1
|
Aissaoui Y, Derkaoui A, Hachimi A, Bouchama A, Dendane T, Doumiri M, ElAidaoui K, Ziadi A, Essafti M, Oualili L, Khaddouri M, Mroune O, Oudrhiri Safiani M, Khallouki M, Berdai A, Boukatta B, El Adib AR, Madani N, Soraa N, Belhadj A, Kohen JE, Abouqal R. Diagnostic Performance and Impact on Antimicrobial Treatment of a Multiplex Polymerase Chain Reaction in Critically Ill Patients With Pneumonia: A Multicenter Observational Study (The MORICUP-PCR Study: Morocco ICU Pneumonia-PCR study). Crit Care Explor 2025; 7:e1220. [PMID: 39937572 PMCID: PMC11826045 DOI: 10.1097/cce.0000000000001220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
OBJECTIVES Managing severe pneumonia remains a challenge. Rapid diagnostic tests, such as multiplex polymerase chain reaction (mPCR), facilitate quick microorganism identification and may enable timely and appropriate antimicrobial therapy. However, studies from low-income countries are scarce. This study aimed to evaluate the diagnostic characteristics of mPCR and its impact on antibiotic therapy and outcomes in critically ill patients with pneumonia. DESIGN Multicenter observational study. SETTING Twelve ICUs across Morocco. PATIENTS Adult patients with pneumonia requiring invasive mechanical ventilation, including community-acquired pneumonia (CAP), hospital-acquired pneumonia (HAP), and ventilator-associated pneumonia (VAP). INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Respiratory samples were analyzed using both mPCR and conventional microbiological methods. The diagnostic performance of mPCR was evaluated, including its sensitivity and specificity. Additionally, the appropriateness of mPCR-induced modifications in empiric antibiotic therapy and their impact on patient outcomes were assessed. A total of 210 patients were included, with a median age of 50 years (range, 33-67 yr), of whom 66.2% were male. Pneumonia types were distributed as 30% CAP, 58% VAP, and 12% HAP. mPCR demonstrated a sensitivity of 96.9% (95% CI, 92.3-99.2%) and a specificity of 92% (95% CI, 91-93%). Following mPCR, antibiotic therapy modifications were observed in 58% of patients (n = 122), including de-escalation or cessation in 11% (n = 23), escalation in 26.5% (n = 56), adequacy adjustments in 7.5% (n = 16), and initiation of antibiotics in 13% (n = 27). The appropriateness of antibiotic therapy increased significantly from 38.7% (n = 83) to 67% (n = 141; difference, 27.5%; 95% CI, 18.3-36.7; p < 0.0001). Generalized mixed model analysis revealed that appropriate post-mPCR antibiotic therapy was associated with reduced mortality (adjusted odds ratio, 0.37; 95% CI, 0.15-0.93; p = 0.038). CONCLUSIONS Our findings suggest that the use of mPCR is associated with a significant improvement in the appropriateness of empiric antibiotic therapy and is also associated with a positive impact on the outcome of patients with pneumonia.
Collapse
Affiliation(s)
- Younes Aissaoui
- Department of Critical Care Medicine, Avicenna Military Hospital, Marrakesh, Morocco
- B2S Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakesh, Morocco
| | - Ali Derkaoui
- Department of Anesthesiology and Intensive Care, Hassan II University Hospital, Fez, Morocco
| | - Abdelhamid Hachimi
- Medical Intensive Care Unit, Mohammed VI University Hospital, Cadi Ayyad University, Marrakesh, Morocco
| | - Ayoub Bouchama
- Department of Critical Care Medicine, Avicenna Military Hospital, Marrakesh, Morocco
- B2S Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakesh, Morocco
| | - Tarek Dendane
- Medical Intensive Care Unit, Ibn Sina University Hospital, Faculty of Medicine, Mohammed V University, Rabat, Morocco
| | - Mouhssine Doumiri
- Department of Neurocritical Care, Neurocritical Care Unit, Rabat Specialty Hospital, Mohammed V University, Rabat, Morocco
| | - Karim ElAidaoui
- Department of Anesthesiology and Critical Care, Cheikh Khalifa International University Hospital, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Amra Ziadi
- Surgical Intensive Care Unit, Mohammed VI University Hospital, Cadi Ayyad University, Marrakech, Morocco
| | - Meryem Essafti
- Obstetrics and Gynecology Anesthesia and Intensive Care Department, Mother and Child Hospital, Mohammed VI University Hospital, Marrakech, Morocco
- Faculty of Medicine and Pharmacy, Cadi Ayyad University, “Childhood, Health, and Development” Research Laboratory, Marrakech, Morocco
| | - Latifa Oualili
- Medical Intensive Care Unit, Ibn Sina University Hospital, Faculty of Medicine, Mohammed V University, Rabat, Morocco
| | - Mehdi Khaddouri
- Department of Anesthesiology and Intensive Care, Hassan II University Hospital, Fez, Morocco
| | - Oumaima Mroune
- Department of Anesthesiology and Intensive Care, Hassan II University Hospital, Fez, Morocco
| | - Mehdi Oudrhiri Safiani
- Department of Neurocritical Care, Neurocritical Care Unit, Rabat Specialty Hospital, Mohammed V University, Rabat, Morocco
| | - Mohammed Khallouki
- Department of Anesthesia and Intensive Care Medicine, Ibn Tofail Hospital, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Adnane Berdai
- Mother and Child Intensive Care Unit, Hassan II University Hospital Center, Fez, Morocco
| | - Brahim Boukatta
- General Intensive Care Unit A4, Hassan II University Hospital, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ahmed Rhassane El Adib
- Obstetrics and Gynecology Anesthesia and Intensive Care Department, Mother and Child Hospital, Mohammed VI University Hospital, Marrakech, Morocco
- Faculty of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Naoufel Madani
- Department of Critical Care, National Oncology Institute, Ibn Sina University Hospital, Mohammed V University, Rabat, Morocco
| | - Nabila Soraa
- Laboratory of Microbiology, Mohamed VI University Hospital, Cadi Ayyad University, Marrakesh, Morocco
| | - Ayoub Belhadj
- Department of Critical Care Medicine, Avicenna Military Hospital, Marrakesh, Morocco
- B2S Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakesh, Morocco
| | - Jamal Eddine Kohen
- Moroccan Network for Infectious Diseases Research in Critical Care (REMARIR), Moroccan Society of Anesthesia Analgesia and Intensive Care
- Department of Anesthesiology and Intensive Care, Assalam Polyclinic, Fez, Morocco
| | - Redouane Abouqal
- Laboratory of Biostatistics, Clinical, and Epidemiological Research, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| |
Collapse
|
2
|
Pintea-Simon IA, Bancu L, Mare AD, Ciurea CN, Toma F, Man A. Rapid Molecular Diagnostics of Pneumonia Caused by Gram-Negative Bacteria: A Clinician's Review. Antibiotics (Basel) 2024; 13:805. [PMID: 39334980 PMCID: PMC11429159 DOI: 10.3390/antibiotics13090805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
With approximately half a billion events per year, lower respiratory tract infections (LRTIs) represent a major challenge for the global public health. Among LRTI cases, those caused by Gram-negative bacteria (GNB) are associated with a poorer prognostic. Standard-of-care etiologic diagnostics is lengthy and difficult to establish, with more than half of cases remaining microbiologically undocumented. Recently, syndromic molecular diagnostic panels became available, enabling simultaneous detection of tens of pathogen-related and antimicrobial-resistance genetic markers within a few hours. In this narrative review, we summarize the available data on the performance of molecular diagnostics in GNB pneumonia, highlighting the main strengths and limitations of these assays, as well as the main factors influencing their clinical utility. We searched MEDLINE and Web of Science databases for relevant English-language articles. Molecular assays have higher analytical sensitivity than cultural methods, and show good agreement with standard-of-care diagnostics regarding detection of respiratory pathogens, including GNB, and identification of frequent patterns of resistance to antibiotics. Clinical trials reported encouraging results on the usefulness of molecular assays in antibiotic stewardship. By providing early information on the presence of pathogens and their probable resistance phenotypes, these assays assist in the choice of targeted therapy, in shortening the time from sample collection to appropriate antimicrobial treatment, and in reducing unnecessary antibiotic use.
Collapse
Affiliation(s)
- Ionela-Anca Pintea-Simon
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mures, Romania
- Department of Internal Medicine M3, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mures, Romania
| | - Ligia Bancu
- Department of Internal Medicine M3, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mures, Romania
| | - Anca Delia Mare
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mures, Romania
| | - Cristina Nicoleta Ciurea
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mures, Romania
| | - Felicia Toma
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mures, Romania
| | - Adrian Man
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mures, Romania
| |
Collapse
|
3
|
Howroyd F, Chacko C, MacDuff A, Gautam N, Pouchet B, Tunnicliffe B, Weblin J, Gao-Smith F, Ahmed Z, Duggal NA, Veenith T. Ventilator-associated pneumonia: pathobiological heterogeneity and diagnostic challenges. Nat Commun 2024; 15:6447. [PMID: 39085269 PMCID: PMC11291905 DOI: 10.1038/s41467-024-50805-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Ventilator-associated pneumonia (VAP) affects up to 20% of critically ill patients and induces significant antibiotic prescription pressure, accounting for half of all antibiotic use in the ICU. VAP significantly increases hospital length of stay and healthcare costs yet is also associated with long-term morbidity and mortality. The diagnosis of VAP continues to present challenges and pitfalls for the currently available clinical, radiological and microbiological diagnostic armamentarium. Biomarkers and artificial intelligence offer an innovative potential direction for ongoing future research. In this Review, we summarise the pathobiological heterogeneity and diagnostic challenges associated with VAP.
Collapse
Affiliation(s)
- Fiona Howroyd
- Therapy Services, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Birmingham, UK.
- Institute of Inflammation and Ageing, The University of Birmingham, Edgbaston, Birmingham, UK.
| | - Cyril Chacko
- Department of Critical Care Medicine and Anaesthesia, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
- Institute of Acute Care, Royal Wolverhampton Hospital and University of Wolverhampton, Wolverhampton, UK
| | - Andrew MacDuff
- Department of Critical Care Medicine and Anaesthesia, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
- Institute of Acute Care, Royal Wolverhampton Hospital and University of Wolverhampton, Wolverhampton, UK
| | - Nandan Gautam
- Critical Care Department, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Birmingham, UK
| | - Brian Pouchet
- Critical Care Department, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Birmingham, UK
| | - Bill Tunnicliffe
- Critical Care Department, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Birmingham, UK
| | - Jonathan Weblin
- Therapy Services, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Birmingham, UK
| | - Fang Gao-Smith
- Institute of Inflammation and Ageing, The University of Birmingham, Edgbaston, Birmingham, UK
| | - Zubair Ahmed
- Institute of Inflammation and Ageing, The University of Birmingham, Edgbaston, Birmingham, UK.
| | - Niharika A Duggal
- Institute of Inflammation and Ageing, The University of Birmingham, Edgbaston, Birmingham, UK.
| | - Tonny Veenith
- Department of Critical Care Medicine and Anaesthesia, The Royal Wolverhampton NHS Trust, Wolverhampton, UK.
- Institute of Acute Care, Royal Wolverhampton Hospital and University of Wolverhampton, Wolverhampton, UK.
| |
Collapse
|
4
|
Bay P, Fihman V, Woerther PL, Peiffer B, Gendreau S, Arrestier R, Labedade P, Moncomble E, Gaillet A, Carteaux G, de Prost N, Mekontso Dessap A, Razazi K. Performance and impact of rapid multiplex PCR on diagnosis and treatment of ventilated hospital-acquired pneumonia in patients with extended-spectrum β-lactamase-producing Enterobacterales rectal carriage. Ann Intensive Care 2024; 14:118. [PMID: 39073627 PMCID: PMC11286905 DOI: 10.1186/s13613-024-01348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Antimicrobial stewardship (AMS) for ventilator-associated pneumonia (VAP) or ventilated hospital-acquired pneumonia (vHAP) in extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E) carriers is challenging. BioFire® FilmArray® Pneumonia plus Panel (mPCR) can detect bacteria and antibiotic resistance genes, including blaCTX-M, the most common ESBL-encoding gene. METHODS This monocentric, prospective study was conducted on a group of ESBL-E carriers from March 2020 to August 2022. The primary objective was to evaluate the concordance between the results of mPCR and conventional culture performed on respiratory samples of ESBL-E carriers to investigate suspected VAP/vHAP. The secondary objective was to appraise the impact of performing or not mPCR on initial antibiotic therapy adequacy in ESBL-E carriers with confirmed VAP/vHAP. RESULTS Over the study period, 294 patients with ESBL-E carriage were admitted to the ICU, of who 168 (57%) were mechanically ventilated. (i) Diagnostic performance of mPCR was evaluated in suspected 41 episodes of VAP/vHAP: blaCTX-M gene was detected in 15/41 (37%) episodes, where 9/15 (60%) were confirmed ESBL-E-induced pneumonia. The culture and blaCTX-M were concordant in 35/41 (85%) episodes, and in all episodes where blaCTX-M was negative (n = 26), the culture never detected ESBL-E. (ii) The impact of mPCR on initial antibiotic therapy adequacy was assessed in 95 episodes of confirmed VAP/vHAP (22 episodes were tested with mPCR and 73 without); 47 (49%) episodes were ESBL-E-induced, and 24 (25%) were carbapenem-resistant bacteria-induced. The use of mPCR was significantly associated with higher prescription of adequate empirical antibiotic therapy in the multivariable logistic regression (adjusted odds ratio (aOR) (95% CI) of 7.5 (2.1-35.9), p = 0.004), propensity-weighting (aOR of 5.9 (1.6-22.1), p = 0.008), and matching-cohort models (aOR of 5.8 (1.5-22.1), p = 0.01). CONCLUSION mPCR blaCTX-M showed an excellent diagnostic value to rule out the diagnosis of ESBL-E related pneumonia in ESBL-E carriers with suspected VAP/vHAP. In addition, in patients with confirmed VAP/vHAP, a mPCR-based antibiotic therapy was associated with an increased prescription of adequate empirical antibiotic therapy. Performing mPCR on respiratory samples seems to be a promising tool in ESBL-E carriers with suspected vHAP/VAP. However, if mPCR is used in very low pre-test clinical probability of pneumonia, due to the high sensitivity and the rate of overdiagnosed pneumonia, the risk of overconsumption of carbapenem may prevail. Further studies are warranted.
Collapse
Affiliation(s)
- Pierre Bay
- AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpitaux Universitaires Henri Mondor, DMU Médecine, Service de Médecine Intensive Réanimation, CHU Henri Mondor, 51, Av. de Lattre de Tassigny, 94010, Créteil CEDEX, France.
- Faculté de Santé de Créteil, UPEC (Université Paris Est Créteil), IMRB, GRC CARMAS, 94010, Créteil, France.
- UPEC (Université Paris Est), INSERM, Unité U955, Équipe 18, 94010, Créteil, France.
| | - Vincent Fihman
- Département de Virologie, Bactériologie, Parasitologie-Mycologie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpitaux Universitaires Henri Mondor, 94010, Créteil, France
- UPEC (Université Paris Est), EA 7380 Dynamic, Ecole Nationale Vétérinaire d'Alfort, USC Anses, Créteil, France
| | - Paul-Louis Woerther
- Département de Virologie, Bactériologie, Parasitologie-Mycologie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpitaux Universitaires Henri Mondor, 94010, Créteil, France
- UPEC (Université Paris Est), EA 7380 Dynamic, Ecole Nationale Vétérinaire d'Alfort, USC Anses, Créteil, France
| | - Bastien Peiffer
- Assistance Publique-Hôpitaux de Paris AP-HP, Hôpital Henri Mondor, DMU Médecine, Créteil, France
| | - Ségolène Gendreau
- AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpitaux Universitaires Henri Mondor, DMU Médecine, Service de Médecine Intensive Réanimation, CHU Henri Mondor, 51, Av. de Lattre de Tassigny, 94010, Créteil CEDEX, France
- Faculté de Santé de Créteil, UPEC (Université Paris Est Créteil), IMRB, GRC CARMAS, 94010, Créteil, France
| | - Romain Arrestier
- AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpitaux Universitaires Henri Mondor, DMU Médecine, Service de Médecine Intensive Réanimation, CHU Henri Mondor, 51, Av. de Lattre de Tassigny, 94010, Créteil CEDEX, France
- Faculté de Santé de Créteil, UPEC (Université Paris Est Créteil), IMRB, GRC CARMAS, 94010, Créteil, France
| | - Pascale Labedade
- AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpitaux Universitaires Henri Mondor, DMU Médecine, Service de Médecine Intensive Réanimation, CHU Henri Mondor, 51, Av. de Lattre de Tassigny, 94010, Créteil CEDEX, France
- Faculté de Santé de Créteil, UPEC (Université Paris Est Créteil), IMRB, GRC CARMAS, 94010, Créteil, France
| | - Elsa Moncomble
- AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpitaux Universitaires Henri Mondor, DMU Médecine, Service de Médecine Intensive Réanimation, CHU Henri Mondor, 51, Av. de Lattre de Tassigny, 94010, Créteil CEDEX, France
- Faculté de Santé de Créteil, UPEC (Université Paris Est Créteil), IMRB, GRC CARMAS, 94010, Créteil, France
| | - Antoine Gaillet
- AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpitaux Universitaires Henri Mondor, DMU Médecine, Service de Médecine Intensive Réanimation, CHU Henri Mondor, 51, Av. de Lattre de Tassigny, 94010, Créteil CEDEX, France
- Faculté de Santé de Créteil, UPEC (Université Paris Est Créteil), IMRB, GRC CARMAS, 94010, Créteil, France
| | - Guillaume Carteaux
- AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpitaux Universitaires Henri Mondor, DMU Médecine, Service de Médecine Intensive Réanimation, CHU Henri Mondor, 51, Av. de Lattre de Tassigny, 94010, Créteil CEDEX, France
- Faculté de Santé de Créteil, UPEC (Université Paris Est Créteil), IMRB, GRC CARMAS, 94010, Créteil, France
| | - Nicolas de Prost
- AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpitaux Universitaires Henri Mondor, DMU Médecine, Service de Médecine Intensive Réanimation, CHU Henri Mondor, 51, Av. de Lattre de Tassigny, 94010, Créteil CEDEX, France
- Faculté de Santé de Créteil, UPEC (Université Paris Est Créteil), IMRB, GRC CARMAS, 94010, Créteil, France
| | - Armand Mekontso Dessap
- AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpitaux Universitaires Henri Mondor, DMU Médecine, Service de Médecine Intensive Réanimation, CHU Henri Mondor, 51, Av. de Lattre de Tassigny, 94010, Créteil CEDEX, France
- Faculté de Santé de Créteil, UPEC (Université Paris Est Créteil), IMRB, GRC CARMAS, 94010, Créteil, France
| | - Keyvan Razazi
- AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpitaux Universitaires Henri Mondor, DMU Médecine, Service de Médecine Intensive Réanimation, CHU Henri Mondor, 51, Av. de Lattre de Tassigny, 94010, Créteil CEDEX, France
- Faculté de Santé de Créteil, UPEC (Université Paris Est Créteil), IMRB, GRC CARMAS, 94010, Créteil, France
| |
Collapse
|
5
|
Giacobbe DR, Di Pilato V, Vena A, Marchese A, Bassetti M. Interpreting the results of rapid molecular diagnostic tests for carbapenem-resistant Enterobacterales infection: current clinical perspective while waiting for further evidence. Expert Rev Mol Diagn 2024; 24:583-590. [PMID: 39054637 DOI: 10.1080/14737159.2024.2383851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Carbapenem-resistant Enterobacterales (CRE) causing severe infections in humans have represented an important challenge for clinicians worldwide during the past two decades. AREAS COVERED Novel β-lactams and β-lactam/β-lactamase inhibitor combinations have led to a shift in the first-line approach to the treatment of severe CRE infections from polymyxin-based regimens to treatment with less toxic agents. This new scenario offers the opportunity to apply rapid molecular diagnostic tests for CRE infection to identify different types of carbapenemases. Herein, the authors provide an overview of this subject and follow it with their expert perspectives. EXPERT OPINION When considering studies actually measuring the clinical impact of rapid molecular tests in real-life scenarios, high certainty evidence from randomized controlled trials is still limited and not focused on CRE infections. Nonetheless, it is indisputable that rapid molecular tests have been shown to impact early therapeutic choices (in terms of both escalation and de-escalation) when used in real-life settings, thus issues in the clinical interpretation of their results are already relevant. Overall, increased expertise is required for the appropriate interpretation of rapid molecular tests for personalized antibiotic selection by understanding their strengths and limitations.
Collapse
Affiliation(s)
- Daniele Roberto Giacobbe
- Infectious Diseases Unit, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Antonio Vena
- Infectious Diseases Unit, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Anna Marchese
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- UO Microbiologia, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Matteo Bassetti
- Infectious Diseases Unit, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
6
|
Plattner AS, Lockowitz CR, Dumm R, Banerjee R, Newland JG, Same RG. Practice Versus Potential: The Impact of the BioFire FilmArray Pneumonia Panel on Antibiotic Use in Children. J Pediatric Infect Dis Soc 2024; 13:196-202. [PMID: 38332718 PMCID: PMC10949437 DOI: 10.1093/jpids/piae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND The BioFire FilmArray Pneumonia Panel (BFPP), a multiplex PCR panel for the diagnosis of lower respiratory tract infections, has been proposed as a tool for antimicrobial stewardship. Few studies evaluate real-world implementation of the BFPP and no studies focus exclusively on children. Our institution implemented BFPP testing without restrictions. METHODS We conducted a retrospective cohort study in children hospitalized at St. Louis Children's Hospital to (1) characterize the use of the BFPP in pediatric patients and (2) assess how results impacted antibiotic use. We included all BFPP tests obtained during the first year after the introduction of the test, September 2021 through August 2022. The primary outcome was change in antibiotic therapy within 24 hours of results, which was compared to the potential change in antibiotic therapy determined by two infectious diseases clinicians. RESULTS One hundred sixty-nine tests from 126 patients were included. Nine patients were immunocompromised and 19 had chronic tracheostomy. The majority of tests were sent from tracheal aspirate specimens (92%) and from patients in an intensive care unit (94%). Only 51% of tests were obtained due to respiratory failure or suspected pneumonia. For 80% of test results, there was potential to change antibiotics, but change occurred in only 46% of tests in practice. Antibiotic escalation was more common (26%) than de-escalation (15%) or discontinuation (4.1%). CONCLUSIONS In a cohort of pediatric patients tested with the BFPP, the majority of tests were sent from tracheal aspirates and less than half of tests were associated with a change in antibiotics.
Collapse
Affiliation(s)
- Alexander S Plattner
- Department of Pediatrics, Division of Infectious Diseases, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Institute for Informatics, Data Science, and Biostatistics (IDB), Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Christine R Lockowitz
- Department of Pharmacy, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Rebekah Dumm
- Department of Pathology and Immunology, Division of Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Ritu Banerjee
- Department of Pediatrics, Division of Infectious Diseases, Vanderbilt University, Nashville, TN, USA
| | - Jason G Newland
- Department of Pediatrics, Division of Infectious Diseases, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Rebecca G Same
- Department of Pediatrics, Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Chen CL, Tseng HY, Chen WC, Liang SJ, Tu CY, Lin YC, Hsueh PR. Application of a multiplex molecular pneumonia panel and real-world impact on antimicrobial stewardship among patients with hospital-acquired and ventilator-associated pneumonia in intensive care units. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024:S1684-1182(24)00037-9. [PMID: 38471985 DOI: 10.1016/j.jmii.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/08/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND The optimal timing for applying the BioFire FilmArray Pneumonia Panel (FAPP) in intensive care unit (ICU) patients with hospital-acquired pneumonia (HAP) or ventilator-associated pneumonia (VAP) remains undefined, and there are limited data on its impact on antimicrobial stewardship. METHODS This retrospective study was conducted at a referral hospital in Taiwan from November 2019 to October 2022. Adult ICU patients with HAP/VAP who underwent FAPP testing were enrolled. Patient data, FAPP results, conventional microbiological testing results, and the real-world impact of FAPP results on antimicrobial therapy adjustments were assessed. Logistic regression was used to determine the predictive factors for bacterial detection by FAPP. RESULTS Among 592 respiratory specimens, including 564 (95.3%) endotracheal aspirate specimens, 19 (3.2%) expectorated sputum specimens and 9 (1.5%) bronchoalveolar lavage specimens, from 467 patients with HAP/VAP, FAPP testing yielded 368 (62.2%) positive results. Independent predictors for positive bacterial detection by FAPP included prolonged hospital stay (odds ratio [OR], 3.14), recent admissions (OR, 1.59), elevated C-reactive protein levels (OR, 1.85), Acute Physiology and Chronic Health Evaluation II scores (OR, 1.58), and septic shock (OR, 1.79). Approximately 50% of antimicrobial therapy for infections caused by Gram-negative bacteria and 58.4% for Gram-positive bacteria were adjusted or confirmed after obtaining FAPP results. CONCLUSIONS This study identified several factors predicting bacterial detection by FAPP in critically ill patients with HAP/VAP. More than 50% real-world clinical practices were adjusted or confirmed based on the FAPP results. Clinical algorithms for the use of FAPP and antimicrobial stewardship guidelines may further enhance its benefits.
Collapse
Affiliation(s)
- Chieh-Lung Chen
- Division of Pulmonary and Critical Care, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - How-Yang Tseng
- Division of Pulmonary and Critical Care, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Wei-Cheng Chen
- Division of Pulmonary and Critical Care, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan; Department of Education, China Medical University Hospital, Taichung, Taiwan
| | - Shinn-Jye Liang
- Division of Pulmonary and Critical Care, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chih-Yen Tu
- Division of Pulmonary and Critical Care, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chao Lin
- Division of Pulmonary and Critical Care, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan.
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Laboratory Medicine, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
8
|
Dessajan J, Timsit JF. Impact of Multiplex PCR in the Therapeutic Management of Severe Bacterial Pneumonia. Antibiotics (Basel) 2024; 13:95. [PMID: 38247654 PMCID: PMC10812737 DOI: 10.3390/antibiotics13010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Pneumonia is a common and severe illness that requires prompt and effective management. Advanced, rapid, and accurate tools are needed to diagnose patients with severe bacterial pneumonia, and to rapidly select appropriate antimicrobial therapy, which must be initiated within the first few hours of care. Two multiplex molecular tests, Unyvero HPN and FilmArray Pneumonia+ Panel, have been developed using the multiplex polymerase chain reaction (mPCR) technique to rapidly identify pathogens and their main antibiotic resistance mechanisms from patient respiratory specimens. Performance evaluation of these tests showed strong correlations with reference techniques. However, good knowledge of their indications, targets, and limitations is essential. Collaboration with microbiologists is, therefore, crucial for their appropriate use. Under these conditions, and with standardized management, these rapid tests can improve the therapeutic management of severe pneumonia faster, more precisely, and with narrow-spectrum antibiotic therapy. Further randomized controlled trials are needed to address the many unanswered questions about multiplex rapid molecular testing during the diagnosis and the management of severe pneumonia. This narrative review will address the current knowledge, advantages, and disadvantages of these tests, and propose solutions for their routine use.
Collapse
Affiliation(s)
- Julien Dessajan
- Assistance Publique Hôpitaux de Paris (AP-HP), Medical and Infectious Diseases Intensive Care Unit, Bichat Claude-Bernard Hospital, Paris Cité University, 46 Rue Henri Huchard, 75018 Paris, France;
| | - Jean-François Timsit
- Assistance Publique Hôpitaux de Paris (AP-HP), Medical and Infectious Diseases Intensive Care Unit, Bichat Claude-Bernard Hospital, Paris Cité University, 46 Rue Henri Huchard, 75018 Paris, France;
- Mixt Research Unit (UMR) 1137, Infection, Antimicrobials, Modelization, Epidemiology (IAME), Institut National de la Recherche Médicale (INSERM), Paris Cité University, 75018 Paris, France
| |
Collapse
|
9
|
Moy AC, Kimmoun A, Merkling T, Berçot B, Caméléna F, Poncin T, Deniau B, Mebazaa A, Dudoignon E, Dépret F. Performance evaluation of a PCR panel (FilmArray® Pneumonia Plus) for detection of respiratory bacterial pathogens in respiratory specimens: A systematic review and meta-analysis. Anaesth Crit Care Pain Med 2023; 42:101300. [PMID: 37709201 DOI: 10.1016/j.accpm.2023.101300] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Accuracy and timing of antibiotic therapy remain a challenge for lower respiratory tract infections. New molecular techniques using Multiplex Polymerase Chain Reaction, including the FilmArray® Pneumonia Plus Panel [FAPP], have been developed to address this. The aim of this study is to evaluate the FAPP diagnostic performance for the detection of the 15 typical bacteria of the panel from respiratory samples in a meta-analysis from a systematic review. METHODS We searched PubMed and EMBASE from January 1, 2010, to December 31, 2022, and selected any study on the FAPP diagnostic performance on respiratory samples compared to the reference standard, bacterial culture. The main outcome was the overall diagnostic accuracy with sensitivity and specificity. We calculated the log Diagnostic Odds Ratio and analyzed performance for separate bacteria, antimicrobial resistance genes, and according to the sample type. We also reported the FAPP turnaround time and the out-of-panel bacteria number and species. This study is registered with PROSPERO (CRD42021226280). RESULTS From 10 317 records, we identified 30 studies including 8 968 samples. Twenty-one were related to intensive care. The overall sensitivity and specificity were 94% [95% Confidence Interval (CI) 91-95] and 98% [95%CI 97-98], respectively. The log Diagnostic Odds Ratio was 6.35 [95%CI 6.05-6.65]. 9.3% [95%CI 9.2-9.5] of bacteria detected in culture were not included in the FAPP panel. CONCLUSION This systematic review reporting the FAPP evaluation revealed a high accuracy. This test may represent an adjunct tool for pulmonary bacterial infection diagnostic and antimicrobial stewardship. Further evidence is needed to assess the impact on clinical outcome.
Collapse
Affiliation(s)
- Anne-Clotilde Moy
- Department of Anesthesiology, Critical Care and Burn Unit, Saint-Louis-Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Antoine Kimmoun
- Intensive Care Medicine Brabois, CHRU de Nancy, INSERM U1116, Université de Lorraine, Nancy, France; INSERM UMR-S 942, MASCOT, Université de Paris, Paris, France
| | - Thomas Merkling
- Nancy Clinical Investigation Centre, INSERM 1433, CHRU Nancy, Université de Lorraine, Nancy, France
| | - Béatrice Berçot
- Department of Microbiology, Saint-Louis-Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France; University of Paris, INSERM 1137, IAME, Paris, France
| | - François Caméléna
- Department of Microbiology, Saint-Louis-Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France; University of Paris, INSERM 1137, IAME, Paris, France
| | - Thibaut Poncin
- Department of Microbiology, Saint-Louis-Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France; University of Paris, INSERM 1137, IAME, Paris, France
| | - Benjamin Deniau
- Department of Anesthesiology, Critical Care and Burn Unit, Saint-Louis-Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France; University of Paris, FHU PROMICE, INSERM 942, INI-CRCT Network, Paris, France
| | - Alexandre Mebazaa
- Department of Anesthesiology, Critical Care and Burn Unit, Saint-Louis-Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France; University of Paris, FHU PROMICE, INSERM 942, INI-CRCT Network, Paris, France
| | - Emmanuel Dudoignon
- Department of Anesthesiology, Critical Care and Burn Unit, Saint-Louis-Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France; University of Paris, FHU PROMICE, INSERM 942, INI-CRCT Network, Paris, France.
| | - François Dépret
- Department of Anesthesiology, Critical Care and Burn Unit, Saint-Louis-Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France; University of Paris, FHU PROMICE, INSERM 942, INI-CRCT Network, Paris, France
| |
Collapse
|
10
|
Chambe E, Bortolotti P, Diesnis R, Laurans C, Héquette-Ruz R, Panaget S, Herbecq P, Vachée A, Meybeck A. Performance and Impact on Antibiotic Prescriptions of a Multiplex PCR in a Real-Life Cohort of Critically Ill Patients with Suspected Ventilated Pneumonia: A Retrospective Monocentric Observational Study. Antibiotics (Basel) 2023; 12:1646. [PMID: 38136680 PMCID: PMC10741159 DOI: 10.3390/antibiotics12121646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Pulmonary multiplex polymerase chain reaction (m-PCR) allows rapid pathogen detection. We aimed to assess its impact on initial antibiotic prescriptions in ventilated patients with suspected pneumonia. Between November 2020 and March 2022,ventilated patients with suspected pneumonia hospitalized in our ICU who benefited from respiratory sampling simultaneously tested using conventional microbiological methods and m-PCR were included. The proportion of appropriate changes in the initial antibiotic therapy following m-PCR results was assessed. We analyzed 104 clinical samples. Of the 47 negative m-PCR results, 16 (34%) led to an appropriate antibiotic strategy: 8 cessationsand 8 lack of initiation. Of the 57 positive m-PCR results, 51 (89%) resulted in an appropriate antibiotic strategy: 33 initiations, 2 optimizations, and 9 de-escalations. In the multivariate analysis, a positive m-PCR was associated with an appropriate antibiotic change (OR: 96.60; IC95% [9.72; 960.20], p < 0.001). A higher SAPS II score was negatively associated with an appropriate antibiotic change (OR: 0.96; IC95% [0.931; 0.997], p = 0.034). In our cohort, a positive m-PCR allowed for early initiation or adjustment of antibiotic therapy in almost 90% of cases. A negative m-PCR spared antibiotic use in onethird of cases. The impact of m-PCR results was reduced in the most severe patients.
Collapse
Affiliation(s)
- Emma Chambe
- Department of Critical Care, Victor Provo Hospital, 59100 Roubaix, France; (E.C.); (P.B.); (P.H.)
| | - Perrine Bortolotti
- Department of Critical Care, Victor Provo Hospital, 59100 Roubaix, France; (E.C.); (P.B.); (P.H.)
- Infectious Risk Management Unit, Victor Provo Hospital, 59100 Roubaix, France; (C.L.); (R.H.-R.); (S.P.)
| | - Rémy Diesnis
- Department of Biostatistics, Victor Provo Hospital, 59100 Roubaix, France;
| | - Caroline Laurans
- Infectious Risk Management Unit, Victor Provo Hospital, 59100 Roubaix, France; (C.L.); (R.H.-R.); (S.P.)
| | - Rozenn Héquette-Ruz
- Infectious Risk Management Unit, Victor Provo Hospital, 59100 Roubaix, France; (C.L.); (R.H.-R.); (S.P.)
| | - Sophie Panaget
- Infectious Risk Management Unit, Victor Provo Hospital, 59100 Roubaix, France; (C.L.); (R.H.-R.); (S.P.)
| | - Patrick Herbecq
- Department of Critical Care, Victor Provo Hospital, 59100 Roubaix, France; (E.C.); (P.B.); (P.H.)
| | - Anne Vachée
- Department of Microbiology, Victor Provo Hospital, 59100 Roubaix, France;
| | - Agnès Meybeck
- Infectious Risk Management Unit, Victor Provo Hospital, 59100 Roubaix, France; (C.L.); (R.H.-R.); (S.P.)
- University Department of Infectious Diseases, Centre Hospitalier Dron Hospital, 59200 Tourcoing, France
| |
Collapse
|
11
|
Kang BH, Jang KW, Yu ES, Jeong H, Jeong KH. Single-shot multi-channel plasmonic real-time polymerase chain reaction for multi-target point-of-care testing. LAB ON A CHIP 2023; 23:4701-4707. [PMID: 37823261 DOI: 10.1039/d3lc00687e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Plasmonic nucleic acid amplification tests demand high-throughput and multi-target detection of infectious diseases as well as short turnaround time and small size for point-of-care molecular diagnostics. Here, we report a multi-channel plasmonic real-time reverse-transcription polymerase chain reaction (mpRT-qPCR) assay for ultrafast and on-chip multi-target detection. The mpRT-qPCR system features two pairs of plasmonic thermocyclers for rapid nanostructure-driven amplification and microlens array fluorescence microscopes for in situ multi-color fluorescence quantification. Each channel shows a physical dimension of 32 mm, 75 mm, and 25 mm in width, length, and thickness. The ultrathin microscopes simultaneously capture four different fluorescence images from two PCR chambers of a single cartridge at a single shot exposure per PCR cycle of four different excitation light sources. The experimental results demonstrate a single assay result of high-throughput amplification and multi-target quantification for RNA-dependent RNA polymerase, nucleocapsid, and human ribonuclease P genes in SARS-CoV-2 RNA detection. The mpRT-PCR increases the number of tests four times over the single RT-PCR and exhibits a short detection time of 15 min for the four RT-PCR reactions. This point-of-care molecular diagnostic platform can reduce false negative results in clinical applications of virus detection and decentralize healthcare facilities with limited infrastructure.
Collapse
Affiliation(s)
- Byoung-Hoon Kang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyung-Won Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Eun-Sil Yu
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyejeong Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ki-Hun Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
12
|
Kalın G, Alp E, Chouaikhi A, Roger C. Antimicrobial Multidrug Resistance: Clinical Implications for Infection Management in Critically Ill Patients. Microorganisms 2023; 11:2575. [PMID: 37894233 PMCID: PMC10609422 DOI: 10.3390/microorganisms11102575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The increasing incidence of antimicrobial resistance (AMR) worldwide represents a serious threat in the management of sepsis. Due to resistance to the most common antimicrobials prescribed, multidrug-resistant (MDR) pathogens have been associated with delays in adequate antimicrobial therapy leading to significant increases in mortality, along with prolonged hospital length of stay (LOS) and increases in healthcare costs. In response to MDR infections and the delay of microbiological results, broad-spectrum antibiotics are frequently used in empirical antimicrobial therapy. This can contribute to the overuse and misuse of antibiotics, further promoting the development of resistance. Multiple measures have been suggested to combat AMR. This review will focus on describing the epidemiology and trends concerning MDR pathogens. Additionally, it will explore the crucial aspects of identifying patients susceptible to MDR infections and optimizing antimicrobial drug dosing, which are both pivotal considerations in the fight against AMR. Expert commentary: The increasing AMR in ICUs worldwide makes the empirical antibiotic therapy challenging in septic patients. An AMR surveillance program together with improvements in MDR identification based on patient risk stratification and molecular rapid diagnostic tools may further help tailoring antimicrobial therapies and avoid unnecessary broad-spectrum antibiotics. Continuous infusions of antibiotics, therapeutic drug monitoring (TDM)-based dosing regimens and combination therapy may contribute to optimizing antimicrobial therapy and limiting the emergence of resistance.
Collapse
Affiliation(s)
- Gamze Kalın
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
| | - Emine Alp
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara 06760, Türkiye;
| | - Arthur Chouaikhi
- Department of Anesthesiology and Intensive Care, Pain and Emergency Medicine, Nîmes-Caremeau University Hospital, Place du Professeur Robert Debré, CEDEX 9, 30029 Nîmes, France;
| | - Claire Roger
- Department of Anesthesiology and Intensive Care, Pain and Emergency Medicine, Nîmes-Caremeau University Hospital, Place du Professeur Robert Debré, CEDEX 9, 30029 Nîmes, France;
- UR UM 103 IMAGINE, Faculty of Medicine, Montpellier University, Chemin du Carreau de Lanes, 30029 Nîmes, France
| |
Collapse
|
13
|
Clari MÁ, Carbonell N, Albert E, Navarro D. Proposal for antimicrobial therapy stewardship of lower respiratory tract infection in mechanically-ventilated patients based upon the Biofire® Filmarray® Pneumonia Plus panel results. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2023; 41:521-523. [PMID: 37838453 DOI: 10.1016/j.eimce.2023.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/22/2023] [Indexed: 10/16/2023]
Affiliation(s)
- Mª Ángeles Clari
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Nieves Carbonell
- Medical Intensive Care Unit, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Eliseo Albert
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - David Navarro
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain.
| |
Collapse
|
14
|
Garrido P, Gabaldó-Barrios X, Pujol-Bajador I, Fernández L, Ballester F, Garrido R, Cueto P, Camps J, Vallverdú I. Assessing the Utility of Multiplexed Polymerase Chain Reaction in Detecting Microorganisms Causing Infections in Critically ill Patients. Curr Microbiol 2023; 80:348. [PMID: 37733061 PMCID: PMC10514122 DOI: 10.1007/s00284-023-03461-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023]
Abstract
Early sepsis diagnosis is crucial for implementing adequate antibiotic therapy and for patient survival. This study investigated whether using multiplexed PCR for detecting microorganisms in critical septic patients affects initial antibiotic treatment and compared it to microbiological culture. It also explored scenarios where PCR is more effective in clinical practice. One hundred nineteen specimens (83 blood and 36 respiratory specimens) belonging to 93 patients were analyzed. Multiplexed PCR determinations were performed using the FA-BCID Panel (bioMérieux) for blood samples and the FA-Pneumo for respiratory samples. The mean turnaround times were 1.7 h for the FA-BCID and 1.5h for the FA-Pneumo. Conversely, they were 96.1 h for blood cultures and 72.3 h for respiratory cultures. FA-BCID showed a mean sensitivity of 97% and specificity of 100%. FA-Pneumo showed a sensitivity of 100% and specificity of 90%. However, the positive predictive value was only 39%. Discrepancies were common in polymicrobial samples. Based on the PCR results, initial empirical treatment should have been changed in 71% of patients with bloodstream infections and 61% with respiratory infections. We conclude that multiplexed PCR improves the response time in identifying germs with a high degree of coincidence for blood cultures and moderate for respiratory cultures. These results highlight the importance of PCR in choosing an appropriate antibiotic therapy.
Collapse
Affiliation(s)
- Pedro Garrido
- Intensive Care Unit, Hospital Universitari de Sant Joan, Salut Sant Joan de Reus-Baix Camp, Av. Dr. Josep Laporte 2, 43204, Reus, Spain
| | - Xavier Gabaldó-Barrios
- Microbiology Laboratory, Hospital Universitari de Sant Joan, Salut Sant Joan de Reus-Baix Camp, Av. Dr. Josep Laporte 2, 43204, Reus, Spain
| | - Isabel Pujol-Bajador
- Microbiology Laboratory, Hospital Universitari de Sant Joan, Salut Sant Joan de Reus-Baix Camp, Av. Dr. Josep Laporte 2, 43204, Reus, Spain
- Department of Basic Health Sciences, Unit of Microbiology, Faculty of Medicine and Health Sciences, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Llorenç S/N, 43201, Reus, Spain
| | - Luis Fernández
- Microbiology Laboratory, Hospital Universitari de Sant Joan, Salut Sant Joan de Reus-Baix Camp, Av. Dr. Josep Laporte 2, 43204, Reus, Spain
| | - Frederic Ballester
- Microbiology Laboratory, Hospital Universitari de Sant Joan, Salut Sant Joan de Reus-Baix Camp, Av. Dr. Josep Laporte 2, 43204, Reus, Spain
| | - Raquel Garrido
- Intensive Care Unit, Hospital Universitari de Sant Joan, Salut Sant Joan de Reus-Baix Camp, Av. Dr. Josep Laporte 2, 43204, Reus, Spain
| | - Pitter Cueto
- Intensive Care Unit, Hospital Universitari de Sant Joan, Salut Sant Joan de Reus-Baix Camp, Av. Dr. Josep Laporte 2, 43204, Reus, Spain
| | - Jordi Camps
- Department of Medicine and Surgery Unitat de Recerca Biomèdica, Institut d'Investigació Sanitària Pere Virgili, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Salut Sant Joan de Reus-Baix Camp, Av. Dr. Josep Laporte 2, 43204, Reus, Spain.
| | - Immaculada Vallverdú
- Intensive Care Unit, Hospital Universitari de Sant Joan, Salut Sant Joan de Reus-Baix Camp, Av. Dr. Josep Laporte 2, 43204, Reus, Spain
| |
Collapse
|
15
|
Bassetti M, Brucci G, Vena A, Giacobbe DR. Use of antibiotics in hospitalized patients with COVID-19: evolving concepts in a highly dynamic antimicrobial stewardship scenario. Expert Opin Pharmacother 2023; 24:1679-1684. [PMID: 37466425 DOI: 10.1080/14656566.2023.2239154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION Excessive use of antibiotics has been frequently reported in hospitalized patients with COVID-19 worldwide, compared to the actual number of bacterial co-infections or super-infections. AREAS COVERED In this perspective, we discuss the current literature on the use of antibiotics and antimicrobial stewardship interventions in hospitalized patients with COVID-19. A search was conducted in PubMed up to March 2023. EXPERT OPINION The COVID-19 pandemic has witnessed an excessive use of antibiotics in hospitals worldwide, especially before the advent of COVID-19 vaccination, although according to the most recent data there is still an important disproportion between the prevalence of antibiotic use and that of proven bacterial coinfection or superinfections. An important reduction in the prevalence of antibiotic use in COVID-19 patients reported in the literature, from 70-100% to 50-60%, has been observed after successful vaccination campaigns, likely related to the reduced median disease severity of hospitalized COVID-19 patients and some successful interventions of antimicrobial and diagnostic stewardship. However, the disproportion between antibiotic use and the prevalence of bacterial infections (4-6%) is still uncomfortable from an antimicrobial stewardship perspective and requires further attention.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Giorgia Brucci
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Antonio Vena
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
16
|
Miller MM, Van Schooneveld TC, Stohs EJ, Marcelin JR, Alexander BT, Watkins AB, Creager HM, Bergman SJ. Implementation of a Rapid Multiplex Polymerase Chain Reaction Pneumonia Panel and Subsequent Antibiotic De-escalation. Open Forum Infect Dis 2023; 10:ofad382. [PMID: 37564742 PMCID: PMC10411041 DOI: 10.1093/ofid/ofad382] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Background Net effects of implementation of a multiplex polymerase chain reaction (PCR) pneumonia panel (PNP) on antimicrobial stewardship are thus far unknown. This retrospective study evaluated the real-world impact of the PNP on time to antibiotic de-escalation in critically ill patients treated for pneumonia at an academic medical center. Methods This retrospective, quasi-experimental study included adult intensive care unit (ICU) patients with respiratory culture results from 1 May to 15 August 2019 (pre-PNP group) and adult ICU patients with PNP results from 1 May to 15 August 2020 (PNP group) at Nebraska Medical Center. Patients were excluded for the following reasons: any preceding positive coronavirus disease 2019 PCR test, lack of antibiotic receipt, or non-respiratory tract infection indications for antibiotics. The primary outcome was time to discontinuation of anti-methicillin-resistant Staphylococcus aureus (MRSA) therapy. Secondary outcomes included time to discontinuation of antipseudomonal therapy, frequency of early discontinuation for atypical coverage, and overall duration (in days) of antibiotic therapy for pneumonia. Results Sixty-six patients in the pre-PNP group and 58 in the PNP group were included. There were significant differences in patient characteristics between groups. The median time to anti-MRSA agent discontinuation was 49.1 hours in the pre-PNP and 41.8 hours in the PNP group (P = .28). The median time to discontinuation of antipseudomonal agents was 134.4 hours in the pre-PNP versus 98.1 hours in the PNP group (P = .47). Other outcomes were numerically but not significantly improved in our sample. Conclusions This early look at implementation of a multiplex PNP did not demonstrate a statistically significant difference in antibiotic use but lays the groundwork to further evaluate a significant real-world impact on antibiotic de-escalation in ICU patients treated for pneumonia.
Collapse
Affiliation(s)
- Molly M Miller
- Department of Pharmaceutical and Nutrition Care, Nebraska Medicine, Omaha, Nebraska, USA
| | - Trevor C Van Schooneveld
- Department of Internal Medicine, Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Erica J Stohs
- Department of Internal Medicine, Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jasmine R Marcelin
- Department of Internal Medicine, Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Bryan T Alexander
- Department of Pharmaceutical and Nutrition Care, Nebraska Medicine, Omaha, Nebraska, USA
| | - Andrew B Watkins
- Department of Pharmaceutical and Nutrition Care, Nebraska Medicine, Omaha, Nebraska, USA
| | - Hannah M Creager
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Scott J Bergman
- Department of Pharmaceutical and Nutrition Care, Nebraska Medicine, Omaha, Nebraska, USA
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
17
|
Ryu H, Abdul Azim A, Bhatt PJ, Uprety P, Mohayya S, Dixit D, Kirn TJ, Narayanan N. Rapid diagnostics to enhance therapy selection for the treatment of bacterial infections. CURRENT PHARMACOLOGY REPORTS 2023; 9:198-216. [PMID: 40161380 PMCID: PMC11951845 DOI: 10.1007/s40495-023-00323-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/20/2023] [Indexed: 04/02/2025]
Abstract
Purpose of review Rapid diagnostic tests (RDTs) may reduce morbidity and mortality related to bacterial infections by reducing time to identification of pathogens and antibiotic resistance mechanisms. There has been a significant increase in the breadth and depth of available technology utilized by RDTs. Recent findings There are numerous Food and Drug Administration (FDA)-cleared assays for rapid detection of bacteria from various specimen types from sites including blood, stool, central nervous system and respiratory tract. Most RDTs currently FDA-cleared are molecular tests designed as syndromic panels that provide identification of on-panel organisms and resistance genes. One FDA-cleared rapid phenotypic assay for antimicrobial susceptibility testing is currently available and others are in development. Studies of these technologies' clinical impact consistently demonstrate improvements in clinical care processes such as time to de-escalation and escalation of antibiotic therapy particularly for blood and respiratory specimen tests. Other RDTs show inconsistent impact on antibiotic use. Antimicrobial stewardship programs are vital to ensure the greatest benefit from RDTs in clinical practice. Summary The advancement and implementation of RDTs, in conjunction with antimicrobial stewardship, to enhance treatment selection for bacterial infections should be regarded as a core element to improve clinical outcomes for patients. Although challenges exist in the use of RDTs, there is a need for continued innovation in technology, implementation science and collaboration across clinical professions to optimize care.
Collapse
Affiliation(s)
- HaYoung Ryu
- Department of Pharmacy, Oregon Health & Sciences University Hospital and Clinics, Portland, Oregon, USA
| | - Ahmed Abdul Azim
- Division of Infectious Diseases, Allergy and Immunology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Pinki J. Bhatt
- Division of Infectious Diseases, Allergy and Immunology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
- Department of Pharmacy Practice and Administration, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA
| | - Priyanka Uprety
- Becton, Dickinson and Company, Life Sciences- Integrated Diagnostic Solutions, Sparks, MD, USA
| | - Sana Mohayya
- Department of Pharmacy, Robert Wood Johnson University Hospital, New Brunswick, NJ, USA
| | - Deepali Dixit
- Department of Pharmacy Practice and Administration, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA
- Department of Pharmacy, Robert Wood Johnson University Hospital, New Brunswick, NJ, USA
| | - Thomas J. Kirn
- Division of Infectious Diseases, Allergy and Immunology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
- Department of Pathology & Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Navaneeth Narayanan
- Division of Infectious Diseases, Allergy and Immunology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
- Department of Pharmacy Practice and Administration, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA
- Becton, Dickinson and Company, Life Sciences- Integrated Diagnostic Solutions, Sparks, MD, USA
- Center of Excellence in Pharmaceutical Translational Research and Education, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA
| |
Collapse
|
18
|
Hosseini M, Ahmed Hamad M, Mohseni G, Salamy S, Dehghan Tarzjani S, Taati Moghadam M. Prediction of tsunami of resistance to some antibiotics is not far-fetched which used during COVID-19 pandemic. J Clin Lab Anal 2023; 37:e24959. [PMID: 37650531 PMCID: PMC10561589 DOI: 10.1002/jcla.24959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 09/01/2023] Open
Abstract
One of the most tragic events in recent history was the COVID-19 outbreak, which has caused thousands of deaths. A variety of drugs were prescribed to improve the condition of patients, including antiparasitic, antiviral, antibiotics, and anti-inflammatory medicines. It must be understood, however, that COVID-19 is like a tip of an iceberg on the ocean, and the consequences of overuse of antibiotics are like the body of a mountain under water whose greatness has not yet been determined for humanity, and additional study is needed to understand them. History of the war between microbes and antimicrobial agents has shown that microbes are intelligent organisms that win over antimicrobial agents over time through many acquired or inherent mechanisms. The key terms containing "COVID-19," "Severe acute respiratory syndrome coronavirus-2," "SARS-CoV2," "Antibiotic Resistance," "Coronavirus," "Pandemic," "Antibiotics," and "Antimicrobial Resistance" were used for searching in PubMed, Scopus, and Google Scholar databases. The COVID-19 pandemic has resulted in an increased prescription of antibiotics. Infections caused by secondary or co-bacterial infections or beneficial bacteria in the body can be increased as a result of this amount of antibiotic prescription and exposure to antibiotics. Antibiotic resistance will likely pose a major problem in the future, especially for last resort antibiotics. In order to address the antibiotic resistance crisis, it is imperative that researchers, farmers, veterinarians, physicians, public and policymakers, pharmacists, other health and environmental professionals, and others collaborate during and beyond this pandemic.
Collapse
Affiliation(s)
- Mandana Hosseini
- Department of Microbiology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Mohammed Ahmed Hamad
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Golazin Mohseni
- Department of Microbiology, Tonekabon Branch, Azad University, Tonekabon, Iran
| | - Shakiba Salamy
- Department of Microbiology, Faculty of Pharmacy, Islamic Azad University, Tehran, Iran
| | - Shabnam Dehghan Tarzjani
- Department of Cellular and Molecular Biology, Tehran Center Branch, Islamic Azad University, Tehran, Iran
| | - Majid Taati Moghadam
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
19
|
Bălan AM, Bodolea C, Trancă SD, Hagău N. Trends in Molecular Diagnosis of Nosocomial Pneumonia Classic PCR vs. Point-of-Care PCR: A Narrative Review. Healthcare (Basel) 2023; 11:1345. [PMID: 37174887 PMCID: PMC10177880 DOI: 10.3390/healthcare11091345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/23/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Nosocomial pneumonia is one of the most frequent hospital-acquired infections. One of the types of nosocomial pneumonia is ventilator-associated pneumonia, which occurs in endotracheally intubated patients in intensive care units (ICU). Ventilator-associated pneumonia may be caused by multidrug-resistant pathogens, which increase the risk of complications due to the difficulty in treating them. Pneumonia is a respiratory disease that requires targeted antimicrobial treatment initiated as early as possible to have a good outcome. For the therapy to be as specific and started sooner, diagnostic methods have evolved rapidly, becoming quicker and simpler to perform. Polymerase chain reaction (PCR) is a rapid diagnostic technique with numerous advantages compared to classic plate culture-based techniques. Researchers continue to improve diagnostic methods; thus, the newest types of PCR can be performed at the bedside, in the ICU, so-called point of care testing-PCR (POC-PCR). The purpose of this review is to highlight the benefits and drawbacks of PCR-based techniques in managing nosocomial pneumonia.
Collapse
Affiliation(s)
- Andrei-Mihai Bălan
- Department of Anaesthesia and Intensive Care 2, “Iuliu Hatieganu”, University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania (N.H.)
- Department of Anaesthesia and Intensive Care, Municipal Clinical Hospital, 400139 Cluj-Napoca, Romania
| | - Constantin Bodolea
- Department of Anaesthesia and Intensive Care 2, “Iuliu Hatieganu”, University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania (N.H.)
- Department of Anaesthesia and Intensive Care, Municipal Clinical Hospital, 400139 Cluj-Napoca, Romania
| | - Sebastian Daniel Trancă
- Department of Anaesthesia and Intensive Care 2, “Iuliu Hatieganu”, University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania (N.H.)
- Emergency Department, The Emergency County Hospital Cluj, 400347 Cluj-Napoca, Romania
| | - Natalia Hagău
- Department of Anaesthesia and Intensive Care 2, “Iuliu Hatieganu”, University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania (N.H.)
- Department of Anaesthesia and Intensive Care, “Regina Maria” Hospital, 400221 Cluj-Napoca, Romania
| |
Collapse
|
20
|
Recommendations and guidelines for the diagnosis and management of Coronavirus Disease-19 (COVID-19) associated bacterial and fungal infections in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:207-235. [PMID: 36586743 PMCID: PMC9767873 DOI: 10.1016/j.jmii.2022.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Coronavirus disease-19 (COVID-19) is an emerging infectious disease caused by SARS-CoV-2 that has rapidly evolved into a pandemic to cause over 600 million infections and more than 6.6 million deaths up to Nov 25, 2022. COVID-19 carries a high mortality rate in severe cases. Co-infections and secondary infections with other micro-organisms, such as bacterial and fungus, further increases the mortality and complicates the diagnosis and management of COVID-19. The current guideline provides guidance to physicians for the management and treatment of patients with COVID-19 associated bacterial and fungal infections, including COVID-19 associated bacterial infections (CABI), pulmonary aspergillosis (CAPA), candidiasis (CAC) and mucormycosis (CAM). Recommendations were drafted by the 7th Guidelines Recommendations for Evidence-based Antimicrobial agents use Taiwan (GREAT) working group after review of the current evidence, using the grading of recommendations assessment, development, and evaluation (GRADE) methodology. A nationwide expert panel reviewed the recommendations in March 2022, and the guideline was endorsed by the Infectious Diseases Society of Taiwan (IDST). This guideline includes the epidemiology, diagnostic methods and treatment recommendations for COVID-19 associated infections. The aim of this guideline is to provide guidance to physicians who are involved in the medical care for patients with COVID-19 during the ongoing COVID-19 pandemic.
Collapse
|
21
|
Aldardeer NF, Shukairi ANAL, Nasser ME, Al Musawa M, Kalkatawi BS, Alsahli RM, Ramdan AME, Qushmaq I, Aldhaeefi M. Continuation Versus De-escalation of Broad-Spectrum Antibiotic Therapy in Critically Ill COVID-19 Patients. DR. SULAIMAN AL HABIB MEDICAL JOURNAL 2023. [PMCID: PMC9972303 DOI: 10.1007/s44229-023-00027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Background Antibiotic de-escalation (ADE) is a stewardship initiative that aims to reduce exposure to antimicrobials, thus limiting their unwanted effect, including antimicrobial resistance. Our study aims to describe the impact of ADE compared with the continuation of therapy on the outcome of critically ill coronavirus disease 2019 (COVID-19) patients. Material and Methods A single-center retrospective study included critically ill COVID-19 adult patients admitted between January 1, 2019 and August 31, 2021, and started on broad-spectrum antibiotics. The primary outcome was intensive care unit (ICU) mortality. In addition, other clinical outcomes were evaluated, including ICU readmissions, length of stay, and superinfection. Results The study included 73 patients with a mean age of 61.0 ± 19.4, and ADE was performed in 10 (13.6%) of these. In the ADE group, 8/10 (80%) cultures were positive. ICU mortality was not statistically different between ADE and continuation of therapy groups (60 vs. 41.3%, respectively, P = 0.317). Superinfection occurred in 4 (5.4%) patients. Hospital mortality, length of stay, and ICU readmission rates did not differ significantly between groups. Conclusion De-escalation of broad-spectrum antibiotics in critically ill covid-19 patients was not associated with higher mortality. A larger cohort is needed to confirm these findings. Supplementary Information The online version contains supplementary material available at 10.1007/s44229-023-00027-0.
Collapse
Affiliation(s)
| | - Abeer Nizar A. L. Shukairi
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia ,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohannad E. Nasser
- King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - Mohammad Al Musawa
- Medication Safety/Clinical Support Pharmacy, King Faisal Specialist Hospital and Research Centre (Gen. Org.), Jeddah, Saudi Arabia
| | | | | | | | - Ismael Qushmaq
- Section of Critical Care Medicine, Department of Medicine, King Faisal Specialist Hospital and Research Center (Gen. Org.), Jeddah, Saudi Arabia
| | - Mohammed Aldhaeefi
- Department of Clinical and Administrative Pharmacy Sciences, College of Pharmacy, Howard University, Washington, DC, USA
| |
Collapse
|
22
|
Bogdan I, Gadela T, Bratosin F, Dumitru C, Popescu A, Horhat FG, Negrean RA, Horhat RM, Mot IC, Bota AV, Stoica CN, Feciche B, Csep AN, Fericean RM, Chicin GN, Marincu I. The Assessment of Multiplex PCR in Identifying Bacterial Infections in Patients Hospitalized with SARS-CoV-2 Infection: A Systematic Review. Antibiotics (Basel) 2023; 12:antibiotics12030465. [PMID: 36978332 PMCID: PMC10044563 DOI: 10.3390/antibiotics12030465] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Bacterial infection can occur in patients hospitalized with SARS-CoV-2 in various conditions, resulting in poorer outcomes, such as a higher death rate. This current systematic review was conducted in order to assess the efficiency of multiplex PCR in detecting bacterial infections in hospitalized COVID-19 patients, as well as to analyze the most common bacterial pathogens and other factors that interfere with this diagnosis. The research was conducted using four electronic databases (PubMed, Taylor&Francis, Web of Science, and Wiley Online Library). Out of 290 studies, nine were included in the systematic review. The results supported the use of multiplex PCR in detecting bacteria, considering its high sensitivity and specificity rates. The most common bacterial pathogens found were Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumoniae, and Haemophilus influenzae. The median age at admission was 61.5 years, and the majority of patients were men (70.3%), out of a total of 1553 patients. The proportion of ICU admission was very high, with a pooled proportion of 52.6% over the analyzed studies, and an average duration of hospitalization of 13 days. The mortality rate was proportionally high, as was the rate of ICU admission, with a pooled mortality of 24.9%. It was discovered that 65.2% of all patients used antibiotics before admission, with or without medical prescription. Antibiotic treatment should be considered consciously, considering the high risks of developing antibiotic resistance.
Collapse
Affiliation(s)
- Iulia Bogdan
- Department XIII, Discipline of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- Methodological and Infectious Diseases Research Center, Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Tejaswi Gadela
- School of General Medicine, Bhaskar Medical College, Amdapur Road 156-162, Hyderabad 500075, India
| | - Felix Bratosin
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- Methodological and Infectious Diseases Research Center, Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Catalin Dumitru
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- Correspondence: (C.D.); (B.F.); (G.N.C.)
| | - Alin Popescu
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Florin George Horhat
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | | | - Razvan Mihai Horhat
- Department of Conservative Dentistry and Endodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Ion Cristian Mot
- ENT Department, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq, 300041 Timisoara, Romania
| | - Adrian Vasile Bota
- Methodological and Infectious Diseases Research Center, Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Carmen Nicoleta Stoica
- Oradea Emergency Clinical Hospital, Infectious Diseases Department, 410087 Oradea, Romania
| | - Bogdan Feciche
- Department of Urology, Satu-Mare County Emergency Hospital, Strada Ravensburg 2, 440192 Satu-Mare, Romania
- Correspondence: (C.D.); (B.F.); (G.N.C.)
| | - Andrei Nicolae Csep
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Roxana Manuela Fericean
- Department XIII, Discipline of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Gratiana Nicoleta Chicin
- Faculty of General Medicine, “Vasile Goldis” Western University of Arad, Bulevardul Revolutiei 94, 310025 Arad, Romania
- National Institute of Public Health, Strada Doctor Leonte Anastasievici 1-3, 050463 Bucuresti, Romania
- Correspondence: (C.D.); (B.F.); (G.N.C.)
| | - Iosif Marincu
- Methodological and Infectious Diseases Research Center, Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| |
Collapse
|
23
|
Tran-Dinh A, Tir I, Tanaka S, Atchade E, Lortat-Jacob B, Jean-Baptiste S, Zappella N, Boudinet S, Castier Y, Mal H, Mordant P, Ben Abdallah I, Bunel V, Messika J, Armand-Lefèvre L, Grall N, Montravers P. Impact of Culture-Positive Preservation Fluid on Early Morbidity and Mortality After Lung Transplantation. Transpl Int 2023; 36:10826. [PMID: 36846604 PMCID: PMC9945515 DOI: 10.3389/ti.2023.10826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
The prevalence, risk factors and outcomes associated with culture-positive preservation fluid (PF) after lung transplantation (LT) are unknown. From January 2015 to December 2020, the microbiologic analyses of PF used to store the cold ischaemia-placed lung graft(s) of 271 lung transplant patients were retrospectively studied. Culture-positive PF was defined as the growth of any microorganism. Eighty-three (30.6%) patients were transplanted with lung grafts stored in a culture-positive PF. One-third of culture-positive PF were polymicrobial. Staphylococcus aureus and Escherichia coli were the most frequently isolated microorganisms. No risk factors for culture-positive PF based on donor characteristics were identified. Forty (40/83; 48.2%) patients had postoperative pneumonia on Day 0 and 2 (2/83; 2.4%) patients had pleural empyema with at least one identical bacteria isolated in culture-positive PF. The 30-day survival rate was lower for patients with culture-positive PF compared with patients with culture-negative PF (85.5% vs. 94.7%, p = 0.01). Culture-positive PF has a high prevalence and may decrease lung transplant recipient survival. Further studies are required to confirm these results and improve understanding of the pathogenesis of culture-positive PF and their management.
Collapse
Affiliation(s)
- Alexy Tran-Dinh
- Université Paris Cité, AP-HP, Hôpital Bichat Claude Bernard, Département d'Anesthésie-Réanimation, Paris, France
- INSERM UMR 1148 LVTS, Université de Paris, Paris, France
| | - Imane Tir
- Université Paris Cité, AP-HP, Hôpital Bichat Claude Bernard, Département d'Anesthésie-Réanimation, Paris, France
| | - Sébastien Tanaka
- Université Paris Cité, AP-HP, Hôpital Bichat Claude Bernard, Département d'Anesthésie-Réanimation, Paris, France
- Réunion Island University, INSERM U1188 Diabetes Atherothrombosis Réunion Indian Ocean (DéTROI), CYROI Plateform, Saint-Denis de la Réunion, France
| | - Enora Atchade
- Université Paris Cité, AP-HP, Hôpital Bichat Claude Bernard, Département d'Anesthésie-Réanimation, Paris, France
| | - Brice Lortat-Jacob
- Université Paris Cité, AP-HP, Hôpital Bichat Claude Bernard, Département d'Anesthésie-Réanimation, Paris, France
| | - Sylvain Jean-Baptiste
- Université Paris Cité, AP-HP, Hôpital Bichat Claude Bernard, Département d'Anesthésie-Réanimation, Paris, France
| | - Nathalie Zappella
- Université Paris Cité, AP-HP, Hôpital Bichat Claude Bernard, Département d'Anesthésie-Réanimation, Paris, France
| | - Sandrine Boudinet
- Université Paris Cité, AP-HP, Hôpital Bichat Claude Bernard, Département d'Anesthésie-Réanimation, Paris, France
| | - Yves Castier
- Université Paris Cité, AP-HP, Hôpital Bichat Claude Bernard, Service de Chirurgie Vasculaire, Thoracique et Transplantation Pulmonaire, Paris, France
- INSERM UMR 1152 PHERE, Université de Paris, Paris, France
| | - Hervé Mal
- INSERM UMR 1152 PHERE, Université de Paris, Paris, France
- Université Paris Cité, AP-HP, Hôpital Bichat Claude Bernard, Pneumologie B et Transplantation Pulmonaire, Paris, France
| | - Pierre Mordant
- Université Paris Cité, AP-HP, Hôpital Bichat Claude Bernard, Service de Chirurgie Vasculaire, Thoracique et Transplantation Pulmonaire, Paris, France
- INSERM UMR 1152 PHERE, Université de Paris, Paris, France
- Paris Transplant Group, Paris, France
| | - Iannis Ben Abdallah
- Université Paris Cité, AP-HP, Hôpital Bichat Claude Bernard, Service de Chirurgie Vasculaire, Thoracique et Transplantation Pulmonaire, Paris, France
- INSERM UMR 1152 PHERE, Université de Paris, Paris, France
| | - Vincent Bunel
- INSERM UMR 1152 PHERE, Université de Paris, Paris, France
- Université Paris Cité, AP-HP, Hôpital Bichat Claude Bernard, Pneumologie B et Transplantation Pulmonaire, Paris, France
| | - Jonathan Messika
- INSERM UMR 1152 PHERE, Université de Paris, Paris, France
- Université Paris Cité, AP-HP, Hôpital Bichat Claude Bernard, Pneumologie B et Transplantation Pulmonaire, Paris, France
- Paris Transplant Group, Paris, France
| | - Laurence Armand-Lefèvre
- Université Paris Cité, AP-HP, Hôpital Bichat Claude Bernard, Service de Bactériologie, Paris, France
- INSERM UMR 1137 IAME, Université de Paris, Paris, France
| | - Nathalie Grall
- Université Paris Cité, AP-HP, Hôpital Bichat Claude Bernard, Service de Bactériologie, Paris, France
- INSERM UMR 1137 IAME, Université de Paris, Paris, France
| | - Philippe Montravers
- Université Paris Cité, AP-HP, Hôpital Bichat Claude Bernard, Département d'Anesthésie-Réanimation, Paris, France
- INSERM UMR 1152 PHERE, Université de Paris, Paris, France
| |
Collapse
|
24
|
Ferrer J, Clari MÁ, Giménez E, Carbonell N, Torres I, Blasco ML, Albert E, Navarro D. The Biofire® Filmarray® Pneumonia Plus panel for management of lower respiratory tract infection in mechanically-ventilated patients in the COVID-19 era: a diagnostic and cost-benefit evaluation. Diagn Microbiol Infect Dis 2023; 105:115847. [PMID: 36403558 PMCID: PMC9625846 DOI: 10.1016/j.diagmicrobio.2022.115847] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/04/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
We assessed the diagnostic performance of the Biofire® Filmarray® Pneumonia Plus panel (FA-PP) compared to standard culture in Intensive Care Unit patients with suspected ventilator-associated lower respiratory tract infection in the COVID-19 era. We determined whether its implementation in routine diagnostic algorithms would be cost-beneficial from a hospital perspective. Of 163 specimens, 96 (59%) returned negative results with FA-PP and conventional culture, and 29 specimens (17.8%) were positive with both diagnostic methods and yielded concordant qualitative bacterial identification/isolation. Thirty-nine specimens (23.9%) gave discordant results (positive via FA-PP and negative via culture). Real-life adjustments of empirical antimicrobial therapy (EAT) after FA-PP results resulted in additional costs beyond EAT alone of 1868.7 €. Adequate EAT adjustments upon FA-PP results would have resulted in a saving of 6675.8 €. In conclusion, the data presented supports the potential utility of FA-PP for early EAT adjustment in patients with ventilator-associated lower respiratory tract infection.
Collapse
Affiliation(s)
- Josep Ferrer
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - María Ángeles Clari
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Estela Giménez
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Nieves Carbonell
- Medical Intensive Care Unit, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Ignacio Torres
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - María Luisa Blasco
- Medical Intensive Care Unit, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Eliseo Albert
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - David Navarro
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain,Corresponding author. Tel.: +34-9-6197-3500; fax: +34-9-6386-4173
| |
Collapse
|
25
|
Donnars A, Mahieu R, Declerck C, Chenouard R, Lemarié C, Pailhoriès H, Requin J, Kempf M, Eveillard M. BIOFIRE® Blood Culture IDentification 2 (BCID2) panel for early adaptation of antimicrobial therapy in adult patients with bloodstream infections: a real-life experience. Diagn Microbiol Infect Dis 2023; 105:115858. [PMID: 36442386 DOI: 10.1016/j.diagmicrobio.2022.115858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/24/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
Our objective was to assess the effectiveness of a multiplex PCR panel for blood culture identification (BCID2) on the implementation of appropriate antimicrobial therapy. We conducted a monocentric pre/post study comparing the time to result from direct microscopic examination (DE) to bacterial identification (BI) in positive blood cultures between 2 different periods: P1 without BCID2 and P2 with BCID2. Appropriate treatments prescribed before DE and after DE / BCID2 and after BI / BCID2 were compared using direct proportion comparison and survival analysis. For mono-microbial bloodstream infections, the proportion of appropriate antimicrobial treatment after DE was 50% in P1 vs. 87.5% after BCID2 in P2 (P < 0.001) for Gram-negative bacteria and 33.0% in P1 vs. 64.4% in P2 (P < 0.01) for Gram-positive bacteria. A significant difference (P = 0.04) was recorded with survival curves for Gram positive bacteria. BCID2 seems effective in reducing the time for prescribing appropriate antimicrobials.
Collapse
Affiliation(s)
- Anne Donnars
- Laboratoire de Bactériologie, Département de Biologie des Agents Infectieux, CHU Angers, Angers, France
| | - Rafael Mahieu
- Service des Maladies Infectieuses et Tropicales, CHU Angers, Angers, France; Univ Angers, Nantes Université, CHU Angers, Inserm, CNRS, INCIT, Angers, France
| | - Charles Declerck
- Service des Maladies Infectieuses et Tropicales, CHU Angers, Angers, France
| | - Rachel Chenouard
- Laboratoire de Bactériologie, Département de Biologie des Agents Infectieux, CHU Angers, Angers, France
| | - Carole Lemarié
- Laboratoire de Bactériologie, Département de Biologie des Agents Infectieux, CHU Angers, Angers, France
| | - Hélène Pailhoriès
- Laboratoire de Bactériologie, Département de Biologie des Agents Infectieux, CHU Angers, Angers, France
| | - Jim Requin
- Service des Maladies Infectieuses et Tropicales, CHU Angers, Angers, France
| | - Marie Kempf
- Laboratoire de Bactériologie, Département de Biologie des Agents Infectieux, CHU Angers, Angers, France; Univ Angers, Nantes Université, CHU Angers, Inserm, CNRS, INCIT, Angers, France
| | - Matthieu Eveillard
- Laboratoire de Bactériologie, Département de Biologie des Agents Infectieux, CHU Angers, Angers, France; Univ Angers, Nantes Université, CHU Angers, Inserm, CNRS, INCIT, Angers, France.
| |
Collapse
|
26
|
Evaluation and Clinical Impact of Biofire FilmArray Pneumonia Panel Plus in ICU-Hospitalized COVID-19 Patients. Diagnostics (Basel) 2022; 12:diagnostics12123134. [PMID: 36553141 PMCID: PMC9777407 DOI: 10.3390/diagnostics12123134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Microbiological diagnosis by using commercial multiplex quantitative PCR systems provides great advantages over the conventional culture. In this work, the Biofire FilmArray Pneumonia Panel Plus (FAPP+) was used to test 144 low respiratory tract samples from 105 COVID-19 patients admitted to an Intensive Care Unit (ICU), detecting 78 pathogens in 59 (41%) samples. The molecular panel was evaluated by using the conventional culture (CC) as comparator, which isolated 42 pathogens in 40 (27.7%) samples. The overall percentage of agreement was 82.6%. Values of sensitivity (93%), specificity (62%), positive predictive value (50%), and negative predictive value (96%) were obtained. The mean time elapsed from sample extraction to modification of antibiotic treatment was 7.6 h. A change in antimicrobial treatment after the FAPP+ results was performed in 27% of patients. The FAPP+ is a highly sensitive diagnostic method that can be used to significantly reduce diagnostic time and that allows an early optimization of antimicrobial treatment.
Collapse
|
27
|
Empirical antibiotic therapy for difficult-to-treat Gram-negative infections: when, how, and how long? Curr Opin Infect Dis 2022; 35:568-574. [PMID: 36206149 DOI: 10.1097/qco.0000000000000884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW To discuss empirical therapy for severe infections due to Gram-negative bacteria with difficult-to-treat resistance (GNB-DTR) in current clinical practice, focusing in particular on the positioning of novel therapeutic agents and rapid diagnostic tests. RECENT FINDINGS The current era of novel agents active against GNB-DTR and showing differential activity against specific determinants of resistance is an unprecedented scenario, in which the clinical reasoning leading to the choice of the empirical therapy for treating severe GNB-DTR infections is becoming more complex, but it also allows for enhanced treatment precision. SUMMARY Novel agents should be used in line with antimicrobial stewardship principles, aimed at reducing selective pressure for antimicrobial resistance. However, this does not mean that they should not be used. Indeed, excesses in restrictive uses may be unethical by precluding access to the most effective and less toxic treatments for patients with severe GNB-DTR infections. Given these premises (the 'how'), empirical treatment with novel agents should be considered in all patients with risk factors for GNB-DTR and severe clinical presentation of acute infection (the 'when'). Furthermore, empirical novel agents should preferably be continued only for a few hours, until de-escalation, modification, or confirmation (as targeted therapy) is made possible by the results of rapid diagnostic tests (the 'how long').
Collapse
|
28
|
Wu HY, Chang PH, Chen KY, Lin IF, Hsih WH, Tsai WL, Chen JA, Lee SSJ. Coronavirus disease 2019 (COVID-19) associated bacterial coinfection: Incidence, diagnosis and treatment. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:985-992. [PMID: 36243668 PMCID: PMC9536868 DOI: 10.1016/j.jmii.2022.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Coronavirus disease 2019 (COVID-19) emerged as a pandemic that spread rapidly around the world, causing nearly 500 billion infections and more than 6 million deaths to date. During the first wave of the pandemic, empirical antibiotics was prescribed in over 70% of hospitalized COVID-19 patients. However, research now shows a low incidence rate of bacterial coinfection in hospitalized COVID-19 patients, between 2.5% and 5.1%. The rate of secondary infections was 3.7% in overall, but can be as high as 41.9% in the intensive care units. Over-prescription of antibiotics to treat COVID-19 patients fueled the ongoing antimicrobial resistance globally. Diagnosis of bacterial coinfection is challenging due to indistinguishable clinical presentations with overlapping lower respiratory tract symptoms such as fever, cough and dyspnea. Other diagnostic methods include conventional culture, diagnostic syndromic testing, serology test and biomarkers. COVID-19 patients with bacterial coinfection or secondary infection have a higher in-hospital mortality and longer length of stay, timely and appropriate antibiotic use aided by accurate diagnosis is crucial to improve patient outcome and prevent antimicrobial resistance.
Collapse
Affiliation(s)
- Huan-Yi Wu
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Peng-Hao Chang
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Kuan-Yu Chen
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - I-Fan Lin
- Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Wen-Hsin Hsih
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wan-Lin Tsai
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jiun-An Chen
- Division of Pediatric Infectious Diseases, China Medical University Children's Hospital, China Medical University, Taichung, Taiwan
| | - Susan Shin-Jung Lee
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan,Corresponding author. 386, Ta-Chung 1st Rd., Kaohsiung 813, Taiwan. Fax: +886 -7 -3468292
| | | |
Collapse
|
29
|
SHEA statement on antibiotic stewardship in hospitals during public health emergencies. Infect Control Hosp Epidemiol 2022; 43:1541-1552. [PMID: 36102000 PMCID: PMC9672827 DOI: 10.1017/ice.2022.194] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
Ambrożej D, Makrinioti H, Whitehouse A, Papadopoulos N, Ruszczyński M, Adamiec A, Castro-Rodriguez JA, Alansari K, Jartti T, Feleszko W. Respiratory virus type to guide predictive enrichment approaches in the management of the first episode of bronchiolitis: A systematic review. Front Immunol 2022; 13:1017325. [PMID: 36389820 PMCID: PMC9647543 DOI: 10.3389/fimmu.2022.1017325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
It has become clear that severe bronchiolitis is a heterogeneous disease; even so, current bronchiolitis management guidelines rely on the one-size-fits-all approach regarding achieving both short-term and chronic outcomes. It has been speculated that the use of molecular markers could guide more effective pharmacological management and achieve the prevention of chronic respiratory sequelae. Existing data suggest that asthma-like treatment (systemic corticosteroids and beta2-agonists) in infants with rhinovirus-induced bronchiolitis is associated with improved short-term and chronic outcomes, but robust data is still lacking. We performed a systematic search of PubMed, Embase, Web of Science, and the Cochrane’s Library to identify eligible randomized controlled trials to determine the efficacy of a personalized, virus-dependent application of systemic corticosteroids in children with severe bronchiolitis. Twelve studies with heterogeneous methodology were included. The analysis of the available results comparing the respiratory syncytial virus (RSV)-positive and RSV-negative children did not reveal significant differences in the associatons between systemic corticosteroid use in acute episode and duration of hospitalization (short-term outcome). However, this systematic review identified a trend of the positive association between the use of systematic corticosteroids and duration of hospitalization in RSV-negative infants hospitalized with the first episode of bronchiolitis (two studies). This evidence is not conclusive. Taken together, we suggest the design for future studies to assess the respiratory virus type in guiding predictive enrichment approaches in infants presenting with the first episode of bronchiolitis.
Collapse
Affiliation(s)
- Dominika Ambrożej
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Heidi Makrinioti
- Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Abigail Whitehouse
- Centre for Genomics and Child Health, Queen Mary University of London, London, United Kingdom
| | - Nikolas Papadopoulos
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
- Allergy Department, 2nd Pediatric Clinic, University of Athens, Athens, Greece
| | - Marek Ruszczyński
- Department of Pediatrics, Medical University of Warsaw, Warsaw, Poland
| | - Aleksander Adamiec
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Jose A. Castro-Rodriguez
- Department of Pediatric Pulmonology and Cardiology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Khalid Alansari
- Department of Pediatric Emergency Medicine, Sidra Medicine, Doha, Qatar
- Clinical Pediatrics, Qatar University College of Medicine, Doha, Qatar
- Clinical Pediatrics, Weill Cornell Medical College- Qatar, Doha, Qatar
| | - Tuomas Jartti
- Department of Pediatrics, Turku University Hospital and University of Turku, Turku, Finland
- PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Wojciech Feleszko
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Wojciech Feleszko,
| |
Collapse
|
31
|
Nedel W, da Silveira F, da Silva CF, Lisboa T. Bacterial infection in coronavirus disease 2019 patients: co-infection, super-infection and how it impacts on antimicrobial use. Curr Opin Crit Care 2022; 28:463-469. [PMID: 36017559 PMCID: PMC9593329 DOI: 10.1097/mcc.0000000000000975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Since the beginning of the severe acute respiratory syndrome coronavirus 2 pandemic, there has been a large increase in the consumption of antimicrobials, both as a form of treatment for viral pneumonia, which has been shown to be ineffective, and in the treatment of secondary infections that arise over the course of the severe presentation of coronavirus disease 2019 (COVID-19). This increase in consumption, often empirical, ends up causing an increase in the incidence of colonization and secondary infections by multi and pan-resistant germs. RECENT FINDINGS The presence of a hyperinflammatory condition induced by the primary infection, associated with the structural damage caused by viral pneumonia and by the greater colonization by bacteria, generally multiresistant, are important risk factors for the acquisition of secondary infections in COVID-19. Consequently, there is an increased prevalence of secondary infections, associated with a higher consumption of antimicrobials and a significant increase in the incidence of infections by multi and pan-resistant bacteria. SUMMARY Antimicrobial stewardship and improvement in diagnostic techniques, improving the accuracy of bacterial infection diagnosis, may impact the antibiotic consumption and the incidence of infections by resistant pathogens.
Collapse
Affiliation(s)
- Wagner Nedel
- Hospital de Clinicas de Porto Alegre
- Hospital Nossa Senhora Conceição
| | - Fernando da Silveira
- Hospital Nossa Senhora Conceição
- Programa de Pos-Graduação Ciencias Pneumológicas, UFRGS, Porto Alegre
| | - Cristofer Farias da Silva
- Hospital de Clinicas de Porto Alegre
- Programa de Pos-Graduação Ciencias Pneumológicas, UFRGS, Porto Alegre
| | - Thiago Lisboa
- Hospital de Clinicas de Porto Alegre
- Programa de Pos-Graduação Ciencias Pneumológicas, UFRGS, Porto Alegre
- Universidade LaSalle, Canoas
- Instituto de Pesquisa HCOR, São Paulo, Brazil
| |
Collapse
|
32
|
Potential of Multiplex Polymerase Chain Reaction Performed on Protected Telescope Catheter Samples for Early Adaptation of Antimicrobial Therapy in ARDS Patients. J Clin Med 2022; 11:jcm11154366. [PMID: 35955983 PMCID: PMC9369416 DOI: 10.3390/jcm11154366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Diagnosis of co/superinfection in patients with Acute Respiratory Distress Syndrome (ARDS) is challenging. The FilmArray Pneumonia plus Panel (bioMérieux, France), a new rapid multiplex Polymerase Chain Reaction (mPCR), has never been assessed on a blinded protected telescope catheter (PTC) samples, a very common diagnostic tool in patients under mechanical ventilation. We evaluated the performance of mPCR on PTC samples compared with conventional culture and its impact on antibiotic stewardship. Methods: Observational study in two intensive care units, conducted between March and July 2020, during the first wave of the COVID-19 pandemic in France. Results: We performed 125 mPCR on blinded PTC samples of 95 ARDS patients, including 73 (77%) SARS-CoV-2 cases and 28 (29%) requiring extracorporeal membrane oxygenation. Respiratory samples were drawn from mechanically ventilated patients either just after intubation (n = 48; 38%) or later for suspected ventilator-associated pneumonia (VAP) (n = 77; 62%). The sensitivity, specificity, positive, and negative predictive values of mPCR were 93% (95% CI 84–100), 99% (95% CI 99–100), 68% (95% CI 54–83), and 100% (95% CI 100–100), respectively. The overall coefficient of agreement between mPCR and standard culture was 0.80 (95% CI 0.68–0.89). Intensivists changed empirical antimicrobial therapy in only 14% (18/125) of cases. No new antibiotic was initiated in more than half of the CAP/HAP pneumonia-suspected cases (n = 29; 60%) and in more than one-third of those suspected to have VAP without affecting or delaying their antimicrobial therapy. Conclusions: Rapid mPCR was feasible on blinded PTC with good sensitivity and specificity. New antibiotics were not initiated in more than half of patients and more than one-third of VAP-suspected cases. Further studies are needed to assess mPCR potential in improving antibiotic stewardship.
Collapse
|
33
|
Meldrum OW, Belchamber KB, Chichirelo-Konstantynovych KD, Horton KL, Konstantynovych TV, Long MB, McDonnell MJ, Perea L, Garcia-Basteiro AL, Loebinger MR, Duarte R, Keir HR. ERS International Congress 2021: highlights from the Respiratory Infections Assembly. ERJ Open Res 2022; 8:00642-2021. [PMID: 35615420 PMCID: PMC9124871 DOI: 10.1183/23120541.00642-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
The European Respiratory Society International Congress 2021 took place virtually for the second year running due to the coronavirus pandemic. The Congress programme featured more than 400 sessions and 3000 abstract presentations, covering the entire field of respiratory science and medicine. In this article, early career members of the Respiratory Infections Assembly summarise a selection of sessions across a broad range of topics, including presentations on bronchiectasis, non-tuberculosis mycobacteria, tuberculosis, cystic fibrosis and COVID-19.
Collapse
Affiliation(s)
- Oliver W. Meldrum
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | | | - Katie L. Horton
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Academic Unit of Clinical and Experimental Medicine, University of Southampton Faculty of Medicine, Southampton, UK
| | | | - Merete B. Long
- Division of Molecular and Clinical Medicine, Medical School, University of Dundee, Dundee, UK
| | - Melissa J. McDonnell
- Galway University Hospitals and National University of Ireland (NUIG), Galway, Ireland
| | | | - Alberto L. Garcia-Basteiro
- ISGlobal, Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saude de Manhiça, Maputo, Mozambique
| | - Michael R. Loebinger
- Host Defence Unit, Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Raquel Duarte
- Pulmonology Unit, Centro Hospitalar de Vila Nova de Gaia/Espinho EPE, Vila Nova de Gaia, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - Holly R. Keir
- Division of Molecular and Clinical Medicine, Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The first studies on COVID-19 patients with acute respiratory distress syndrome (ARDS) described a high rate of secondary bacterial ventilator-associated pneumonia (VAP). The specificity of VAP diagnoses in these patients are reviewed, including their actual rate. RECENT FINDINGS Published studies described high rates of bacterial VAP among COVID-19 patients with ARDS, and these VAP episodes are usually severe and of specifically poor prognosis with high mortality. Indeed, Severe acute respiratory syndrome - coronavirus disease 19 (SARS-CoV2) infection elicits alterations that may explain a high risk of VAP. In addition, breaches in the aseptic management of patients might have occurred when the burden of care was heavy. In addition, VAP in these patients is more frequently suspected, and more often investigated with diagnostic tools based on molecular techniques. SUMMARY VAP is frequented and of particularly poor prognosis in COVID-19 patients with ARDS. It can be explained by SARS-CoV-2 pathophysiology, and also breaches in the aseptic procedures. In addition, tools based on molecular techniques allow an early diagnosis and unmask VAP usually underdiagnosed by traditional culture-based methods. The impact of molecular technique-based diagnostics in improving antibacterial therapy and COVID-19 prognosis remain to be evaluated.
Collapse
|
35
|
Empiric Treatment in HAP/VAP: “Don’t You Want to Take a Leap of Faith?”. Antibiotics (Basel) 2022; 11:antibiotics11030359. [PMID: 35326822 PMCID: PMC8944836 DOI: 10.3390/antibiotics11030359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/26/2022] Open
Abstract
Ventilator-associated pneumonia is a frequent cause of ICU-acquired infections. These infections are associated with high morbidity and mortality. The increase in antibiotic resistance, particularly among Gram-negative bacilli, makes the choice of empiric antibiotic therapy complex for physicians. Multidrug-resistant organisms (MDROs) related infections are associated with a high risk of initial therapeutic inadequacy. It is, therefore, necessary to quickly identify the bacterial species involved and their susceptibility to antibiotics. New diagnostic tools have recently been commercialized to assist in the management of these infections. Moreover, the recent enrichment of the therapeutic arsenal effective on Gram-negative bacilli raises the question of their place in the therapeutic management of these infections. Most national and international guidelines recommend limiting their use to microbiologically documented infections. However, many clinical situations and, in particular, the knowledge of digestive or respiratory carriage by MDROs should lead to the discussion of the use of these new molecules, especially the new combinations with beta-lactamase inhibitors in empirical therapy. In this review, we present the current epidemiological data, particularly in terms of MDRO, as well as the clinical and microbiological elements that may be taken into account in the discussion of empirical antibiotic therapy for patients managed for ventilator-associated pneumonia.
Collapse
|
36
|
Burillo A, Bouza E. Faster infection diagnostics for intensive care unit (ICU) patients. Expert Rev Mol Diagn 2022; 22:347-360. [PMID: 35152813 DOI: 10.1080/14737159.2022.2037422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : The patient admitted to intensive care units (ICU) is critically ill, to some extent immunosuppressed, with a high risk of infection, sometimes by multidrug-resistant microorganisms. In this context, the intensivist expects from the microbiology service quick and understandable information so that appropriate antimicrobial treatment for that particular patient and infection can be initiated. AREAS COVERED : In this review of recent literature (2015-2021), we identified diagnostic methods for the most prevalent infections in these patients through a search of the databases Pubmed, evidence-based medicine online, York University reviewers group, Cochrane, MBE-Trip, and Sumsearch using the terms: adult, clinical laboratory techniques, critical care, early diagnosis, microbiology, molecular diagnostic techniques, spectrometry and metagenomics. EXPERT OPINION : There has been an exponential surge in diagnostic systems used directly on blood and other samples to expedite microbial identification and antimicrobial susceptibility testing of pathogens. Few studies have thus far assessed their clinical impact; final outcomes will also depend on preanalytical and post-analytical factors. Besides, many of the resistance mechanisms cannot yet be detected with molecular techniques, which impairs the prediction of the actual resistance phenotype. Nonetheless, this is an exciting field with much yet to explore.
Collapse
Affiliation(s)
- Almudena Burillo
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain.,Medicine Department, School of Medicine, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain.,Gregorio Marañón Health Research Institute, Doctor Esquerdo 46, 28007, Madrid, Spain
| | - Emilio Bouza
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain.,Medicine Department, School of Medicine, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain.,Gregorio Marañón Health Research Institute, Doctor Esquerdo 46, 28007, Madrid, Spain.,CIBER of Respiratory Diseases (CIBERES CB06/06/0058), Av. Monforte de Lemos 3-5, Pabellón 11, Planta, 28029 Madrid, Spain
| |
Collapse
|
37
|
Detection of bacteria via multiplex PCR in respiratory samples of critically ill COVID-19 patients with suspected HAP/VAP in the ICU. Wien Klin Wochenschr 2021; 134:385-390. [PMID: 34882256 PMCID: PMC8656439 DOI: 10.1007/s00508-021-01990-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/16/2021] [Indexed: 01/28/2023]
Abstract
Background Critically ill Coronavirus disease 2019 (COVID-19) patients have high rates of bacterial superinfection. Multiplex polymerase chain reaction panels may be able to provide useful information about the incidence and spectrum of bacteria causing superinfections. Methods In this retrospective observational study we included all COVID-19 positive patients admitted to our intensive care unit with suspected hospital-acquired pneumonia/ventilator-associated pneumonia (HAP/VAP) in whom the BioFire® Pneumonia Panel (PP) was performed from tracheal aspirate or bronchoalveolar lavage fluid for diagnostic purposes. The aim of our study was to analyze the spectrum of pathogens detected with the PP. Results In this study 60 patients with a median age of 62.5 years were included. Suspected VAP was the most frequent (48/60, 80%) indication for performing the PP. Tracheal aspirate was the predominant sample type (50/60, 83.3%). The PP led to a negative, monomicrobial and polymicrobial result in 36.7%, 35% and 28.3% of the patients, respectively. The three most detected bacteria were Staphylococcus aureus (13/60, 21.7%), Klebsiella pneumoniae (12/60, 20%) and Haemophilus influenzae (9/60, 15%). Neither atypical bacteria nor resistance genes were detected. Microbiological culture of respiratory specimens was performed in 36 (60%) patients concomitantly. The PP and microbiological culture yielded a non-concordant, partial concordant and completely concordant result in 13.9% (5/36), 30.6% (11/36) and 55.6% (20/36) of the analyzed samples, respectively. Conclusion In critically ill COVID-19 patients with suspected HAP/VAP results of the PP and microbiological culture methods were largely consistent. In our cohort, S. aureus and K. pneumoniae were the most frequently detected organisms. A higher diagnostic yield may be achieved if both methods are combined.
Collapse
|
38
|
Cohen R, Babushkin F, Finn T, Geller K, Alexander H, Datnow C, Uda M, Shapiro M, Paikin S, Lellouche J. High Rates of Bacterial Pulmonary Co-Infections and Superinfections Identified by Multiplex PCR among Critically Ill COVID-19 Patients. Microorganisms 2021; 9:microorganisms9122483. [PMID: 34946086 PMCID: PMC8707776 DOI: 10.3390/microorganisms9122483] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The role of bacterial co-infection and superinfection among critically ill COVID-19 patients remains unclear. The aim of this study was to assess the rates and characteristics of pulmonary infections, and associated outcomes of ventilated patients in our facility. METHODS This was a retrospective study of ventilated COVID-19 patients between March 2020 and March 2021 that underwent BioFire®, FilmArray® Pneumonia Panel, testing. Community-acquired pneumonia (CAP) was defined when identified during the first 72 h of hospitalization, and ventilator-associated pneumonia (VAP) when later. RESULTS 148 FilmArray tests were obtained from 93 patients. With FilmArray, 17% of patients had CAP (16/93) and 68% had VAP (64/93). Patients with VAP were older than those with CAP or those with no infection (68.5 vs. 57-59 years), had longer length of stay and higher mortality (51% vs. 10%). The most commonly identified FilmArray target organisms were H. influenzae, S. pneumoniae, M. catarrhalis and E. cloacae for CAP and P. aeruginosa and S. aureus for VAP. FilmArray tests had high negative predictive values (99.6%) and lower positive predictive values (~60%). CONCLUSIONS We found high rates of both CAP and VAP among the critically ill, caused by the typical and expected organisms for both conditions. VAP diagnosis was associated with poor patient outcomes.
Collapse
Affiliation(s)
- Regev Cohen
- Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; (T.F.); (J.L.)
- Infectious Diseases Unit, Sanz Medical Center, Laniado Hospital, Netanya 4244915, Israel; (F.B.); (K.G.); (H.A.); (C.D.)
- Correspondence: ; Tel.: +972-(9)-8609335
| | - Frida Babushkin
- Infectious Diseases Unit, Sanz Medical Center, Laniado Hospital, Netanya 4244915, Israel; (F.B.); (K.G.); (H.A.); (C.D.)
| | - Talya Finn
- Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; (T.F.); (J.L.)
- Infectious Diseases Unit, Sanz Medical Center, Laniado Hospital, Netanya 4244915, Israel; (F.B.); (K.G.); (H.A.); (C.D.)
| | - Keren Geller
- Infectious Diseases Unit, Sanz Medical Center, Laniado Hospital, Netanya 4244915, Israel; (F.B.); (K.G.); (H.A.); (C.D.)
| | - Hanna Alexander
- Infectious Diseases Unit, Sanz Medical Center, Laniado Hospital, Netanya 4244915, Israel; (F.B.); (K.G.); (H.A.); (C.D.)
| | - Candice Datnow
- Infectious Diseases Unit, Sanz Medical Center, Laniado Hospital, Netanya 4244915, Israel; (F.B.); (K.G.); (H.A.); (C.D.)
| | - Martina Uda
- Intensive Care Unit, Sanz Medical Center, Laniado Hospital, Netanya 4244915, Israel; (M.U.); (M.S.)
| | - Maurice Shapiro
- Intensive Care Unit, Sanz Medical Center, Laniado Hospital, Netanya 4244915, Israel; (M.U.); (M.S.)
| | - Svetlana Paikin
- Clinical Microbiology Laboratory, Sanz Medical Center, Laniado Hospital, Netanya 4244915, Israel;
| | - Jonathan Lellouche
- Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; (T.F.); (J.L.)
- Clinical Microbiology Laboratory, Sanz Medical Center, Laniado Hospital, Netanya 4244915, Israel;
| |
Collapse
|
39
|
Diagnosis and Treatment of Bacterial Pneumonia in Critically Ill Patients with COVID-19 Using a Multiplex PCR Assay: A Large Italian Hospital's Five-Month Experience. Microbiol Spectr 2021; 9:e0069521. [PMID: 34756067 PMCID: PMC8579927 DOI: 10.1128/spectrum.00695-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial pneumonia is a challenging coronavirus disease 2019 (COVID-19) complication for intensive care unit (ICU) clinicians. Upon its implementation, the FilmArray pneumonia plus (FA-PP) panel's practicability for both the diagnosis and antimicrobial therapy management of bacterial pneumonia was assessed in ICU patients with COVID-19. Respiratory samples were collected from patients who were mechanically ventilated at the time bacterial etiology and antimicrobial resistance were determined using both standard-of-care (culture and antimicrobial susceptibility testing [AST]) and FA-PP panel testing methods. Changes to targeted and/or appropriate antimicrobial therapy were reviewed. We tested 212 samples from 150 patients suspected of bacterial pneumonia. Etiologically, 120 samples were positive by both methods, two samples were culture positive but FA-PP negative (i.e., negative for on-panel organisms), and 90 were negative by both methods. FA-PP detected no culture-growing organisms (mostly Staphylococcus aureus or Pseudomonas aeruginosa) in 19 of 120 samples or antimicrobial resistance genes in two culture-negative samples for S. aureus organisms. Fifty-nine (27.8%) of 212 samples were from empirically treated patients. Antibiotics were discontinued in 5 (33.3%) of 15 patients with FA-PP-negative samples and were escalated/deescalated in 39 (88.6%) of 44 patients with FA-PP-positive samples. Overall, antibiotics were initiated in 87 (72.5%) of 120 pneumonia episodes and were not administered in 80 (87.0%) of 92 nonpneumonia episodes. Antimicrobial-resistant organisms caused 78 (60.0%) of 120 episodes. Excluding 19 colistin-resistant Acinetobacter baumannii episodes, AST confirmed appropriate antibiotic receipt in 101 (84.2%) of 120 episodes for one or more FA-PP-detected organisms. Compared to standard-of-care testing, the FA-PP panel may be of great value in the management of COVID-19 patients at risk of developing bacterial pneumonia in the ICU. IMPORTANCE Since bacterial pneumonia is relatively frequent, suspicion of it in COVID-19 patients may prompt ICU clinicians to overuse (broad-spectrum) antibiotics, particularly when empirical antibiotics do not cover the suspected pathogen. We showed that a PCR-based, culture-independent laboratory assay allows not only accurate diagnosis but also streamlining of antimicrobial therapy for bacterial pneumonia episodes. We report on the actual implementation of rapid diagnostics and its real-life impact on patient treatment, which is a gain over previously published studies on the topic. A better understanding of the role of that or similar PCR assays in routine ICU practice may lead us to appreciate the effectiveness of their implementation during the COVID-19 pandemic.
Collapse
|
40
|
Liu HH, Yaron D, Piraino AS, Kapelusznik L. Bacterial and fungal growth in sputum cultures from 165 COVID-19 pneumonia patients requiring intubation: evidence for antimicrobial resistance development and analysis of risk factors. Ann Clin Microbiol Antimicrob 2021; 20:69. [PMID: 34563202 PMCID: PMC8465781 DOI: 10.1186/s12941-021-00472-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Coronavirus SARS-CoV-2 causes COVID-19 illness which can progress to severe pneumonia. Empiric antibacterials are often employed though frequency of bacterial coinfection superinfection is debated and concerns raised about selection of bacterial antimicrobial resistance. We evaluated sputum bacterial and fungal growth from 165 intubated COVID-19 pneumonia patients. Objectives were to determine frequency of culture positivity, risk factors for and outcomes of positive cultures, and timing of antimicrobial resistance development. METHODS Retrospective reviews were conducted of COVID-19 pneumonia patients requiring intubation admitted to a 1058-bed four community hospital system on the east coast United States, March 1 to May 1, 2020. Length of stay (LOS) was expressed as mean (standard deviation); 95% confidence interval (95% CI) was computed for overall mortality rate using the exact binomial method, and overall mortality was compared across each level of a potential risk factor using a Chi-Square Test of Independence. All tests were two-sided, and significance level was set to 0.05. RESULTS Average patient age was 68.7 years and LOS 19.9 days. Eighty-three patients (50.3% of total) originated from home, 10 from group homes (6.1% of total), and 72 from nursing facilities (43.6% of total). Mortality was 62.4%, highest for nursing home residents (80.6%). Findings from 253 sputum cultures overall did not suggest acute bacterial or fungal infection in 73 (45%) of 165 individuals sampled within 24 h of intubation. Cultures ≥ 1 week following intubation did grow potential pathogens in 72 (64.9%) of 111 cases with 70.8% consistent with late pneumonia and 29.2% suggesting colonization. Twelve (10.8% of total) of these late post-intubation cultures revealed worsened antimicrobial resistance predominantly in Pseudomonas, Enterobacter, or Staphylococcus aureus. CONCLUSIONS In severe COVID-19 pneumonia, a radiographic ground glass interstitial pattern and lack of purulent sputum prior to/around the time of intubation correlated with no culture growth or recovery of normal oral flora ± yeast. Discontinuation of empiric antibacterials should be considered in these patients aided by other clinical findings, history of prior antimicrobials, laboratory testing, and overall clinical course. Continuing longterm hospitalisation and antibiotics are associated with sputum cultures reflective of hospital-acquired microbes and increasing antimicrobial resistance. TRIAL REGISTRATION Not applicable as this was a retrospective chart review study without interventional arm.
Collapse
Affiliation(s)
- Hans H Liu
- Division of Infectious Diseases, Department of Medicine, Bryn Mawr Hospital, Main Line Health System, Bryn Mawr, PA, USA.
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
- , 219 Garnet Lane, Bala Cynwyd, PA, 19004, USA.
| | - David Yaron
- Department of Family Medicine, Bryn Mawr Hospital, Main Line Health System, Bryn Mawr, PA, USA
| | - Amanda Stahl Piraino
- Department of Family Medicine, Bryn Mawr Hospital, Main Line Health System, Bryn Mawr, PA, USA
| | - Luciano Kapelusznik
- Division of Infectious Diseases, Department of Medicine, Bryn Mawr Hospital, Main Line Health System, Bryn Mawr, PA, USA
| |
Collapse
|
41
|
Liotta L, Luchini A. Unconventional Approaches to Direct Detection of Borreliosis and Other Tick Borne Illnesses: A Path Forward. JOURNAL OF CELLULAR IMMUNOLOGY 2021; 3:164-172. [PMID: 34414392 PMCID: PMC8372993 DOI: 10.33696/immunology.3.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Lance Liotta
- George Mason University, Manassas, Virginia, USA
| | | |
Collapse
|
42
|
Abu-Rub LI, Abdelrahman HA, Johar ARA, Alhussain HA, Hadi HA, Eltai NO. Antibiotics Prescribing in Intensive Care Settings during the COVID-19 Era: A Systematic Review. Antibiotics (Basel) 2021; 10:935. [PMID: 34438985 PMCID: PMC8389042 DOI: 10.3390/antibiotics10080935] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
The prevalence of patients admitted to intensive care units (ICUs) with SARS-CoV-2 infection who were prescribed antibiotics is undetermined and might contribute to the increased global antibiotic resistance. This systematic review evaluates the prevalence of antibiotic prescribing in patients admitted to ICUs with SARS-CoV-2 infection using PRISMA guidelines. We searched and scrutinized results from PubMed and ScienceDirect databases for published literature restricted to the English language up to 11 May 2021. In addition, we included observational studies of humans with laboratory-confirmed SARS-CoV-2 infection, clinical characteristics, and antibiotics prescribed for ICU patients with SARS-CoV-2 infections. A total of 361 studies were identified, but only 38 were included in the final analysis. Antibiotic prescribing data were available from 2715 patients, of which prevalence of 71% was reported in old age patients with a mean age of 62.7 years. From the reported studies, third generation cephalosporin had the highest frequency amongst reviewed studies (36.8%) followed by azithromycin (34.2%). The estimated bacterial infection in 12 reported studies was 30.8% produced by 15 different bacterial species, and S. aureus recorded the highest bacterial infection (75%). The fundamental outcomes were the prevalence of ICU COVID-19 patients prescribed antibiotics stratified by age, type of antibiotics prescribed, and the presence of co-infections and comorbidities. In conclusion, more than half of ICU patients with SARS-CoV-2 infection received antibiotics, and prescribing is significantly higher than the estimated frequency of identified bacterial co-infection.
Collapse
Affiliation(s)
- Lubna I. Abu-Rub
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (L.I.A.-R.); (H.A.A.); (H.A.A.)
| | - Hana A. Abdelrahman
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (L.I.A.-R.); (H.A.A.); (H.A.A.)
| | | | - Hashim A. Alhussain
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (L.I.A.-R.); (H.A.A.); (H.A.A.)
| | - Hamad Abdel Hadi
- Communicable Diseases Centre, Infectious Disease Division, Hamad Medical Corporation, Doha 3050, Qatar;
| | - Nahla O. Eltai
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (L.I.A.-R.); (H.A.A.); (H.A.A.)
| |
Collapse
|
43
|
Novy E, Goury A, Thivilier C, Guillard T, Alauzet C. Algorithm for rational use of Film Array Pneumonia Panel in bacterial coinfections of critically ill ventilated COVID-19 patients. Diagn Microbiol Infect Dis 2021; 101:115507. [PMID: 34364096 PMCID: PMC8299290 DOI: 10.1016/j.diagmicrobio.2021.115507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/12/2021] [Accepted: 07/18/2021] [Indexed: 12/04/2022]
Abstract
The FilmArray Pneumonia Panel has proven to be an effective tool for rapid detection of main respiratory pathogens. However, its rational use needs appropriate knowledge and formation regarding its indication and interpretation. Herein, we provide some advices to help with success of its daily routine use, particularly in critically ill ventilated COVID-19 patients. Clinical Trial registration number: NCT04453540.
Collapse
Affiliation(s)
- Emmanuel Novy
- Centre Hospitalier Régional Universitaire de Nancy, Service d'Anesthésie-Réanimation et Médecine Péri-Opérative, F-54511 Vandœuvre-Lès-Nancy, France; Université de Lorraine, SIMPA, F-54000 Nancy, France
| | - Antoine Goury
- Centre Hospitalier Universitaire de Reims, Hôpital Robert Debré, Unité de Médecine Intensive et Réanimation Polyvalente, F-51092 Reims, France
| | - Carine Thivilier
- Centre Hospitalier Régional Universitaire de Nancy, Service de Réanimation Médicale Brabois, F-54511 Vandœuvre-Lès-Nancy, France
| | - Thomas Guillard
- Centre Hospitalier Universitaire de Reims, Hôpital Robert Debré, Laboratoire de Bactériologie-Virologie-Hygiène Hospitalière-Parasitologie-Mycologie, F-51092 Reims, France; Université de Reims-Champagne-Ardenne, SFR CAP-Santé, Inserm UMR-S 1250 P3Cell, F-51097 Reims, France
| | - Corentine Alauzet
- Université de Lorraine, SIMPA, F-54000 Nancy, France; Centre Hospitalier Régional Universitaire de Nancy, Laboratoire de Microbiologie, F-54000, Nancy, France.
| |
Collapse
|
44
|
Identification of bacterial co-detections in COVID-19 critically Ill patients by BioFire® FilmArray® pneumonia panel: a systematic review and meta-analysis. Diagn Microbiol Infect Dis 2021; 101:115476. [PMID: 34303085 PMCID: PMC8245667 DOI: 10.1016/j.diagmicrobio.2021.115476] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/14/2022]
Abstract
Among critically ill COVID-19 patients, bacterial coinfections may occur, and timely appropriate therapy may be limited with culture-based microbiology due to turnaround time and diagnostic yield challenges (e.g. antibiotic pre-exposure). We performed a systematic review and meta-analysis of the impact of BioFire® FilmArray® Pneumonia Panel in detecting bacteria and clinical management among critically ill COVID-19 patients admitted to the ICU. Seven studies with 558 patients were included. Antibiotic use before respiratory sampling occurred in 28-79% of cases. The panel incidence of detections was 33% (95% CI 0.25 to 0.41, I2=32%) while culture yielded 18% (95% CI 0.02 to 0.45; I2=93%). The panel was associated with approximately a 1 and 2 day decrease in turnaround for identification and common resistance targets, respectively. The panel may be an important tool for clinicians to improve antimicrobial use in critically ill COVID-19 patients.
Collapse
|
45
|
New Microbiological Techniques for the Diagnosis of Bacterial Infections and Sepsis in ICU Including Point of Care. Curr Infect Dis Rep 2021; 23:12. [PMID: 34149321 PMCID: PMC8207499 DOI: 10.1007/s11908-021-00755-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 12/22/2022]
Abstract
Purpose of Review The aim of this article is to review current and emerging microbiological techniques that support the rapid diagnosis of bacterial infections in critically ill patients, including their performance, strengths and pitfalls, as well as available data evaluating their clinical impact. Recent Findings Bacterial infections and sepsis are responsible for significant morbidity and mortality in patients admitted to the intensive care unit and their management is further complicated by the increase in the global burden of antimicrobial resistance. In this setting, new diagnostic methods able to overcome the limits of traditional microbiology in terms of turn-around time and accuracy are highly warranted. We discuss the following broad themes: optimisation of existing culture-based methodologies, rapid antigen detection, nucleic acid detection (including multiplex PCR assays and microarrays), sepsis biomarkers, novel methods of pathogen detection (e.g. T2 magnetic resonance) and susceptibility testing (e.g. morphokinetic cellular analysis) and the application of direct metagenomics on clinical samples. The assessment of the host response through new “omics” technologies might also aid in early diagnosis of infections, as well as define non-infectious inflammatory states. Summary Despite being a promising field, there is still scarce evidence about the real-life impact of these assays on patient management. A common finding of available studies is that the performance of rapid diagnostic strategies highly depends on whether they are integrated within active antimicrobial stewardship programs. Assessing the impact of these emerging diagnostic methods through patient-centred clinical outcomes is a complex challenge for which large and well-designed studies are awaited.
Collapse
|
46
|
Wicky PH, Niedermann MS, Timsit JF. Ventilator-associated pneumonia in the era of COVID-19 pandemic: How common and what is the impact? Crit Care 2021; 25:153. [PMID: 33882991 PMCID: PMC8059113 DOI: 10.1186/s13054-021-03571-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022] Open
Abstract
We reviewed similarities and differences of ventilator associated pneumonia in Sars-Cov2 infection and with other ARDS. The differences in epidemiology and outcome will be detailed. Possible explanations of differences in pathophysiology of VAP in Sarscov2 infections will be cited and discussed.
Collapse
Affiliation(s)
- Paul-Henri Wicky
- Medical and Infectious Diseases ICU (MI2), AP-HP, Bichat Hospital, 75018, Paris, France
| | - Michael S Niedermann
- Department of Medicine, Weill Cornell Medicine, New York, USA
- Pulmonary and Critical Care Medicine, New York Presbyterian/Weill Cornell Medical Center, New York, USA
| | - Jean-François Timsit
- Medical and Infectious Diseases ICU (MI2), AP-HP, Bichat Hospital, 75018, Paris, France.
- IAME, INSERM, University of Paris, 75018, Paris, France.
| |
Collapse
|