependent parameters but also on quantitative information on pathophysiological changes obtained via a comprehensive literature search. The predictive performances of models 1 and 2 were evaluated using a retrospectively collected dataset from neonates under intensive care (chictr.org.cn, ChiCTR1900027919), comprising 65 neonates and 92 vancomycin serum concentrations. Integrating literature-based parameter changes related to hypoalbuminemia, small-for-gestational-age, and co-medication, model 2 offered more optimized precision than model 1, as shown by a decrease in the overall mean absolute percentage error (50.6% for model 1; 37.8% for model 2). In conclusion, incorporating literature-based pathophysiological changes effectively improved PBPK modeling for critically ill neonates. Furthermore, this model allows for dosing optimization before serum concentration measurements can be obtained in clinical practice.
Collapse
Affiliation(s)
- Weiwei Shuai
- Department of Pharmacy, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, P. R. China
| | - Jing Cao
- Department of Pharmacy, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, P. R. China
| | - Miao Qian
- Department of Neonatology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, P. R. China
| | - Zhe Tang
- Department of Pharmacy, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
5
|
Gadsby J, Stachow L, Mulla H. Age-Related Changes in Vancomycin Protein Binding: Is It Time to Take It Seriously? Ther Drug Monit 2024; 46:543-547. [PMID: 38648651 DOI: 10.1097/ftd.0000000000001194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/01/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Vancomycin (VAN) protein binding in plasma is influenced by illness and age; hence, doses titrated according to total concentrations are fraught. In this study, model-estimated free VAN concentrations (EFVC) were compared with assumed free VAN concentrations (AFVC) in neonates, children, and adults in the intensive care unit and those on dialysis. METHODS Patient cohorts were identified from the hospital database. Demographics, clinical characteristics, total VAN concentrations, and laboratory variables were obtained from electronic health records. EFVC was derived from 6 models identified in the literature. For all models, total VAN concentration was the most important predictor; other predictors included albumin, total protein, and dialysis status. The AFVC was calculated as 50% of the total concentration (ie, assumption of 50% bound). RESULTS Differences between EFVC and AFVC in adults were insignificant; however, differences in pediatric intensive care unit patients, according to 2 different models, were significant: mean ± SD = 4.1 ± 1.58 mg/L and 4.7 ± 2.46 mg/L ( P < 0.001); the percentages within the free VAN trough range = 30.4% versus 55.1% and 30% versus 55.1%; and the supratherapeutic percentages = 65.2% versus 31.9% and 66.7% versus 31.9%, respectively. In neonates, the difference between EFVC and AFVC was mean ± SD = 6.9 ± 1.95 mg/L ( P < 0.001); the percentages within the free VAN trough range for continuous and intermediate dosing were 0% versus 81.3% and 14.3% versus 71.4%, and the supratherapeutic percentages were 100% versus 6.25% and 71.4% versus 0%, respectively. CONCLUSIONS The fraction of free unbound VAN is higher in sick children and neonates than in adults. Therefore, total VAN concentrations do not correlate with the pharmacologically active free VAN concentrations in the same manner as in adults. Adjusting VAN doses in neonates and children to target the same total VAN concentration as the recommended therapeutic range for adults may result in toxicfree concentrations.
Collapse
Affiliation(s)
- Jessica Gadsby
- Department of Pharmacy, University Hospitals of Leicester, Leicester, United Kingdom; and
| | - Lucy Stachow
- Department of Pharmacy, University Hospitals of Leicester, Leicester, United Kingdom; and
| | - Hussain Mulla
- Department of Pharmacy, University Hospitals of Leicester and College of Life Sciences, University of Leicester, United Kingdom
| |
Collapse
|
6
|
Shen X, Li X, Lu J, Zhu J, He Y, Zhang Z, Chen Z, Zhang J, Fan X, Li W. Population pharmacokinetic analysis for dose regimen optimization of vancomycin in Southern Chinese children. CPT Pharmacometrics Syst Pharmacol 2024; 13:1201-1213. [PMID: 38686551 PMCID: PMC11247118 DOI: 10.1002/psp4.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/19/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Changes in physiological factors may result in large pharmacokinetic variability of vancomycin in pediatric patients, thereby leading to either supratherapeutic or subtherapeutic exposure and potentially affecting clinical outcomes. This study set out to characterize the disposition of vancomycin, quantify the exposure target and establish an optimal dosage regimen among the Southern Chinese pediatric population. Routine therapeutic drug monitoring data of 453 patients were available. We performed a retrospective population pharmacokinetic analysis of hospitalized children prescribed intravenous vancomycin using NONMEM® software. A one-compartment PPK model of vancomycin with body weight and renal functions as covariates based on a cutoff of 2 years old children was proposed in this study. Both internal and external validation showing acceptable and robust predictive performance of the model to estimate PK parameters. The value of area under the curve over 24 h to minimum inhibitory concentration ratio (AUC0-24/MIC) ≥ 260 was a significant predictor for therapeutic efficacy. Monte Carlo simulations served as a model-informed precision dosing approach and suggested that different optimal dose regimens in various scenarios should be considered rather than flat dosing. The evaluation of vancomycin exposure-efficacy relationship indicated that lower target level of AUC0-24/MIC may be needed to achieve clinical effectiveness in children, which was used to derive the recommended dosing regimen. Further prospective studies will be needed to corroborate and elucidate these results.
Collapse
Affiliation(s)
- Xianhuan Shen
- Shenzhen Baoan Women's and Children's HospitalJinan UniversityShenzhenChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Xuejuan Li
- Shenzhen Children's HospitalShenzhenChina
| | - Jieluan Lu
- Shenzhen Baoan Women's and Children's HospitalJinan UniversityShenzhenChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Jiahao Zhu
- Shenzhen Baoan Women's and Children's HospitalJinan UniversityShenzhenChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Yaodong He
- Shenzhen Baoan Women's and Children's HospitalJinan UniversityShenzhenChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Zhou Zhang
- Shenzhen Children's HospitalShenzhenChina
| | - Zebin Chen
- Shenzhen Children's HospitalShenzhenChina
| | | | - Xiaomei Fan
- Shenzhen Baoan Women's and Children's HospitalJinan UniversityShenzhenChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Wenzhou Li
- Shenzhen Baoan Women's and Children's HospitalJinan UniversityShenzhenChina
| |
Collapse
|
7
|
Sette C, Mariani M, Grasselli L, Mesini A, Saffioti C, Russo C, Bandettini R, Moscatelli A, Ramenghi LA, Castagnola E. Real-Life Vancomycin Therapeutic Drug Monitoring in Coagulase-Negative Staphylococcal Bacteremia in Neonatal and Pediatric Intensive Care Unit: Are We Underestimating Augmented Renal Clearance? Antibiotics (Basel) 2023; 12:1566. [PMID: 37998768 PMCID: PMC10668724 DOI: 10.3390/antibiotics12111566] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Bloodstream infections (BSI) from coagulase-negative-staphylococci (CoNS) are among the most frequent healthcare-related infections. Their treatment involves the use of vancomycin, a molecule whose optimal pharmacokinetic/pharmacodynamic (PK/PD) target for efficacy and safety is an area-under-curve/minimum inhibitory concentration (AUC/MIC) ratio ≥ 400 with AUC < 600. BSIs from CoNS in pediatric and neonatal intensive care unit that occurred at the Gaslini Institute over five years were evaluated to investigate the efficacy of vancomycin therapy in terms of achieving the desired PK/PD target and determining whether any variables interfere with the achievement of this target. AUC/MIC ≥ 400 with AUC < 600 at 48 and 72 h after therapy initiation was achieved in only 21% of the neonatal population and 25% of the pediatric population. In the pediatric population, an inverse correlation emerged between estimated glomerular filtration rate (eGFR) and achieved AUC levels. Median eGFR at 72 h was significantly higher (expression of hyperfiltration) in events with AUC < 400, compared with those with AUC ≥ 400 (p < 0.001). A cut-off value of eGFR in the first 72 h has been identified (145 mL/min/1.73 m2), beyond which it is extremely unlikely to achieve an AUC ≥ 400, and therefore a higher dose or a different antibiotic should be chosen.
Collapse
Affiliation(s)
- Claudia Sette
- Department of Pediatrics, Ospedale SS. Annunziata, 74121 Taranto, Italy
| | - Marcello Mariani
- Pediatrics and Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Luca Grasselli
- Pediatric Emergency Room and Emergency Medicine, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Alessio Mesini
- Pediatrics and Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Carolina Saffioti
- Pediatrics and Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Chiara Russo
- Pediatric Emergency Room and Emergency Medicine, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Roberto Bandettini
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genova, 16132 Genoa, Italy
| | - Andrea Moscatelli
- Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Luca A. Ramenghi
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Elio Castagnola
- Pediatrics and Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| |
Collapse
|
8
|
Developmental Pharmacokinetics of Antibiotics Used in Neonatal ICU: Focus on Preterm Infants. Biomedicines 2023; 11:biomedicines11030940. [PMID: 36979919 PMCID: PMC10046592 DOI: 10.3390/biomedicines11030940] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/22/2023] Open
Abstract
Neonatal Infections are among the most common reasons for admission to the intensive care unit. Neonatal sepsis (NS) significantly contributes to mortality rates. Empiric antibiotic therapy of NS recommended by current international guidelines includes benzylpenicillin, ampicillin/amoxicillin, and aminoglycosides (gentamicin). The rise of antibacterial resistance precipitates the growth of the use of antibiotics of the Watch (second, third, and fourth generations of cephalosporines, carbapenems, macrolides, glycopeptides, rifamycins, fluoroquinolones) and Reserve groups (fifth generation of cephalosporines, oxazolidinones, lipoglycopeptides, fosfomycin), which are associated with a less clinical experience and higher risks of toxic reactions. A proper dosing regimen is essential for effective and safe antibiotic therapy, but its choice in neonates is complicated with high variability in the maturation of organ systems affecting drug absorption, distribution, metabolism, and excretion. Changes in antibiotic pharmacokinetic parameters result in altered efficacy and safety. Population pharmacokinetics can help to prognosis outcomes of antibiotic therapy, but it should be considered that the neonatal population is heterogeneous, and this heterogeneity is mainly determined by gestational and postnatal age. Preterm neonates are common in clinical practice, and due to the different physiology compared to the full terms, constitute a specific neonatal subpopulation. The objective of this review is to summarize the evidence about the developmental changes (specific for preterm and full-term infants, separately) of pharmacokinetic parameters of antibiotics used in neonatal intensive care units.
Collapse
|
9
|
Abouelkheir M, Almohaizeie A, Almutairi A, Almuhisen S, Alqahtani S, Alsultan A. Evaluation of vancomycin individualized model-based dosing approach in neonates. Pediatr Neonatol 2022; 64:327-334. [PMID: 36581523 DOI: 10.1016/j.pedneo.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/18/2022] [Accepted: 10/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Vancomycin is commonly used to treat methicillin-resistant staphylococcal infections in neonates. Consensus on its ideal dosing in neonates has not been achieved. Model-based dosing recently has evolved as an important tool to optimize vancomycin initial dosing. The aim of this is to evaluate a population pharmacokinetic model-based approach in achieving the vancomycin therapeutic target of an AUC0-24 400 as recommended by the recent IDSA treatment guidelines. This model was implemented as a simple Excel calculator to individualize and optimize vancomycin initial dosing in neonates. METHODS An Excel calculator was developed using a previously published population pharmacokinetic model in neonates. It was evaluated using retrospectively retrieved data. For each patient, the initial empiric dose was calculated using the proposed Excel model and the most widely used neonatal dosing references. The probability of achieving the target AUC0-24 of >400 mg h/L using the model-based method was calculated and compared with that of the empiric doses using other references. RESULTS This analysis included 225 neonates. The probability of achieving the target AUC0-24 >400 was 89% using our model-based approach compared with 11%-59% using tertiary neonatal dosing references (p < 0.01 for all comparisons). CONCLUSION These innovative personalized dosing calculators are promising to improve vancomycin initial dosing in neonates and are easily applicable in routine practices.
Collapse
Affiliation(s)
- Manal Abouelkheir
- Department of Clinical Pharmacy, College of Pharmacy, Misr International University, Cairo, Egypt
| | - Abdullah Almohaizeie
- Pharmaceutical Care Division, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abdulrahman Almutairi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmaceutical Care, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Sara Almuhisen
- Department of Clinical Pharmacy, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Saeed Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Alsultan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
10
|
Lee TY, Hung YL, Shen CM, Kao CL, Hsieh WS. Reappraisal of therapeutic vancomycin trough concentrations with empirical dosing in neonatal infections. Pediatr Neonatol 2022; 64:176-182. [PMID: 36344414 DOI: 10.1016/j.pedneo.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/06/2022] [Accepted: 05/17/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Vancomycin is commonly used for neonatal sepsis. However, consensus on an empirical neonatal vancomycin regimen remains uncertain. We aimed to reappraise the therapeutic optimum concerning vancomycin trough concentrations with empirical dosing and to evaluate the relationship between trough concentrations and predicted 24-h area under the curve (AUC24). METHODS This was a 3-year retrospective study. Neonates who were admitted to the neonatal intensive care unit with available vancomycin trough concentrations were enrolled. Trough levels were obtained before the fourth dose. Achievement of goal trough after implementing the vancomycin dosing regimen was based on the Practical Neonatology Medical Manual, published by the National Taiwan University College of Medicine. RESULTS A total of 46 neonates were included for analysis. Coagulase-negative staphylococci were the most commonly identified pathogens of sepsis. Among these patients, 22 achieved goal trough levels of 10-20 mcg/mL. Trough levels of 5-10 or >20 mcg/mL occurred in 13 and 11 patients, respectively. A moderately positive correlation between trough and predicted AUC24 was found in all patients (Spearman's rho = 0.676, p < 0.001). In patients with body weight 1200-2000 g and postnatal age >7 days, the serum creatinine of those with trough levels >20 mcg/mL was significantly higher than those with goal trough levels (0.61 vs. 0.45 mg/dL, p = 0.01). Among those with trough levels >20 mcg/mL, 5 patients received ibuprofen for patent ductus arteriosus closing prior to vancomycin treatment (45%, 5/11), compared to only 3 patients with trough levels <20 mcg/mL (9%, 3/35) (p = 0.013). CONCLUSION Only half of the neonates receiving empirical vancomycin regimen achieved goal trough levels of 10-20 mcg/mL. Higher serum creatinine or ibuprofen treatment may increase the risk of overly high trough levels. The vancomycin regimen needs further validation and modification to provide adequate dosing for optimal use in neonates.
Collapse
Affiliation(s)
- Tzung-Yi Lee
- Department of Pharmacy, Cathay General Hospital, Taipei, Taiwan
| | - Yi-Li Hung
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan; School of Medicine, National Tsing Hua University, Hsinchu, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chung-Min Shen
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chi-Lan Kao
- Department of Pharmacy, Cathay General Hospital, Taipei, Taiwan
| | - Wu-Shiun Hsieh
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
11
|
Simeoli R, Cairoli S, Decembrino N, Campi F, Dionisi Vici C, Corona A, Goffredo BM. Use of Antibiotics in Preterm Newborns. Antibiotics (Basel) 2022; 11:antibiotics11091142. [PMID: 36139921 PMCID: PMC9495226 DOI: 10.3390/antibiotics11091142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Due to complex maturational and physiological changes that characterize neonates and affect their response to pharmacological treatments, neonatal pharmacology is different from children and adults and deserves particular attention. Although preterms are usually considered part of the neonatal population, they have physiological and pharmacological hallmarks different from full-terms and, therefore, need specific considerations. Antibiotics are widely used among preterms. In fact, during their stay in neonatal intensive care units (NICUs), invasive procedures, including central catheters for parental nutrition and ventilators for respiratory support, are often sources of microbes and require antimicrobial treatments. Unfortunately, the majority of drugs administered to neonates are off-label due to the lack of clinical studies conducted on this special population. In fact, physiological and ethical concerns represent a huge limit in performing pharmacokinetic (PK) studies on these subjects, since they limit the number and volume of blood sampling. Therapeutic drug monitoring (TDM) is a useful tool that allows dose adjustments aiming to fit plasma concentrations within the therapeutic range and to reach specific drug target attainment. In this review of the last ten years’ literature, we performed Pubmed research aiming to summarize the PK aspects for the most used antibiotics in preterms.
Collapse
Affiliation(s)
- Raffaele Simeoli
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Sara Cairoli
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Nunzia Decembrino
- Neonatal Intensive Care Unit, University Hospital “Policlinico-San Marco” Catania, Integrated Department for Maternal and Child’s Health Protection, 95100 Catania, Italy
| | - Francesca Campi
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus-Newborn-Infant, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Carlo Dionisi Vici
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Alberto Corona
- ICU and Accident & Emergency Department, ASST Valcamonica, 25043 Breno, Italy
| | - Bianca Maria Goffredo
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence: ; Tel.: +39-0668592174; Fax: + 39-0668593009
| |
Collapse
|
12
|
Role of fluid status markers as risk factors for suboptimal vancomycin concentration during continuous infusion in neonates: an observational study. Eur J Pediatr 2022; 181:2935-2942. [PMID: 35581390 DOI: 10.1007/s00431-022-04500-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/03/2022]
Abstract
UNLABELLED Vancomycin is widely used in neonatal sepsis but proportion of newborn reaching recommended concentration is variable. Fluid status impact on vancomycin level remains understudied. We aimed to study fluid factors impacting vancomycin concentration at 24 h of treatment. We performed a prospective and retrospective observational monocentric study of NICU patients requiring a vancomycin treatment. We used a continuous infusion protocol, with age-appropriate loading and maintenance doses. Vancomycin target serum concentration after 24 h (C24h) was above 20 mg/L. Demographic, infections, and organ failure variables were analyzed as potential predictors of C24h. Over the study period, 70 infective episodes in 52 patients were included. At treatment initiation, the median post-natal age was 12.5 days (IQR 7-23), post menstrual age 30 weeks (IQR 28-35), and median weight 1140 g (IQR 835-1722). Germs isolated were mainly gram-positive with 73.5% being coagulase-negative Staphylococci. Median C24h was 18.7 mg/L (IQR 15.4-22.4). Overall, 41 (58.6%) treatments had a C24h < 20 mg/L. After multivariate analysis, higher creatinine level (OR 1.03 (95% CI 1.002-1.06)) was associated with C24h ≥ 20 mg/L; weight gain the day before infection (OR 0.21 (95% CI 0.05-0.79)) and positive biomarkers of inflammation (OR 0.22 (0.05-0.94)) were associated with C24h < 20 mg/L. CONCLUSION Vancomycin C24h was underdosed in 60% of patients and factors linked to changes in vancomycin pharmacokinetic such as volume of distribution and clearance, linked to creatinine level, inflammation, or weight gain, were identified. WHAT IS KNOWN • Adjustment of vancomycin regimen remains difficult due to inter- and intra-individual variability of vancomycin pharmacokinetics. • Impact of fluid status on vancomycin concentration in critically ill neonates is incompletely studied. WHAT IS NEW • Proportion of patients with adequate vancomycin concentration using a target adapted to nosocomial gram-positive bacteria MIC is low. • We confirmed the role of creatinine level and report two new factors associated with low vancomycin concentration: presence of systemic inflammation and weight gain.
Collapse
|
13
|
Implementation of a Vancomycin Dose-Optimization Protocol in Neonates: Impact on Vancomycin Exposure, Biological Parameters, and Clinical Outcomes. Antimicrob Agents Chemother 2022; 66:e0219121. [PMID: 35465728 DOI: 10.1128/aac.02191-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Vancomycin dosing used in neonates results frequently in insufficient concentrations. A vancomycin dose-optimization protocol consisting of an individualization of loading and maintenance doses (administered during continuous infusion) through a previously validated pharmacokinetic model was implemented in our center. This monocenter retrospective study aimed to compare vancomycin average concentration (Cavg) in the therapeutic range (15 to 25 mg/L) and biological and clinical parameters before and after implementation of this protocol. A total of 60 and 59 courses of vancomycin treatment in 45 and 49 patients were analyzed in groups before and after implementation, respectively. Initial vancomycin Cavg were more frequently in the therapeutic range in the group after implementation (74.6% versus 28.3%, P < 0.001), with 1.6-fold higher Cavg (20.3 [17.0-22.2] mg/L versus 12.9 [11.3-17.0] mg/L, P < 0.001). Considering all Cavg during longitudinal therapeutic drug monitoring (TDM), the frequency of therapeutic Cavg was higher in the group after implementation (74.8% [n = 103] versus 31% [n = 116], P < 0.001). The dose optimization protocol was also associated with a reduced time to obtain a negative blood culture (P < 0.001) and fewer antibiotic switches (P = 0.025), without increasing the frequency of nephrotoxicity. Clinical outcomes also appeared to be improved, with less periventricular leukomalacia (P = 0.021), trended toward less respiratory instability (P = 0.15) and a shorter duration of vasoactive drug use (P = 0.18) for neonates receiving personalized doses of vancomycin. This personalized vancomycin dose protocol improves vancomycin exposure in neonates, with good safety, and suggests an improvement in biological and clinical outcomes.
Collapse
|
14
|
Akunne OO, Mugabo P, Argent AC. Pharmacokinetics of Vancomycin in Critically Ill Children: A Systematic Review. Eur J Drug Metab Pharmacokinet 2021; 47:31-48. [PMID: 34750740 PMCID: PMC8574943 DOI: 10.1007/s13318-021-00730-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 11/26/2022]
Abstract
Background and Objective Vancomycin is often used in the ICU for the treatment of Gram-positive bacterial infection. In critically ill children, there are pathophysiologic changes that affect the pharmacokinetics of vancomycin. A systematic review of vancomycin pharmacokinetics and pharmacodynamics in critically ill children was performed. Methods Pharmacokinetic studies of vancomycin in critically ill children published up to May 2021 were included in the review provided they included children aged > 1 month. Studies including neonates were excluded. A search was performed using the PubMed, Scopus, and Google Scholar databases. The Risk of Bias Assessment Tool for Systematic Reviews (ROBIS) was used to check for quality and reduce bias. Data on study characteristics, patient demographics, clinical parameters, pharmacokinetic parameters, outcomes, and study limitations were collected. Results Thirteen studies were included in this review. A wide variety of dosing and sampling strategies were used in the studies. Methods for estimating vancomycin pharmacokinetics, especially the area under the curve over 24 h, varied. Vancomycin doses of 20–60 mg/kg were given daily. This resulted in high variability in pharmacokinetic parameters. Vancomycin trough level was less than 15 μg/mL in most of the studies. Vancomycin clearance ranged from 0.05 to 0.38 L/h/kg. Volume of distribution ranged from 0.1 to 1.16 L/kg. Half-life was between 2.4 and 23.6 h. Patients in the study receiving continuous vancomycin infusion had AUC24 < 400 µg·h/mL. Conclusion There is large variability in the pharmacokinetics of vancomycin among critically ill patients. Studies to assess the factors responsible for this variability in vancomycin pharmacokinetics are needed.
Collapse
Affiliation(s)
- Onyinye Onyeka Akunne
- Discipline of Pharmacology, School of Pharmacy, University of the Western Cape, Bellville, Cape Town, 7535 South Africa
| | - Pierre Mugabo
- Discipline of Pharmacology, School of Pharmacy, University of the Western Cape, Bellville, Cape Town, 7535 South Africa
| | - Andrew C Argent
- Paediatrics and Child Health, University of Cape Town, Rondebosch, Cape Town, 7700 South Africa
- Paediatric Intensive Care Unit, Red Cross War Memorial Children Hospital, Rondebosch, Cape Town, 7700 South Africa
| |
Collapse
|
15
|
Rubino CM, Polak M, Schröpf S, Münch HG, Smits A, Cossey V, Tomasik T, Kwinta P, Snariene R, Liubsys A, Gardovska D, Hornik CD, Bosheva M, Ruehle C, Litherland K, Hamed K. Pharmacokinetics and Safety of Ceftobiprole in Pediatric Patients. Pediatr Infect Dis J 2021; 40:997-1003. [PMID: 34533489 PMCID: PMC8505155 DOI: 10.1097/inf.0000000000003296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ceftobiprole, the active moiety of the prodrug ceftobiprole medocaril, is an advanced-generation, broad-spectrum, intravenous cephalosporin, which is currently approved for the treatment of adults with hospital-acquired or community-acquired pneumonia. METHODS Noncompartmental pharmacokinetics and safety were analyzed from 2 recently completed pediatric studies, a single-dose, phase 1 study in neonates and infants up to 3 months of age (7.5 mg/kg) and a phase 3 study in patients 3 months to 17 years of age with pneumonia (10-20 mg/kg with a maximum of 500 mg per dose every 8 hours for up to 14 days). RESULTS Total ceftobiprole plasma concentrations peaked at the end of infusion. Half life (median ranging from 1.9 to 2.9 hours) and overall exposure (median AUC ranging from 66.6 to 173 μg•h/mL) were similar to those in adults (mean ± SD, 3.3 ± 0.3 hours and 102 ± 11.9 μg•h/mL, respectively). Calculated free-ceftobiprole concentrations in the single-dose study remained above a minimum inhibitory concentration (MIC) of 4 mg/L (fT > MIC of 4 mg/L) for a mean of 5.29 hours after dosing. In the pneumonia study, mean fT > MIC of 4 mg/L was ≥5.28 hours in all dose groups. Ceftobiprole was well tolerated in both studies. CONCLUSIONS Pharmacokinetic parameters of ceftobiprole characterized in the pediatric population were within the range of those observed in adults. In the pneumonia study, the lowest percentage of the dosing interval with fT > MIC of 4 mg/L was 50.8%, which suggests that pharmacokinetic-pharmacodynamic target attainment can be sufficient in pediatric patients. Ceftobiprole was well tolerated.
Collapse
Affiliation(s)
| | - Mark Polak
- West Virginia University School of Medicine, Department of Pediatrics, Morgantown, WV
| | - Sebastian Schröpf
- Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hans Georg Münch
- Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anne Smits
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Veerle Cossey
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Tomasz Tomasik
- Jagiellonian University Medical College, Department of Pediatrics, Cracow, Poland
| | - Przemko Kwinta
- Jagiellonian University Medical College, Department of Pediatrics, Cracow, Poland
| | - Rima Snariene
- Medical Faculty of Vilnius University, Neonatal Center of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Arunas Liubsys
- Medical Faculty of Vilnius University, Neonatal Center of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Dace Gardovska
- Children’s Clinical University Hospital, Riga Stradins University, Riga, Latvia
| | - Chi Dang Hornik
- Duke University Hospital, Department of Pediatrics, Durham, NC
| | - Miroslava Bosheva
- Medical University, University Multiprofile Hospital for Active Treatment “Sveti Georgi,” Plovdiv, Clinic of Pediatric and Genetic Diseases, Plovdiv, Bulgaria
| | | | | | - Kamal Hamed
- Basilea Pharmaceutica International Ltd., Basel, Switzerland
| |
Collapse
|
16
|
Celestin MN, Musteata FM. Impact of Changes in Free Concentrations and Drug-Protein Binding on Drug Dosing Regimens in Special Populations and Disease States. J Pharm Sci 2021; 110:3331-3344. [PMID: 34089711 PMCID: PMC8458247 DOI: 10.1016/j.xphs.2021.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022]
Abstract
Over the last few decades, scientists and clinicians have often focused their attention on the unbound fraction of drugs as an indicator of efficacy and the eventual outcome of drug treatments for specific illnesses. Typically, the total drug concentration (bound and unbound) in plasma is used in clinical trials to assess a compound's efficacy. However, the free concentration of a drug tends to be more closely related to its activity and interaction with the body. Thus far, measuring the unbound concentration has been a challenge. Several mechanistic models have attempted to solve this problem by estimating the free drug fraction from available data such as total drug and binding protein concentrations. The aims of this review are first, to give an overview of the methods that have been used to date to calculate the unbound drug fraction. Second, to assess the pharmacokinetic parameters affected by changes in drug protein binding in special populations such as pediatrics, the elderly, pregnancy, and obesity. Third, to review alterations in drug protein binding in some selected disease states and how these changes impact the clinical outcomes for the patients; the disease states include critical illnesses, transplantation, renal failure, chronic kidney disease, and epilepsy. And finally, to discuss how various disease states shift the ratio of unbound to total drug and the consequences of such shifts on dosing adjustments and reaching the therapeutic target.
Collapse
Affiliation(s)
- Marie N Celestin
- Albany College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, 106 New Scotland Avenue, Albany, NY 12208, United States
| | - Florin M Musteata
- Albany College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, 106 New Scotland Avenue, Albany, NY 12208, United States.
| |
Collapse
|
17
|
Pharmacokinetics of Antibiotics in Pediatric Intensive Care: Fostering Variability to Attain Precision Medicine. Antibiotics (Basel) 2021; 10:antibiotics10101182. [PMID: 34680763 PMCID: PMC8532953 DOI: 10.3390/antibiotics10101182] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022] Open
Abstract
Children show important developmental and maturational changes, which may contribute greatly to pharmacokinetic (PK) variability observed in pediatric patients. These PK alterations are further enhanced by disease-related, non-maturational factors. Specific to the intensive care setting, such factors include critical illness, inflammatory status, augmented renal clearance (ARC), as well as therapeutic interventions (e.g., extracorporeal organ support systems or whole-body hypothermia [WBH]). This narrative review illustrates the relevance of both maturational and non-maturational changes in absorption, distribution, metabolism, and excretion (ADME) applied to antibiotics. It hereby provides a focused assessment of the available literature on the impact of critical illness—in general, and in specific subpopulations (ARC, extracorporeal organ support systems, WBH)—on PK and potential underexposure in children and neonates. Overall, literature discussing antibiotic PK alterations in pediatric intensive care is scarce. Most studies describe antibiotics commonly monitored in clinical practice such as vancomycin and aminoglycosides. Because of the large PK variability, therapeutic drug monitoring, further extended to other antibiotics, and integration of model-informed precision dosing in clinical practice are suggested to optimise antibiotic dose and exposure in each newborn, infant, or child during intensive care.
Collapse
|
18
|
Optimizing Ceftobiprole Dosage in Pediatric Patients: A Model-Based Approach. Antimicrob Agents Chemother 2021; 65:e0120621. [PMID: 34398669 PMCID: PMC8522765 DOI: 10.1128/aac.01206-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ceftobiprole is an advanced-generation cephalosporin for intravenous administration with activity against Gram-positive and Gram-negative organisms. A population pharmacokinetic (PK) model characterizing the disposition of ceftobiprole in plasma using data from patients in three pediatric studies was developed. Model-based simulations were subsequently performed to assist in dose optimization for the treatment of pediatric patients with hospital-acquired or community-acquired pneumonia. The population PK data set comprised 518 ceftobiprole plasma concentrations from 107 patients from 0 (birth) to 17 years of age. Ceftobiprole PK was well described by a three-compartment model with linear elimination. Ceftobiprole clearance was modeled as a function of glomerular filtration rate; other PK parameters were scaled to body weight. The final population PK model provided a robust and reliable description of the PK of ceftobiprole in the pediatric study population. Model-based simulations using the final model suggested that a ceftobiprole dose of 15 mg/kg of body weight infused over 2 h and administered every 12 h in neonates and infants <3 months of age or every 8 h in older pediatric patients would result in a ceftobiprole exposure consistent with that in adults and good pharmacokinetic-pharmacodynamic target attainment. The dose should be reduced to 10 mg/kg every 12 h in neonates and infants <3 months of age who weigh <4 kg to avoid high exposures. Extended intervals and reduced doses may be required for pediatric patients older than 3 months of age with renal impairment.
Collapse
|
19
|
Tu Q, Cotta M, Raman S, Graham N, Schlapbach L, Roberts JA. Individualized precision dosing approaches to optimize antimicrobial therapy in pediatric populations. Expert Rev Clin Pharmacol 2021; 14:1383-1399. [PMID: 34313180 DOI: 10.1080/17512433.2021.1961578] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction:Severe infections continue to impose a major burden on critically ill children and mortality rates remain stagnant. Outcomes rely on accurate and timely delivery of antimicrobials achieving target concentrations in infected tissue. Yet, developmental aspects, disease-related variables, and host factors may severely alter antimicrobial pharmacokinetics in pediatrics. The emergence of antimicrobial resistance increases the need for improved treatment approaches.Areas covered:This narrative review explores why optimization of antimicrobial therapy in neonates, infants, children, and adolescents is crucial and summarizes the possible dosing approaches to achieve antimicrobial individualization. Finally, we outline a roadmap toward scientific evidence informing the development and implementation of precision antimicrobial dosing in critically ill children.The literature search was conducted on PubMed using the following keywords: neonate, infant, child, adolescent, pediatrics, antimicrobial, pharmacokinetic, pharmacodynamic target, Bayes dosing software, optimizing, individualizing, personalizing, precision dosing, drug monitoring, validation, attainment, and software implementation. Further articles were sought from the references of the above searched articles.Expert opinion:Recently, technological innovations have emerged that enabled the development of individualized antimicrobial dosing approaches in adults. More work is required in pediatrics to make individualized antimicrobial dosing approaches widely operationalized in this population.
Collapse
Affiliation(s)
- Quyen Tu
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Department of Pharmacy, Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Menino Cotta
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Sainath Raman
- Department of Paediatric Intensive Care Medicine, Queensland Children's Hospital, Brisbane, QLD, Australia.,Centre for Children's Health Research (CCHR), The University of Queensland, Brisbane, QLD, Australia
| | - Nicolette Graham
- Department of Pharmacy, Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Luregn Schlapbach
- Department of Paediatric Intensive Care Medicine, Queensland Children's Hospital, Brisbane, QLD, Australia.,Department of Intensive Care and Neonatology, The University Children's Hospital Zurich, Switzerland
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| |
Collapse
|
20
|
Kondo M, Nakagawa S, Orii S, Itohara K, Sugimoto M, Omura T, Sato Y, Imai S, Yonezawa A, Nakagawa T, Matsubara K. Association of Initial Trough Concentrations of Vancomycin with Outcomes in Pediatric Patients with Gram-Positive Bacterial Infection. Biol Pharm Bull 2021; 43:1463-1468. [PMID: 32999156 DOI: 10.1248/bpb.b19-01003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Vancomycin is a glycopeptide antibiotic used for the treatment of Gram-positive infections. For adult patients, treatment with vancomycin requires effective therapeutic drug-monitoring (TDM) to achieve clinical outcomes and reduce the incidence of adverse effects. However, it remains still unclear whether the TDM with vancomycin is beneficial in yielding better clinical outcomes in pediatrics. The objective of our study was to evaluate whether the clinical response to treatment was associated with initial trough concentrations of vancomycin in pediatric patients. A retrospective observation study of 60 patients (age: 1 month-15 years) who had completed and qualified for analysis was conducted at Kyoto University Hospital. The response to treatment was assessed by the time to resolution of fever and time to 50% decline in C-reactive protein (CRP). In addition, we explored whether vancomycin trough level was associated with the baseline characteristics. Trend analysis showed that there were significant correlations between vancomycin trough level and age, body weight, estimated glomerular filtration rate, and serum albumin levels. The time to resolution of fever of the patients with higher initial trough level (≥ 5 µg/mL) was significantly lower than that of the patients with lower trough level (< 5 µg/mL). The higher vancomycin concentration tended to be associated with the shorter time to 50% decline in CRP. The findings suggest that initial trough concentration is important in achieving better outcomes with vancomycin treatment in pediatrics.
Collapse
Affiliation(s)
- Miko Kondo
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Shunsaku Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Satoru Orii
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Kotaro Itohara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Mitsuhiro Sugimoto
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | | | - Yuki Sato
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Satoshi Imai
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital.,Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Kazuo Matsubara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| |
Collapse
|
21
|
Li X, Xu W, Li R, Guo Q, Li X, Sun J, Sun S, Li J. Prediction of Unbound Vancomycin Levels in Intensive Care Unit and Nonintensive Care Unit Patients: Total Bilirubin May Play an Important Role. Infect Drug Resist 2021; 14:2543-2554. [PMID: 34239310 PMCID: PMC8259942 DOI: 10.2147/idr.s311231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022] Open
Abstract
Background The mean unbound vancomycin fraction and whether the unbound vancomycin level could be predicted from the total vancomycin level are still controversial, especially for patients in different groups, such as intensive care unit (ICU) versus non-ICU patients. Other relevant potential patient characteristics that may predict unbound vancomycin levels have yet to be clearly determined. Methods We enrolled a relatively large study population and included widely comprehensive potential covariates to evaluate the unbound vancomycin fractions in a cohort of ICU (n=117 samples) and non-ICU patients (n=73 samples) by using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Results The mean unbound vancomycin fraction was 45.80% ± 18.69% (median, 46.01%; range: 2.13–99.45%) in the samples from the total population. No significant differences in the unbound vancomycin fraction were found between the ICU patients and the non-ICU patients (P=0.359). A significant correlation was established between the unbound and total vancomycin levels. The unbound vancomycin level can be predicted with the following equations: unbound vancomycin level=0.395×total vancomycin level+0.019×total bilirubin level+0.468 (R2=0.771) for the ICU patients and unbound vancomycin level=0.526×total vancomycin level-0.527 (R2=0.749) for the non-ICU patients. Overall, the observed-versus-predicted plots were acceptable. Conclusion A significant correlation between the total and unbound vancomycin levels was found, and measurement of the unbound vancomycin level seems to have no added value over measurement of the total vancomycin level. The study developed parsimonious equations for predicting the unbound vancomycin level and provides a reference for clinicians to predict the unbound vancomycin level in adult populations.
Collapse
Affiliation(s)
- Xiao Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| | - Wen Xu
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| | - Ran Li
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| | - Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| | - Xiangpeng Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| | - Jialin Sun
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| | - Shuhong Sun
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| | - Jing Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| |
Collapse
|
22
|
Abstract
BACKGROUND AND AIMS Ampicillin is 1 of the most commonly used antibiotics for treatment of early onset sepsis, but its pharmacokinetics (PK) is poorly characterized. We aimed to define the dose of ampicillin for late preterm and term neonates by evaluating its PK in serum, cerebrospinal (CSF), and epithelial lining fluid. METHODS A prospective study included neonates receiving ampicillin for suspected or proven early onset sepsis and pneumonia. PK samples were collected at steady state, at predose and 5 minutes, 1 hour, 3 hours, 8 hours, and 12 hours after ampicillin 3-minute infusion. Ampicillin concentrations were measured by ultra-high-performance liquid chromatography. Noncompartmental anaysis (NCA) and population pharmacokinetic (pop-PK) modeling were performed and probability of therapeutic target attainment was simulated. RESULTS In 14 neonates (GA of 32-42 wks; mean BW 2873 g), PK parameters (mean ± SD) in NCA were the following: half-life 7.21 ± 7.97 hours; volume of distribution (Vd) 1.07 ± 0.51 L; clearance (CL) 0.20 ± 0.13 L/h; 24-hour area under the concentration-time curve 348.92 ± 114.86 mg*h/L. In pop-PK analysis, a 2-compartmental model described the data most adequately with the final parameter estimates of CL 15.15 (CV 40.47%) L/h/70kg; central Vd 24.87 (CV 37.91%) L/70kg; intercompartmental CL 0.39 (CV 868.56) L/h and peripheral Vd 1.039 (CV 69.32%) L. Peutic target attainment simulations demonstrated that a dosage of 50 mg/kg q 12 hours attained 100% fT > MIC 0.25 mg/L, group B streptococcal breakpoint. CONCLUSIONS We recommend ampicillin dosage 50 mg/kg q 12 hours for neonates with gestational age ≥32 weeks during the first week of life.
Collapse
|
23
|
Population Pharmacokinetic Analysis and Dose Regimen Optimization in Japanese Infants with an Extremely Low Birth Weight. Antimicrob Agents Chemother 2021; 65:AAC.02523-20. [PMID: 33318009 DOI: 10.1128/aac.02523-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Vancomycin is a synthetic antibiotic effective against Gram-positive pathogens. Although the clinical applicability of vancomycin for infants has been increasing, the pharmacokinetic data for vancomycin in extremely low-birth-weight infants are limited. The aim of this study was to construct a population pharmacokinetics model for vancomycin in extremely-low-birth-weight infants and establish an optimal dosage regimen. We enrolled children aged less than 1 year with a birth weight of less than 1,000 g and body weight at vancomycin prescription of less than 1,500 g. Pharmacokinetic data from 19 patients were analyzed, and a population pharmacokinetics model was developed using nonlinear mixed-effects modeling software. Goodness-of-fit plots, a nonparametric bootstrap analysis, and a prediction-corrected visual predictive check were employed to evaluate the final model. The dosage regimen was optimized based on the final model. The pharmacokinetic data fit a one-compartment model with first-order elimination, and body weight and estimated serum creatinine level were used as significant covariates. In a simulation using the final model, the optimal dosage regimen, especially when the serum creatinine level (>0.6 mg/dl) was high, was 5.0 to 7.5 mg/kg of body weight twice a day every 12 h; this was required to reduce the dosage compared with that in previous studies. The recommended doses based on the current target time course concentration curves may not be appropriate for extremely-low-birth-weight infants.
Collapse
|
24
|
Tang Z, Guan J, Li J, Yu Y, Qian M, Cao J, Shuai W, Jiao Z. Determination of vancomycin exposure target and individualised dosing recommendations for neonates: model-informed precision dosing. Int J Antimicrob Agents 2021; 57:106300. [PMID: 33567334 DOI: 10.1016/j.ijantimicag.2021.106300] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/18/2021] [Accepted: 01/30/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Few studies incorporating population pharmacokinetic/pharmacodynamic (Pop-PK/PD) modelling have been conducted to quantify the exposure target of vancomycin in neonates. A retrospective observational cohort study was undertaken in neonates to determine this target and dosing recommendations (chictr.org.cn, ChiCTR1900027919). METHODS A Pop-PK model was developed to estimate PK parameters. Causalities between acute kidney injury (AKI) occurrence and vancomycin use were verified using Naranjo criteria. Thresholds of vancomycin exposure in predicting AKI or efficacy were identified via classification and regression tree analysis. Associations between exposure thresholds and clinical outcomes, including AKI and efficacy, were analysed by logistic regression. Dosing recommendations were designed using Monte Carlo simulations based on the optimised exposure target. RESULTS Pop-PK modelling included 182 neonates with 411 observations. On covariate analysis, neonatal physiological maturation, renal function and concomitant use of vasoactive agents (VAS) significantly affected vancomycin PK. Seven cases of vancomycin-induced AKI were detected. Area under the concentration-time curve from 0-24 hours (AUC0-24) ≥ 485 mg•h/L was an independent risk factor for AKI after adjusting for VAS co-administration. The clinical efficacy of vancomycin was analysed in 42 patients with blood culture-proven staphylococcal sepsis. AUC0-24 to minimum inhibitory concentration (AUC0-24/MIC) ≥ 234 was the only significant predictor of clinical effectiveness. Monte Carlo simulations indicated that regimens in Neonatal Formulary 7 and Red Book (2018) were unsuitable for all neonates. CONCLUSION An AUC0-24 of 240-480 (assuming MIC = 1 mg/L) is a recommended exposure target of vancomycin in neonates. Model-informed dosing regimens are valuable in clinical practice.
Collapse
Affiliation(s)
- Zhe Tang
- Department of Pharmacy, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jing Guan
- Department of Pharmacy, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jingjing Li
- Department of Pharmacy, Suzhou Municipal Hospital, Suzhou, China
| | - Yanxia Yu
- Department of Pharmacy, Suzhou Municipal Hospital, Suzhou, China
| | - Miao Qian
- Department of Neonatology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jing Cao
- Department of Pharmacy, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Weiwei Shuai
- Department of Pharmacy, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Zheng Jiao
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
25
|
Moriyama H, Tsutsuura M, Kojima N, Mizukami Y, Tashiro S, Osa S, Enoki Y, Taguchi K, Oda K, Fujii S, Takahashi Y, Hamada Y, Kimura T, Takesue Y, Matsumoto K. The optimal trough-guided monitoring of vancomycin in children: Systematic review and meta-analyses. J Infect Chemother 2021; 27:781-785. [PMID: 33563525 DOI: 10.1016/j.jiac.2021.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/08/2021] [Accepted: 01/26/2021] [Indexed: 11/26/2022]
Abstract
We carried out a systematic review and meta-analysis exploring the relationship between vancomycin (VCM) trough concentrations and its effectiveness and nephrotoxicity in pediatric patients. We conducted our analysis using MEDLINE, Web of Sciences, and Cochrane Register of Controlled Trials as electronic databases (June 29, 2019). Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. We identified 16 studies that were eligible for the meta-analysis. A total of 351 and 3,266 patients were included in the analysis for effectiveness and nephrotoxicity, respectively. Pediatric MRSA infection patients with VCM trough concentrations ≥ 10 μg/mL had significantly lower treatment failure rates (OR 0.54, 95% CI 0.30-0.96). The incidence of nephrotoxicity was significantly higher in trough concentrations ≥ 15 μg/mL than when they were < 15 μg/mL (OR 3.02, 95% CI 2.08-4.38). We identified the optimal VCM trough concentrations associated with effectiveness and nephrotoxicity in pediatric patients with MRSA infection. Further prospective studies are needed to find optimal dosing and monitoring strategy on VCM in pediatric population.
Collapse
Affiliation(s)
- Hiromu Moriyama
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Moeko Tsutsuura
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Nana Kojima
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Yuki Mizukami
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Sho Tashiro
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Sumika Osa
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Yuki Enoki
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kazutaka Oda
- Department of Pharmacy, Kumamoto University Hospital, 1-1-1, Honjo, Chuo-ku, Kumamoto-shi, Kumamoto, 860-8556, Japan
| | - Satoshi Fujii
- Department of Hospital Pharmacy, Sapporo Medical University Hospital, 16-291, South 1, West 16, Chuo-ku, Sapporo-shi, Hokkaido, 060-8543, Japan
| | - Yoshiko Takahashi
- Department of Pharmacy, Hyogo College of Medicine, 1-1, Mukogawa-machi, Nishinomiya-shi, Hyogo, 663-8501, Japan
| | - Yukihiro Hamada
- Department of Pharmacy, Tokyo Women's Medical University Hospital, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-0054, Japan
| | - Toshimi Kimura
- Department of Pharmacy, Tokyo Women's Medical University Hospital, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-0054, Japan
| | - Yoshio Takesue
- Department of Infection Control and Prevention, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya-shi, Hyogo, 663-8501, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| |
Collapse
|
26
|
Prediction of Unbound Ceftriaxone Concentration in Children: Simple Bioanalysis Method and Basic Mathematical Equation. Antimicrob Agents Chemother 2020; 65:AAC.00779-20. [PMID: 33020163 DOI: 10.1128/aac.00779-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/01/2020] [Indexed: 01/29/2023] Open
Abstract
The pharmacological activity of ceftriaxone depends on the unbound concentration. However, direct measurement of unbound concentrations is obstructive, and high individual variability of the unbound fraction of ceftriaxone was shown in children. We aim to evaluate and validate a method to predict unbound ceftriaxone concentrations in pediatric patients. Ninety-five pairs of concentrations (total and unbound) from 92 patients were measured by the bioanalysis method that we developed. The predictive performance of the three equations (empirical in vivo equation, disease-adapted equation, and multiple linear regression equation) was assessed by the mean absolute prediction error (MAPE), the mean prediction error (MPE), the proportions of the prediction error within ±30% (P 30) and ±50% (P 50), and linear regression of predicted versus actual unbound levels (R 2). The average total and unbound ceftriaxone concentrations were 126.18 ± 81.46 μg/ml and 18.82 ± 21.75 μg/ml, and the unbound fraction varied greatly from 4.75% to 39.97%. The MPE, MAPE, P 30, P 50, and R 2 of the empirical in vivo equation, disease equation, and multiple linear equation were 0.17 versus 0.00 versus 0.06, 0.24 versus 0.15 versus 0.27, 63.2% versus 89.5% versus 74.7%, 96.8% versus 97.9% versus 86.3%, and 0.8730 versus 0.9342 versus 0.9315, respectively. The disease-adapted equation showed the best predictive performance. We have developed and validated a bioanalysis method with one-step extraction pretreatment for the determination of total ceftriaxone concentrations, and a prediction equation of the unbound concentration is recommended. The proposed method can facilitate clinical practice and research on unbound ceftriaxone in children. (This study has been registered at ClinicalTrials.gov under identifier NCT03113344.).
Collapse
|
27
|
Pongchaidecha M, Changpradub D, Bannalung K, Seejuntra K, Thongmee S, Unnual A, Santimaleeworagun W. Vancomycin Area under the Curve and Pharmacokinetic Parameters during the First 24 Hours of Treatment in Critically Ill Patients using Bayesian Forecasting. Infect Chemother 2020; 52:573-582. [PMID: 33263245 PMCID: PMC7779987 DOI: 10.3947/ic.2020.52.4.573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/18/2020] [Indexed: 12/29/2022] Open
Abstract
Background Currently, the achievement of the target area under the curve (AUC)/minimum inhibitory concentration ratio during the first 24 - 48 h of treatment is associated with reduced 30-day mortality and greater microbiological eradication in patients with methicillin-resistant Staphylococcus aureus bacteremia. This study aimed to determine the AUC and pharmacokinetic parameters on the first day of vancomycin administration based on the Bayesian theorem to optimize the dosing regimen in critically ill patients. Materials and Methods This retrospective study included participants meeting the following criteria: 1) ≥18 years old; 2) receipt of at least one dose of vancomycin; 3) measurement of 2 vancomycin serum concentrations during the first 24 h of treatment; and 4) an intensive care unit admission, mechanical ventilator use, or an Acute Physiology and Chronic Health Evaluation II score >15 points. The AUC on day 1 of treatment and the estimated vancomycin pharmacokinetic parameters were measured using PrecisePK software based on the Bayesian theorem. Results We obtained 132 vancomycin concentrations from 66 patients. The vancomycin pharmacokinetic parameters were as follows: AUC0-24, 571.09 (± standard deviation [SD] 188.62) mg/L·h; clearance (CL), 2.97 (± SD 1.81) L/h; volume of distribution (Vd), 50.60 (± SD 13.91) L; elimination rate constant, 0.062 (± SD 0.039) h−1; and half-life, 18.19 (± SD 15.96) h. Focusing on the vancomycin loading dose, AUC0-24 400 - 600 was achieved in 41.7, 46.1, 44.4, and 26.3% of patients with loading doses of <20, 20 – 24.9, 25 – 30, and >30 mg/kg, respectively. Whereas AUC0-24 ≥521 was achieved in 50, 50, 77.8, and 84.2% of patients with loading doses of <20, 20 – 24.9, 25 – 30, and >30 mg/kg, respectively. The CL of vancomycin was correlated with creatinine CL, whereas the Vd of vancomycin was significantly correlated with age and body weight. Conclusion This study revealed that the higher Vd and CL values on the first day of vancomycin therapy were found in critically ill patients. Additionally, a higher vancomycin loading dose (25 – 30 mg/kg) might be required to achieve target of AUC0-24 during early phase of administration for critically ill patients.
Collapse
Affiliation(s)
- Manat Pongchaidecha
- Department of Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Dhitiwat Changpradub
- Division of Infectious Diseases, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - Kanjana Bannalung
- Department of Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Kajeewan Seejuntra
- Department of Pharmacy, Ramathibodi Chakri Naruebodindra Hospital, Samutprakarn, Thailand
| | | | - Aminta Unnual
- Department of Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Wichai Santimaleeworagun
- Department of Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand.,Antibiotic Optimization and Patient Care Project by Pharmaceutical Initiative for Resistant Bacteria and Infectious Diseases Working Group, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand.
| |
Collapse
|
28
|
Schijvens AM, de Wildt SN, Schreuder MF. Pharmacokinetics in children with chronic kidney disease. Pediatr Nephrol 2020; 35:1153-1172. [PMID: 31375913 PMCID: PMC7248054 DOI: 10.1007/s00467-019-04304-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022]
Abstract
In children, the main causes of chronic kidney disease (CKD) are congenital diseases and glomerular disorders. CKD is associated with multiple physiological changes and may therefore influence various pharmacokinetic (PK) parameters. A well-known consequence of CKD on pharmacokinetics is a reduction in renal clearance due to a decrease in the glomerular filtration rate. The impact of renal impairment on pharmacokinetics is, however, not limited to a decreased elimination of drugs excreted by the kidney. In fact, renal dysfunction may lead to modifications in absorption, distribution, transport, and metabolism as well. Currently, insufficient evidence is available to guide dosing decisions on many commonly used drugs. Moreover, the impact of maturation on drug disposition and action should be taken into account when selecting and dosing drugs in the pediatric population. Clinicians should take PK changes into consideration when selecting and dosing drugs in pediatric CKD patients in order to avoid toxicity and increase efficiency of drugs in this population. The aim of this review is to summarize known PK changes in relation to CKD and to extrapolate available knowledge to the pediatric CKD population to provide guidance for clinical practice.
Collapse
Affiliation(s)
- Anne M Schijvens
- Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Radboud University Medical Center, Amalia Children's Hospital, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
- Intensive Care and Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Michiel F Schreuder
- Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Radboud University Medical Center, Amalia Children's Hospital, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
29
|
Kan M, Wu YE, Li X, Dong YN, Du B, Guo ZX, Shi HY, Huang X, Su LQ, Wang WQ, Zheng Y, Zhao W. An adapted LC-MS/MS method for the determination of free plasma concentration of cefoperazone in children: Age-dependent protein binding. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1144:122081. [DOI: 10.1016/j.jchromb.2020.122081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 01/14/2023]
|
30
|
Frymoyer A, Schwenk HT, Zorn Y, Bio L, Moss JD, Chasmawala B, Faulkenberry J, Goswami S, Keizer RJ, Ghaskari S. Model-Informed Precision Dosing of Vancomycin in Hospitalized Children: Implementation and Adoption at an Academic Children's Hospital. Front Pharmacol 2020; 11:551. [PMID: 32411000 PMCID: PMC7201037 DOI: 10.3389/fphar.2020.00551] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/09/2020] [Indexed: 02/03/2023] Open
Abstract
Background Model-informed precision dosing (MIPD) can serve as a powerful tool during therapeutic drug monitoring (TDM) to help individualize dosing in populations with large pharmacokinetic variation. Yet, adoption of MIPD in the clinical setting has been limited. Overcoming technologic hurdles that allow access to MIPD at the point-of-care and placing it in the hands of clinical specialists focused on medication dosing may encourage adoption. Objective To describe the hospital implementation and usage of a MIPD clinical decision support (CDS) tool for vancomycin in a pediatric population. Methods Within an academic children’s hospital, MIPD for vancomycin was implemented via a commercial cloud-based CDS tool that utilized Bayesian forecasting. Clinical pharmacists were recognized as local champions to facilitate adoption of the tool and operated as end-users. Integration within the electronic health record (EHR) and automatic transmission of patient data to the tool were identified as important requirements. A web-link icon was developed within the EHR which when clicked sends users and needed patient-level clinical data to the CDS platform. Individualized pharmacokinetic predictions and exposure metrics for vancomycin are then presented in the form of a web-based dashboard. Use of the CDS tool as part of TDM was tracked and users were surveyed on their experience. Results After a successful pilot phase in the neonatal intensive care unit, implementation of MIPD was expanded to the pediatric intensive care unit, followed by availability to the entire hospital. During the first 2+ years since implementation, a total of 853 patient-courses (n = 96 neonates, n = 757 children) and 2,148 TDM levels were evaluated using the CDS tool. For the most recent 6 months, the CDS tool was utilized to support 79% (181/230) of patient-courses in which TDM was performed. Of 26 users surveyed, > 96% agreed or strongly agreed that automatic transmission of patient data to the tool was a feature that helped them complete tasks more efficiently; 81% agreed or strongly agreed that they were satisfied with the CDS tool. Conclusions Integration of a vancomycin CDS tool within the EHR, along with leveraging the expertise of clinical pharmacists, allowed for successful adoption of MIPD in clinical care.
Collapse
Affiliation(s)
- Adam Frymoyer
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Hayden T Schwenk
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Yvonne Zorn
- Department of Clinical Pharmacy, Lucile Packard Children's Hospital Stanford, Palo Alto, CA, United States
| | - Laura Bio
- Department of Clinical Pharmacy, Lucile Packard Children's Hospital Stanford, Palo Alto, CA, United States
| | - Jeffrey D Moss
- Department of Clinical Pharmacy, Lucile Packard Children's Hospital Stanford, Palo Alto, CA, United States
| | - Bhavin Chasmawala
- Information Services, Lucile Packard Children's Hospital Stanford, Palo Alto, CA, United States
| | - Joshua Faulkenberry
- Information Services, Lucile Packard Children's Hospital Stanford, Palo Alto, CA, United States
| | | | | | - Shabnam Ghaskari
- Information Services, Lucile Packard Children's Hospital Stanford, Palo Alto, CA, United States
| |
Collapse
|
31
|
Pham JT. Challenges of Vancomycin Dosing and Therapeutic Monitoring in Neonates. J Pediatr Pharmacol Ther 2020; 25:476-484. [PMID: 32839651 PMCID: PMC7439954 DOI: 10.5863/1551-6776-25.6.476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 11/11/2022]
Abstract
Late-onset sepsis in neonates can lead to significant morbidity and mortality, especially in preterm infants. Vancomycin is commonly prescribed for the treatment of Gram-positive organisms, particularly methicillin-resistant Staphylococcus aureus (MRSA), coagulase-negative staphylococci, and ampicillin-resistant Enterococcus species in adult and pediatric patients. Currently, there is no consensus on optimal dosing and monitoring of vancomycin in neonates. Different vancomycin dosing regimens exist for neonates, but with many of these regimens, obtaining therapeutic trough concentrations can be difficult. In 2011, the Infectious Diseases Society of America recommended vancomycin trough concentrations of 15 to 20 mg/L or an AUC/MIC ratio of ≥400 for severe invasive diseases (e.g., MRSA) in adult and pediatric patients. Owing to recent reports of increased risk of nephrotoxicity associated with vancomycin trough concentrations of 15 to 20 mg/L and AUC/MIC of ≥400, a revised consensus guideline, recently published in 2020, no longer recommends monitoring vancomycin trough concentrations in adult patients. The guideline recommends an AUC/MIC of 400 to 600, which has been found to achieve clinical efficacy while reducing nephrotoxicity. However, these recommendations were derived solely from adult literature, as there are limited clinical outcomes data in pediatric and neonatal patients. Furthermore, owing to the variation of vancomycin pharmacokinetic parameters among the neonatal population, these recommendations for achieving vancomycin AUC/MIC of 400 to 600 in neonates require further investigation. This review will discuss the challenges of achieving optimal vancomycin dosing and monitoring in neonatal patients.
Collapse
|
32
|
Allegaert K, Flint R, Smits A. Pharmacokinetic modelling and Bayesian estimation-assisted decision tools to optimize vancomycin dosage in neonates: only one piece of the puzzle. Expert Opin Drug Metab Toxicol 2019; 15:735-749. [PMID: 31402708 DOI: 10.1080/17425255.2019.1655540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Vancomycin is commonly administered to neonates, while observational data on therapeutic drug monitoring (TDM, trough levels) suggest that vancomycin exposure and dosage remain substandard. Area covered: Data on vancomycin pharmacokinetics (PK) and its covariates are abundant. Consequently, modeling is an obvious tool to improve targeted exposure, with a shift from TDM trough levels to area under the curve (AUC24h) targets, as in adults. Continuous administration appeared as a practice to facilitate AUC24h target attainment, while Bayesian model-supported targeting emerged as a novel tool. However, the AUC24h/MIC (minimal inhibitory concentration) target itself should consider neonate-specific aspects (bloodstream infections, coagulase-negative staphylococci, protein binding, underexplored causes of variability, like assays, preparation and administration inaccuracies, or missing covariates). Expert opinion: To improve targeted exposure in neonates, initial vancomycin prescription should be based on 'a priori model-based individual dosing' using validated dosing regimens, followed by further tailoring by dosing optimization applying Bayesian estimation-assisted TDM. Future research should focus on the feasibility to integrate these tools (individualized dosing, Bayesian models) in clinical practice, and to perform PK/PD studies in the relevant animal models and human neonatal setting (coagulase-negative staphylococci, bloodstream infections).
Collapse
Affiliation(s)
- Karel Allegaert
- Department of Pediatrics, Division of Neonatology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam , Rotterdam , the Netherlands.,Department of Development and Regeneration, KU Leuven , Leuven , Belgium
| | - Robert Flint
- Department of Pediatrics, Division of Neonatology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam , Rotterdam , the Netherlands.,Department of Pharmacy, Erasmus University Medical Center , Rotterdam , The Netherlands
| | - Anne Smits
- Department of Development and Regeneration, KU Leuven , Leuven , Belgium.,Neonatal Intensive Care Unit, University Hospitals Leuven , Leuven , Belgium
| |
Collapse
|
33
|
Sridharan K, Al-Daylami A, Ajjawi R, Ajooz HAA. Vancomycin Use in a Paediatric Intensive Care Unit of a Tertiary Care Hospital. Paediatr Drugs 2019; 21:303-312. [PMID: 31218605 DOI: 10.1007/s40272-019-00343-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Vancomycin is one of the commonly used anti-microbial drugs in intensive care units (ICUs). Guidelines recommend maintaining therapeutic trough levels of vancomycin (10-20 mg/L). The success of achieving the recommended therapeutic concentration of vancomycin is influenced by several factors, and this is even more complex in children, particularly those admitted in the ICU. Hence, we carried out the present study in children admitted in the ICU who were administered vancomycin. METHODS We carried out a chart review of children admitted in the paediatric ICU unit of a tertiary care hospital over a period of 3 years. Information on their demographic factors, diagnoses, duration of hospital stay, vancomycin treatment (dose, frequency and time of administration) and concomitant drugs, and vancomycin trough levels were retrieved. Descriptive statistics were used for representing the demographic factors, and multivariable logistic regression analyses were carried out to assess the determining factors. RESULTS One-hundred and two children were identified, of whom 13 had renal dysfunction. Two-hundred and fifty-two vancomycin trough levels were available, of which only 25% were observed in the recommended range (10-20 mg/L) amongst patients without any renal dysfunction and 22% amongst patients with renal dysfunction. Vancomycin was administered intravenously at an average [standard deviation (SD)] dose (mg/dose) of 13 (3.9) mostly either thrice or four times daily. Even in patients receiving vancomycin as a definitive therapy, only 40.9% achieved the recommended trough levels. Lower trough levels were associated with an increased risk of mortality. Nearly 4% of the levels were above 20 mg/L (toxic range). Seven children were suspected to have acute kidney injury (AKI) during the course of therapy where the cumulative vancomycin dose and mortality rate was higher. Only one serum vancomycin level during augmented renal clearance was observed in the recommended range. All the patients received at least one concomitant drug that either had nephrotoxic potential or predominant renal elimination, and use of a greater number of such drugs was associated with an increased risk of AKI. CONCLUSION The current vancomycin dosing strategy is ineffective in achieving therapeutic trough levels in children admitted to the ICU. Sub-therapeutic vancomycin trough levels significantly increase the risk of mortality.
Collapse
Affiliation(s)
- Kannan Sridharan
- Department of Pharmacology and Therapeutics, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain.
| | - Amal Al-Daylami
- Department of Paediatrics, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain.,Paediatric Intensive Care Unit, Salmaniya Medical Complex, Ministry of Health, Manama, Bahrain
| | - Reema Ajjawi
- Paediatric Intensive Care Unit, Salmaniya Medical Complex, Ministry of Health, Manama, Bahrain
| | - Husain Am Al Ajooz
- Paediatric Intensive Care Unit, Salmaniya Medical Complex, Ministry of Health, Manama, Bahrain
| |
Collapse
|
34
|
van der Mast JE, Nijsten MW, Alffenaar JC, Touw DJ, Bult W. In vitro evaluation of an intravenous microdialysis catheter for therapeutic drug monitoring of gentamicin and vancomycin. Pharmacol Res Perspect 2019; 7:e00483. [PMID: 31333845 PMCID: PMC6594919 DOI: 10.1002/prp2.483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/14/2019] [Accepted: 03/31/2019] [Indexed: 01/06/2023] Open
Abstract
A central venous catheter with a built-in microdialysis membrane is available for continuous lactate and glucose monitoring in the intensive care unit (ICU). As this catheter might also be suitable for repeated measurements of unbound drug levels, we studied in vitro the feasibility of monitoring unbound antibiotic concentrations. The catheter was placed in various media at 37°C spiked with gentamicin or vancomycin. Dialysate fractions were repeatedly collected over 3 hours with a NaCl 0.9% perfusate flow of 5 μL/min. Total and unbound drug concentrations in medium and perfusate were measured by immunoassay. After 60 minutes stable recovery for both drugs was observed, with mean ±SD relative recoveries of vancomycin and gentamicin in human serum of 64% ±0.4% and 73% ±3%. The recoveries of the unbound concentrations were 91% ±3% and 91% ±4%. This intravenous microdialysis system may be a very useful platform for therapeutic drug monitoring in the ICU.
Collapse
Affiliation(s)
- Jackelien E. van der Mast
- Department of Clinical Pharmacy and PharmacologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
- Department of Clinical PharmacyMáxima Medical CenterVeldhovenThe Netherlands
| | - Maarten W. Nijsten
- Department of Critical CareUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Jan‐Willem C. Alffenaar
- Department of Clinical Pharmacy and PharmacologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Daan J. Touw
- Department of Clinical Pharmacy and PharmacologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
- Department of Pharmacy, section Pharmacokinetics, toxicology and targetingUniversity of GroningenGroningenThe Netherlands
| | - Wouter Bult
- Department of Clinical Pharmacy and PharmacologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
- Department of Critical CareUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
35
|
Leroux S, van den Anker JN, Smits A, Pfister M, Allegaert K. Maturational changes in vancomycin protein binding affect vancomycin dosing in neonates. Br J Clin Pharmacol 2019; 85:865-867. [PMID: 30834552 PMCID: PMC6475736 DOI: 10.1111/bcp.13899] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 11/29/2022] Open
Affiliation(s)
- Stéphanie Leroux
- Pediatric Pharmacology and Pharmacometrics, University Children's Hospital BaselUniversity of BaselBaselSwitzerland
- Neonatal Intensive Care UnitUniversity Hospital RennesRennesFrance
| | - Johannes N. van den Anker
- Pediatric Pharmacology and Pharmacometrics, University Children's Hospital BaselUniversity of BaselBaselSwitzerland
- Division of Clinical PharmacologyChildren's National Health SystemWashingtonDCUSA
| | - Anne Smits
- Neonatal Intensive Care UnitUniversity Hospitals LeuvenLeuvenBelgium
- Department of Development and RegenerationKU LeuvenLeuvenBelgium
| | - Marc Pfister
- Pediatric Pharmacology and Pharmacometrics, University Children's Hospital BaselUniversity of BaselBaselSwitzerland
- Certara LPPrincetonNJUSA
| | - Karel Allegaert
- Department of Development and RegenerationKU LeuvenLeuvenBelgium
- Department of Pediatrics, Division of Neonatology, Erasmus MC Sophia Children's HospitalUniversity Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
36
|
Pokorná P, Šíma M, Černá O, Allegaert K, Tibboel D, Slanař O. Actual body weight-based vancomycin dosing in neonates. J Chemother 2019; 31:307-312. [PMID: 30983533 DOI: 10.1080/1120009x.2019.1599574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This study aimed to explore vancomycin pharmacokinetics and its covariates in critically ill neonates and to propose an easy applicable dosing nomogram for initial treatment. Individual vancomycin pharmacokinetic parameters were calculated based on therapeutic drug monitoring data using a one-compartmental model. A linear regression model was used for examination of covariates. The mean (SD) volume of distribution (Vd) and clearance (CL) for vancomycin were 0.73 (0.31) L/kg and 0.052 (0.020) L/h/kg, respectively. Vd was related to actual body weight (ABW), gestational and postmenstrual age. CL was also associated with ABW, gestational, postmenstrual age and also creatinine clearance. ABW was the strongest predictor for vancomycin pharmacokinetics and consequently dosing. Loading dose (mg) of 11.81 × ABW (kg) + 7.86 and maintenance dose (mg/day) of 40.92 × ABW (kg) -22.18 most closely approximated pharmacokinetic target. Vancomycin pharmacokinetics was mainly influenced by ABW in neonates and a practical ABW-based dosing algorithm was developed.
Collapse
Affiliation(s)
- Pavla Pokorná
- Department of Pediatrics - PICU/NICU, General University Hospital, 1st Faculty of Medicine Charles University in Prague , Prague , Czech Republic.,Department of Pharmacology, General University Hospital, 1st Faculty of Medicine Charles University in Prague , Czech Republic , Prague , Czech Republic.,Intensive Care and Department of Pediatric Surgery, Erasmus MC and Department of Neonatology- Sophia Childrens Hospital , Rotterdam , The Netherlands
| | - Martin Šíma
- Department of Pharmacology, General University Hospital, 1st Faculty of Medicine Charles University in Prague , Czech Republic , Prague , Czech Republic
| | - Olga Černá
- Department of Pediatrics - PICU/NICU, General University Hospital, 1st Faculty of Medicine Charles University in Prague , Prague , Czech Republic
| | - Karel Allegaert
- Intensive Care and Department of Pediatric Surgery, Erasmus MC and Department of Neonatology- Sophia Childrens Hospital , Rotterdam , The Netherlands.,Department of development and regeneration , Katholieke Universiteit Leuven , Leuven , Belgium
| | - Dick Tibboel
- Department of Pediatrics - PICU/NICU, General University Hospital, 1st Faculty of Medicine Charles University in Prague , Prague , Czech Republic.,Intensive Care and Department of Pediatric Surgery, Erasmus MC and Department of Neonatology- Sophia Childrens Hospital , Rotterdam , The Netherlands
| | - Ondřej Slanař
- Department of Pharmacology, General University Hospital, 1st Faculty of Medicine Charles University in Prague , Czech Republic , Prague , Czech Republic
| |
Collapse
|
37
|
Tauzin M, Cohen R, Durrmeyer X, Dassieu G, Barre J, Caeymaex L. Continuous-Infusion Vancomycin in Neonates: Assessment of a Dosing Regimen and Therapeutic Proposal. Front Pediatr 2019; 7:188. [PMID: 31139607 PMCID: PMC6527807 DOI: 10.3389/fped.2019.00188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction: Vancomycin remains the reference antibiotic in neonates for care-related infections caused by ß-lactam-resistant Gram-positive bacteria. Achieving the optimal serum vancomycin level is challenging because of high inter-individual variability and the drug's narrow therapeutic window. Continuous infusion might offer pharmacokinetic and practical advantages, but we lack consensus on the dosing regimen. The aim was to determine the proportion of neonates achieving an optimal therapeutic vancomycin level at the first vancomycin concentration assay and which dosing regimen is the most suitable for neonates. Methods: All neonates receiving continuous-infusion vancomycin (loading dose 15 mg/kg and maintenance dose 30 mg/kg/d) in a neonatal intensive care unit were retrospectively analyzed. The proportion of neonates reaching the target serum vancomycin level was calculated. After reviewing the literature to identify all published articles proposing a dosing regimen for continuous-infusion vancomycin for neonates, regimens were theoretically applied to our population by using maintenance doses according to covariate(s) proposed in the original publication. Results: Between January 2013 and December 2014, 75 neonates received 91 vancomycin courses by continuous infusion. Median gestational age, birth weight, and postnatal age were 27 weeks (interquartile range 26-30.5), 815 g (685-1,240), and 15 days (9-33). At the first assay, only 28/91 (30.8%) courses resulted in vancomycin levels between 20 and 30 mg/L (target level), 23/91 (25.3%) >30 mg/L and 40/91 (43.9%) <20 mg/L. We applied six published dosing regimens to our patients. One of these dosing regimens based on corrected gestational age (CGA) and serum creatinine level (SCR) would have allowed us to prescribe lower doses to neonates with high vancomycin levels and higher doses to neonates with low levels. Conclusions: A simplified dosing regimen of continuous-infusion vancomycin did not achieve therapeutic ranges in neonates; a patient-tailored dosing regimen taking into account CGA and SCR level or an individualized pharmacokinetic model can help to anticipate the inter-individual variability in neonates and would have been more suitable.
Collapse
Affiliation(s)
- Manon Tauzin
- Neonatal Intensive Care Unit, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Robert Cohen
- ACTIV, Association Clinique et Thérapeutique Infantile du Val de Marne, Saint-Maur des Fossés, France.,Université Paris Est, IMRB- GRC GEMINI, Créteil, France.,Clinical Research Center, Centre Hospitalier Intercommunal de Créteil, Créteil, France.,Groupe de Pathologie Infectieuse Pédiatrique, Paris, France.,Unité Court Séjour, Petits Nourrissons, Service de Néonatologie, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Xavier Durrmeyer
- Neonatal Intensive Care Unit, Centre Hospitalier Intercommunal de Créteil, Créteil, France.,Université Paris Est, IMRB- GRC GEMINI, Créteil, France.,Inserm, U1153, Obstetrical, Perinatal and Pediatric Epidemiology Team, Epidemiology and Biostatistics Sorbonne, Paris Descartes University, Paris, France
| | - Gilles Dassieu
- Neonatal Intensive Care Unit, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Jérôme Barre
- Clinical Research Center, Centre Hospitalier Intercommunal de Créteil, Créteil, France.,Department of Pharmacology, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Laurence Caeymaex
- Neonatal Intensive Care Unit, Centre Hospitalier Intercommunal de Créteil, Créteil, France.,Clinical Research Center, Centre Hospitalier Intercommunal de Créteil, Créteil, France.,Department of Research in Ethics EA1610 Studies on Science and Technics, Paris Est University, Créteil, France
| |
Collapse
|
38
|
Smits A, De Cock P, Vermeulen A, Allegaert K. Physiologically based pharmacokinetic (PBPK) modeling and simulation in neonatal drug development: how clinicians can contribute. Expert Opin Drug Metab Toxicol 2018; 15:25-34. [PMID: 30554542 DOI: 10.1080/17425255.2019.1558205] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Legal initiatives to stimulate neonatal drug development should be accompanied by development of valid research tools. Physiologically based (PB)-pharmacokinetic (PK) modeling and simulation are established tools, accepted by regulatory authorities. Consequently, PBPK holds promise to be a strong research tool to support neonatal drug development. Area covered: The currently available PBPK models still have poor predictive performance in neonates. Using an illustrative approach on distinct PK processes of absorption, distribution, metabolism, excretion, and real-world data in neonates, we provide evidence on the need to further refine available PBPK system parameters through generation and integration of new knowledge. This necessitates cross talk between clinicians and modelers to integrate knowledge (PK datasets, system knowledge, maturational physiology) or test and refine PBPK models. Expert opinion: Besides refining these models for 'small molecules', PBPK model development should also be more widely applied for therapeutic proteins and to determine exposure through breastfeeding. Researchers should also be aware that PBPK modeling in combination with clinical observations can also be used to elucidate age-related changes that are almost impossible to study based on in vivo or in vitro data. This approach has been explored for hepatic biliary excretion, renal tubular activity, and central nervous system exposure.
Collapse
Affiliation(s)
- Anne Smits
- a Neonatal Intensive Care Unit , University Hospitals Leuven , Leuven , Belgium.,b Department of Development and Regeneration , KU Leuven , Leuven , Belgium
| | - Pieter De Cock
- c Department of Pharmacy , Ghent University Hospital , Ghent , Belgium.,d Heymans Institute of Pharmacology , Ghent University , Ghent , Belgium.,e Department of Pediatric Intensive Care , Ghent University , Ghent , Belgium
| | - An Vermeulen
- f Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences , Ghent University , Ghent , Belgium
| | - Karel Allegaert
- b Department of Development and Regeneration , KU Leuven , Leuven , Belgium.,g Department of Pediatrics, Division of Neonatology , Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam , Rotterdam , The Netherlands
| |
Collapse
|
39
|
van den Anker J, Reed MD, Allegaert K, Kearns GL. Developmental Changes in Pharmacokinetics and Pharmacodynamics. J Clin Pharmacol 2018; 58 Suppl 10:S10-S25. [DOI: 10.1002/jcph.1284] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/21/2018] [Indexed: 12/22/2022]
Affiliation(s)
- John van den Anker
- Division of Clinical Pharmacology; Children's National Health System; Washington DC USA
- Division of Paediatric Pharmacology and Pharmacometrics; University of Basel Children's Hospital; Basel Switzerland
- Intensive Care and Department of Pediatric Surgery; Erasmus Medical Center-Sophia Children's Hospital; Rotterdam the Netherlands
| | - Michael D. Reed
- Emeritus Professor of Pediatrics; School of Medicine; Case Western Reserve University; Cleveland OH USA
| | - Karel Allegaert
- Intensive Care and Department of Pediatric Surgery; Erasmus Medical Center-Sophia Children's Hospital; Rotterdam the Netherlands
- Department of Pediatrics; Division of Neonatology; Erasmus Medical Center-Sophia Children's Hospital; Rotterdam the Netherlands
- Department of Development and Regeneration; KU Leuven; Leuven Belgium
| | | |
Collapse
|