1
|
Hayden MK, Hanson KE, Englund JA, Lee F, Lee MJ, Loeb M, Morgan DJ, Patel R, El Alayli A, El Mikati IK, Sultan S, Falck-Ytter Y, Mansour R, Amarin JZ, Morgan RL, Murad MH, Patel P, Bhimraj A, Mustafa RA. The Infectious Diseases Society of America Guidelines on the Diagnosis of COVID-19: Antigen Testing (January 2023). Clin Infect Dis 2024; 78:e350-e384. [PMID: 36702617 DOI: 10.1093/cid/ciad032] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Immunoassays designed to detect SARS-CoV-2 protein antigens (Ag) are commonly used to diagnose COVID-19. The most widely used tests are lateral flow assays that generate results in approximately 15 minutes for diagnosis at the point-of-care. Higher throughput, laboratory-based SARS-CoV-2 Ag assays have also been developed. The number of commercially available SARS-CoV-2 Ag detection tests has increased rapidly, as has the COVID-19 diagnostic literature. The Infectious Diseases Society of America (IDSA) convened an expert panel to perform a systematic review of the literature and develop best-practice guidance related to SARS-CoV-2 Ag testing. This guideline is an update to the third in a series of frequently updated COVID-19 diagnostic guidelines developed by the IDSA. IDSA's goal was to develop evidence-based recommendations or suggestions that assist clinicians, clinical laboratories, patients, public health authorities, administrators, and policymakers in decisions related to the optimal use of SARS-CoV-2 Ag tests in both medical and nonmedical settings. A multidisciplinary panel of infectious diseases clinicians, clinical microbiologists, and experts in systematic literature review identified and prioritized clinical questions related to the use of SARS-CoV-2 Ag tests. A review of relevant, peer-reviewed published literature was conducted through 1 April 2022. Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology was used to assess the certainty of evidence and make testing recommendations. The panel made 10 diagnostic recommendations that address Ag testing in symptomatic and asymptomatic individuals and assess single versus repeat testing strategies. US Food and Drug Administration (FDA) SARS-CoV-2 Ag tests with Emergency Use Authorization (EUA) have high specificity and low to moderate sensitivity compared with nucleic acid amplification testing (NAAT). Ag test sensitivity is dependent on the presence or absence of symptoms and, in symptomatic patients, on timing of testing after symptom onset. In most cases, positive Ag results can be acted upon without confirmation. Results of point-of-care testing are comparable to those of laboratory-based testing, and observed or unobserved self-collection of specimens for testing yields similar results. Modeling suggests that repeat Ag testing increases sensitivity compared with testing once, but no empirical data were available to inform this question. Based on these observations, rapid RT-PCR or laboratory-based NAAT remain the testing methods of choice for diagnosing SARS-CoV-2 infection. However, when timely molecular testing is not readily available or is logistically infeasible, Ag testing helps identify individuals with SARS-CoV-2 infection. Data were insufficient to make a recommendation about the utility of Ag testing to guide release of patients with COVID-19 from isolation. The overall quality of available evidence supporting use of Ag testing was graded as very low to moderate.
Collapse
Affiliation(s)
- Mary K Hayden
- Division of Infectious Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| | - Kimberly E Hanson
- Divisions of Infectious Diseases and Clinical Microbiology, University of Utah, Salt Lake City, Utah, USA
| | - Janet A Englund
- Department of Pediatrics, University of Washington, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Francesca Lee
- Departments of Pathology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mark J Lee
- Department of Pathology and Clinical Microbiology Laboratory, Duke University School of Medicine, Durham, North Carolina, USA
| | - Mark Loeb
- Division of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Daniel J Morgan
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, and the Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Abdallah El Alayli
- Department of Internal Medicine, Saint Louis University, St Louis, Missouri, USA
| | - Ibrahim K El Mikati
- Outcomes and Implementation Research Unit, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Shahnaz Sultan
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis VA Healthcare System, Minneapolis, Minnesota, USA
| | - Yngve Falck-Ytter
- Department of Medicine, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
- VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Razan Mansour
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Justin Z Amarin
- Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rebecca L Morgan
- Department of Medicine, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - M Hassan Murad
- Division of Public Health, Infectious diseases and occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Payal Patel
- Department of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Adarsh Bhimraj
- Department of Infectious Diseases, Cleveland Clinic, Cleveland, Ohio, USA
| | - Reem A Mustafa
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
2
|
Lingas G, Planas D, Péré H, Porrot F, Guivel-Benhassine F, Staropoli I, Duffy D, Chapuis N, Gobeaux C, Veyer D, Delaugerre C, Le Goff J, Getten P, Hadjadj J, Bellino A, Parfait B, Treluyer JM, Schwartz O, Guedj J, Kernéis S, Terrier B. Neutralizing Antibody Levels as a Correlate of Protection Against SARS-CoV-2 Infection: A Modeling Analysis. Clin Pharmacol Ther 2024; 115:86-94. [PMID: 37795693 DOI: 10.1002/cpt.3069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023]
Abstract
Although anti-severe acute respiratory syndrome-coronavirus 2 antibody kinetics have been described in large populations of vaccinated individuals, we still poorly understand how they evolve during a natural infection and how this impacts viral clearance. For that purpose, we analyzed the kinetics of both viral load and neutralizing antibody levels in a prospective cohort of individuals during acute infection with alpha variant. Using a mathematical model, we show that the progressive increase in neutralizing antibodies leads to a shortening of the half-life of both infected cells and infectious viral particles. We estimated that the neutralizing activity reached 90% of its maximal level within 11 days after symptom onset and could reduce the half-life of both infected cells and circulating virus by a 6-fold factor, thus playing a key role to achieve rapid viral clearance. Using this model, we conducted a simulation study to predict in a more general context the protection conferred by pre-existing neutralization titers, due to either vaccination or prior infection. We predicted that a neutralizing activity, as measured by 50% effective dose > 103 , could reduce by 46% the risk of having viral load detectable by standard polymerase chain reaction assays and by 98% the risk of having viral load above the threshold of infectiousness. Our model shows that neutralizing activity could be used to define correlates of protection against infection and transmission.
Collapse
Affiliation(s)
| | - Delphine Planas
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Hélène Péré
- Virology Unit, Microbiology Department, APHP, Hôpital Européen Georges-Pompidou, Paris, France
- Université Paris Cité, INSERM UMRS1138 Functional Genomics of Solid Tumors Laboratory, Paris, France
| | - Françoise Porrot
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | | | - Isabelle Staropoli
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Nicolas Chapuis
- Assistance Publique-Hôpitaux de Paris, Centre-Université Paris Cité, Service d'hématologie biologique, Hôpital Cochin, Paris, France
| | - Camille Gobeaux
- Department of Automated Biology, CHU de Cochin, AP-HP, Paris, France
| | - David Veyer
- Virology Unit, Microbiology Department, APHP, Hôpital Européen Georges-Pompidou, Paris, France
- Université Paris Cité, INSERM UMRS1138 Functional Genomics of Solid Tumors Laboratory, Paris, France
| | - Constance Delaugerre
- Virology Department, AP-HP, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Inserm U944, Biology of Emerging Viruses, Paris, France
| | - Jérôme Le Goff
- Virology Department, AP-HP, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Inserm U976, INSIGHT Team, Paris, France
| | | | - Jérôme Hadjadj
- Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP, APHP.CUP, Hôpital Cochin, Paris, France
| | - Adèle Bellino
- URC-CIC Paris Centre Necker/Cochin, AP-HP, Hôpital Cochin, Paris, France
| | - Béatrice Parfait
- Fédération des Centres de Ressources Biologiques - Plateformes de Ressources Biologiques AP-HP.Centre-Université Paris Cité, Centre de Ressources Biologiques Cochin, Hôpital Cochin, Paris, France
| | - Jean-Marc Treluyer
- Unité de Recherche clinique, Hôpital Cochin, AP-HP.Centre - Université de Paris, Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Vaccine Research Institute, Créteil, France
| | | | - Solen Kernéis
- Université Paris Cité, IAME, INSERM, Paris, France
- Equipe de Prévention du Risque Infectieux (EPRI), AP-HP, Hôpital Bichat, Paris, France
| | - Benjamin Terrier
- Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP, APHP.CUP, Hôpital Cochin, Paris, France
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| |
Collapse
|
3
|
Kyo H, Patel SA, Yamamoto M, Matsumura Y, Ikeda T, Nagao M. A population-based study of the trend in SARS-CoV-2 diagnostic modalities from the beginning of the pandemic to the Omicron surge in Kyoto City, Kyoto, Japan. BMC Public Health 2023; 23:2551. [PMID: 38129830 PMCID: PMC10734122 DOI: 10.1186/s12889-023-17498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) presents critical diagnostic challenges for managing the pandemic. We investigated the 30-month changes in COVID-19 testing modalities and functional testing sites from the early period of the pandemic to the most recent Omicron surge in 2022 in Kyoto City, Japan. METHODS This is a retrospective-observational study using a local anonymized population database that included patients' demographic and clinical information, testing methods and facilities from January 2020 to June 2022, a total of 30 months. We computed the distribution of symptomatic presentation, testing methods, and testing facilities among cases. Differences over time were tested using chi-square tests of independence. RESULTS During the study period, 133,115 confirmed COVID-19 cases were reported, of which 90.9% were symptomatic. Although nucleic acid amplification testing occupied 68.9% of all testing, the ratio of lateral flow devices (LFDs) rapidly increased in 2022. As the pandemic continued, the testing capability was shifted from COVID-19 designated facilities to general practitioners, who became the leading testing providers (57.3% of 99,945 tests in 2022). CONCLUSIONS There was a dynamic shift in testing modality during the first 30 months of the pandemic in Kyoto City. General practitioners increased their role substantially as the use of LFDs spread dramatically in 2022. By comprehending and documenting the evolution of testing methods and testing locations, it is anticipated that this will contribute to the establishment of an even more efficient testing infrastructure for the next pandemic.
Collapse
Affiliation(s)
- Hiroki Kyo
- MetroAtlanta Ambulance Service, Emory Healthcare Network, Atlanta, GA, USA
| | - Shivani A Patel
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Masaki Yamamoto
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan
| | - Yasufumi Matsumura
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan
| | - Takeshi Ikeda
- Public Health and Welfare Bureau of Kyoto City, Kyoto, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
- Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan.
| |
Collapse
|
4
|
Luong Nguyen LB, Goupil de Bouillé J, Menant L, Noret M, Dumas A, Salmona M, Le Goff J, Delaugerre C, Crépey P, Zeggagh J. A Randomized Controlled Trial to Study the Transmission of SARS-CoV-2 and Other Respiratory Viruses During Indoor Clubbing Events (ANRS0066s ITOC Study). Clin Infect Dis 2023; 77:1648-1655. [PMID: 37795682 PMCID: PMC10724450 DOI: 10.1093/cid/ciad603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/05/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND In the context of the circulation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.617.2 (Delta) variant, vaccination re-authorized mass indoor gatherings. The "Indoor Transmission of coronavirus disease 2019 (COVID-19)" (ITOC) trial (ClinicalTrials.gov, NCT05311865) aimed to assess the risk of transmission of SARS-CoV-2 and other respiratory viruses during an indoor clubbing event among participants fully vaccinated against COVID-19. METHODS ITOC, a randomized controlled trial in the Paris region (France), enrolled healthy volunteers aged 18-49 years, fully vaccinated against COVID-19, with no comorbidities or symptoms, randomized 1:1 to be interventional group "attendees" or control "non-attendees." The intervention was a 7-hour indoor event in a nightclub at full capacity, with no masking, prior SARS-CoV-2 test result, or social distancing required. The primary outcome measure was the number of reverse transcriptase-polymerase chain reaction (RT-PCR)-determined SARS-CoV-2-positive subjects using self-collected saliva 7 days post-gathering in the per-protocol population. Secondary endpoints focused on 20 other respiratory viruses. RESULTS Healthy participants (n = 1216) randomized 2:1 by blocks up to 10 815 attendees and 401 non-attendees, yielding 529 and 287 subjects, respectively, with day-7 saliva samples. One day-7 sample from each group was positive. Looking at all respiratory viruses together, the clubbing event was associated with an increased risk of infection of 1.59 (95% CI, 1.04-2.61). CONCLUSIONS In the context of low Delta variant of concern circulation, no evidence of SARS-CoV-2 transmission among asymptomatic and vaccinated participants was found, but the risk of other respiratory virus transmission was higher. Clinical Trials Registration. ClinicalTrials.gov, NCT05311865.
Collapse
Affiliation(s)
- Liem Binh Luong Nguyen
- CIC Cochin Pasteur, Hôpital Cochin Port-Royal, AP-HP, Université de Paris Cité, Paris, France
| | - Jeanne Goupil de Bouillé
- Service de Maladies Infectieuses et Tropicales, Hôpital Avicenne, AP-HP, Bobigny, France
- LEPS Laboratoire Éducations et Promotion de Santé, Université Paris 13, Bobigny, France
| | - Lola Menant
- Université de Rennes, EHESP, CNRS, Inserm, Arènes—UMR 6051, RSMS—U 1309, Rennes, France
| | - Marion Noret
- Réseau National de Recherche Clinique en Infectiologie (RENARCI), Service de Maladies Infectieuses et Tropicales, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Audrey Dumas
- ANRS∣Emerging Infectious Diseases, Paris, France
| | - Maud Salmona
- Service de Virologie, Hôpital Saint-Louis, AP-HP, Université de Paris Cité, Paris, France
| | - Jérôme Le Goff
- Service de Virologie, Hôpital Saint-Louis, AP-HP, Université de Paris Cité, Paris, France
| | - Constance Delaugerre
- Service de Virologie, Hôpital Saint-Louis, AP-HP, Université de Paris Cité, Paris, France
| | - Pascal Crépey
- Université de Rennes, EHESP, CNRS, Inserm, Arènes—UMR 6051, RSMS—U 1309, Rennes, France
| | - Jeremy Zeggagh
- Service de Maladies Infectieuses et Tropicales, Hôpital Saint-Louis, AP-HP, Paris, France
| |
Collapse
|
5
|
Fragkou PC, De Angelis G, Menchinelli G, Can F, Garcia F, Morfin-Sherpa F, Dimopoulou D, Dimopoulou K, Zelli S, de Salazar A, Reiter R, Janocha H, Grossi A, Omony J, Skevaki C. Update of ESCMID COVID-19 guidelines: diagnostic testing for SARS-CoV-2. Clin Microbiol Infect 2023:S1198-743X(23)00192-1. [PMID: 37088423 PMCID: PMC10122552 DOI: 10.1016/j.cmi.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/25/2023]
Abstract
SCOPE Since the onset of coronavirus disease 2019 (COVID-19), several assays have been deployed for the diagnosis of SARS-CoV-2. The European Society of Clinical Microbiology and Infectious Diseases (ESCMID) published the first set of guidelines on SARS-CoV-2 in-vitro diagnosis in February 2022. Since the COVID-19 landscape is rapidly evolving, the relevant ESCMID guidelines panel releases an update of the previously published recommendations on diagnostic testing for SARS-CoV-2. This update aims to delineate the best diagnostic approach for SARS-CoV-2 in different populations based on current evidence. METHODS An ESCMID COVID-19 guidelines task force was established by the ESCMID Executive Committee. A small group was established, half appointed by the chair, and the remaining selected with an open call. The panel met virtually once a week. For all decisions, a simple majority vote was used. A list of clinical questions using the PICO (population, intervention, comparison, and outcome) format was developed at the beginning of the process. For each PICO, two panel members performed a literature search focusing on systematic reviews with a third panellist involved in case of inconsistent results. The panel reassessed the PICOs previously defined as priority in the first set of guidelines and decided to address 49 PICO questions, as 6 of them were discarded as outdated/non-clinically relevant. The "Grading of Recommendations Assessment, Development and Evaluation(GRADE)-adoption, adaptation, and de novo development of recommendations (ADOLOPMENT)" evidence-to-decision framework was utilized to produce the guidelines. QUESTIONS ADDRESSED BY THE GUIDELINE AND RECOMMENDATIONS After literature search, we updated 16 PICO questions; these PICOs address the use of antigen-based assays among symptomatic and asymptomatic patients with different ages, COVID-19 severity status or risk for severe COVID-19, time since onset of symptoms/contact with an infectious case, and finally, types of biomaterials used.
Collapse
Affiliation(s)
- Paraskevi C Fragkou
- First Department of Critical Care Medicine & Pulmonary Services, Evangelismos General Hospital, National and Kapodistrian University of Athens, Athens, Greece; European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV)
| | - Giulia De Angelis
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS - 00168, Rome, Italy
| | - Giulia Menchinelli
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS - 00168, Rome, Italy; Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fusun Can
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Department of Medical Microbiology, Koc University School of Medicine, Istanbul, Turkey; Koc University IsBank Research Centre for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Federico Garcia
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Servicio de Microbiología Clínica. Hospital Universitario Clínico San Cecilio. Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain; Centro de Investigación Biomédicaen Red Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Florence Morfin-Sherpa
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Laboratory of Virology, Institut des Agents Infectieux, National Reference Centre for respiratory viruses, Hospices Civils de Lyon, Université Claude Bernard Lyon1, Lyon, France
| | - Dimitra Dimopoulou
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Second Department of Paediatrics, "P. and A. Kyriakou" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Silvia Zelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS - 00168, Rome, Italy
| | - Adolfo de Salazar
- Servicio de Microbiología Clínica. Hospital Universitario Clínico San Cecilio. Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain; Centro de Investigación Biomédicaen Red Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Rieke Reiter
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Centre (UGMLC), Philipps University Marburg, German Centre for Lung Research (DZL), Marburg, Germany
| | - Hannah Janocha
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Centre (UGMLC), Philipps University Marburg, German Centre for Lung Research (DZL), Marburg, Germany
| | | | - Jimmy Omony
- Institute for Asthma and Allergy Prevention (IAP), Helmholtz Zentrum Munich, German Research Centre for Environmental Health (GmbH), Munich, Germany
| | - Chrysanthi Skevaki
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Centre (UGMLC), Philipps University Marburg, German Centre for Lung Research (DZL), Marburg, Germany.
| |
Collapse
|
6
|
Salmona M, Chaix ML, Feghoul L, Mahjoub N, Maylin S, Schnepf N, Jacquier H, Walle EM, Helary M, Mellon G, Osinski N, Zebiche W, Achili Y, Amarsy R, Mahé V, Le Goff J, Delaugerre C. Detection of SARS-CoV-2 in Saliva and Nasopharyngeal Swabs According to Viral Variants. Microbiol Spectr 2022; 10:e0213322. [PMID: 36346252 PMCID: PMC9769595 DOI: 10.1128/spectrum.02133-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
The genome of the Omicron variant of concern (VOC) contains more than 50 mutations, many of which have been associated with increased transmissibility, differing disease severity, and the potential to elute immune responses acquired after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination or infection with previous VOCs. Due to a better tropism for the upper respiratory tract, it was suggested that the detection of the Omicron variant could be preferred in saliva, compared to nasopharyngeal swabs (NPS). Our objective was to compare the SARS-CoV-2 levels in saliva fluid and NPS to estimated Ct values, according to the main SARS-CoV-2 variants circulating in France since the beginning of 2021. We analyzed 1,289 positive reverse transcription-polymerase chain reaction (RT-PCR) results during the three major waves: Alpha, Delta, and Omicron. NPS and saliva sampling were performed for 909 (71%) and 380 (29%) cases, respectively. The Ct values were significantly lower in the NPS samples than in the saliva samples for the three main VOCs. Still, the difference was less pronounced with the Omicron variant than for the Alpha and Delta variants. In contrast, in the saliva samples, Ct values were significantly lower for the Omicron variant than for the Delta (difference of -2.7 Ct) and the Alpha (difference of -3.0 Ct) variants, confirming a higher viral load in saliva. To conclude, the higher viral load in saliva was evidenced for the Omicron variant, compared to the Alpha and Delta variants, suggesting that established diagnostic methods might require revalidation with the emergence of novel variants. IMPORTANCE Established methods for SARS-CoV-2 diagnostics might require revalidation with the emergence of novel variants. This is important for screening strategy programs and for the investigation of the characteristics of new variants in terms of tropism modification and increased viral burden leading to its spread. SARS-CoV-2 RT-PCR screening on saliva samples reported lower but acceptable performance, compared to nasopharyngeal samples. Due to a better tropism for the upper respiratory tract, it was suggested that the detection of the Omicron variant could be preferred in saliva, compared to nasopharyngeal swabs. Our study analyzed 1,289 positive RT-PCR results during the three major waves in France: Alpha, Delta, and Omicron. Our findings also showed a higher viral load in saliva for the Omicron variant, compared to the Alpha and Delta variants.
Collapse
Affiliation(s)
- Maud Salmona
- Laboratoire de Virologie, AP-HP, Hôpital Saint Louis, Paris, France
- Université Paris Cité, INSERM U976, Equipe INSIGHT, Paris, France
| | - Marie-Laure Chaix
- Laboratoire de Virologie, AP-HP, Hôpital Saint Louis, Paris, France
- Université Paris Cité, INSERM, Paris, France
| | - Linda Feghoul
- Laboratoire de Virologie, AP-HP, Hôpital Saint Louis, Paris, France
- Université Paris Cité, INSERM U976, Equipe INSIGHT, Paris, France
| | - Nadia Mahjoub
- Laboratoire de Virologie, AP-HP, Hôpital Saint Louis, Paris, France
| | - Sarah Maylin
- Laboratoire de Virologie, AP-HP, Hôpital Saint Louis, Paris, France
| | - Nathalie Schnepf
- Laboratoire de Virologie, AP-HP, Hôpital Saint Louis, Paris, France
| | - Hervé Jacquier
- Service de Bactériologie-Hygiène, Hôpitaux Universitaires Saint-Louis - Lariboisière - Fernand Widal, Paris, France
- Université Paris Cité, IAME UMR 1137, INSERM, Paris, France
| | - Eve-Marie Walle
- Laboratoire de Virologie, AP-HP, Hôpital Saint Louis, Paris, France
| | - Marion Helary
- Laboratoire de Virologie, AP-HP, Hôpital Saint Louis, Paris, France
| | - Guillaume Mellon
- Équipe Opérationnelle d’Hygiène, AP-HP, Hôpital Saint Louis, Paris, France
| | - Nathalie Osinski
- Équipe Opérationnelle d’Hygiène, AP-HP, Hôpital Saint Louis, Paris, France
| | - Widad Zebiche
- Équipe Opérationnelle d’Hygiène, AP-HP, Hôpital Saint Louis, Paris, France
| | - Yacine Achili
- Service Central de Santé au Travail, AP-HP, Hôpital Saint Louis, Paris, France
| | - Rishma Amarsy
- Equipe Opérationnelle d’Hygiène, AP-HP, Hôpitaux Lariboisière-Fernand Widal, Paris, France
| | - Véronique Mahé
- Service Central de Santé au Travail, AP-HP, Hôpital Saint Louis, Paris, France
| | - Jérôme Le Goff
- Laboratoire de Virologie, AP-HP, Hôpital Saint Louis, Paris, France
- Université Paris Cité, INSERM U976, Equipe INSIGHT, Paris, France
| | - Constance Delaugerre
- Laboratoire de Virologie, AP-HP, Hôpital Saint Louis, Paris, France
- Université Paris Cité, INSERM, Paris, France
| |
Collapse
|
7
|
Kost GJ. The Coronavirus Disease 2019 Spatial Care Path: Home, Community, and Emergency Diagnostic Portals. Diagnostics (Basel) 2022; 12:diagnostics12051216. [PMID: 35626375 PMCID: PMC9140623 DOI: 10.3390/diagnostics12051216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 12/28/2022] Open
Abstract
This research uses mathematically derived visual logistics to interpret COVID-19 molecular and rapid antigen test (RAgT) performance, determine prevalence boundaries where risk exceeds expectations, and evaluate benefits of recursive testing along home, community, and emergency spatial care paths. Mathematica and open access software helped graph relationships, compare performance patterns, and perform recursive computations. Tiered sensitivity/specificity comprise: (T1) 90%/95%; (T2) 95%/97.5%; and (T3) 100%/≥99%, respectively. In emergency medicine, median RAgT performance peaks at 13.2% prevalence, then falls below T1, generating risky prevalence boundaries. RAgTs in pediatric ERs/EDs parallel this pattern with asymptomatic worse than symptomatic performance. In communities, RAgTs display large uncertainty with median prevalence boundary of 14.8% for 1/20 missed diagnoses, and at prevalence > 33.3−36.9% risk 10% false omissions for symptomatic subjects. Recursive testing improves home RAgT performance. Home molecular tests elevate performance above T1 but lack adequate validation. Widespread RAgT availability encourages self-testing. Asymptomatic RAgT and PCR-based saliva testing present the highest chance of missed diagnoses. Home testing twice, once just before mingling, and molecular-based self-testing, help avoid false omissions. Community and ER/ED RAgTs can identify contagiousness in low prevalence. Real-world trials of performance, cost-effectiveness, and public health impact could identify home molecular diagnostics as an optimal diagnostic portal.
Collapse
Affiliation(s)
- Gerald J Kost
- Fulbright Scholar 2020-2022, ASEAN Program, Point-of-Care Testing Center for Teaching and Research (POCT•CTR), Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
8
|
Brümmer LE, Katzenschlager S, McGrath S, Schmitz S, Gaeddert M, Erdmann C, Bota M, Grilli M, Larmann J, Weigand MA, Pollock NR, Macé A, Erkosar B, Carmona S, Sacks JA, Ongarello S, Denkinger CM. Accuracy of rapid point-of-care antigen-based diagnostics for SARS-CoV-2: An updated systematic review and meta-analysis with meta-regression analyzing influencing factors. PLoS Med 2022; 19:e1004011. [PMID: 35617375 PMCID: PMC9187092 DOI: 10.1371/journal.pmed.1004011] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/10/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Comprehensive information about the accuracy of antigen rapid diagnostic tests (Ag-RDTs) for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is essential to guide public health decision makers in choosing the best tests and testing policies. In August 2021, we published a systematic review and meta-analysis about the accuracy of Ag-RDTs. We now update this work and analyze the factors influencing test sensitivity in further detail. METHODS AND FINDINGS We registered the review on PROSPERO (registration number: CRD42020225140). We systematically searched preprint and peer-reviewed databases for publications evaluating the accuracy of Ag-RDTs for SARS-CoV-2 until August 31, 2021. Descriptive analyses of all studies were performed, and when more than 4 studies were available, a random-effects meta-analysis was used to estimate pooled sensitivity and specificity with reverse transcription polymerase chain reaction (RT-PCR) testing as a reference. To evaluate factors influencing test sensitivity, we performed 3 different analyses using multivariable mixed-effects meta-regression models. We included 194 studies with 221,878 Ag-RDTs performed. Overall, the pooled estimates of Ag-RDT sensitivity and specificity were 72.0% (95% confidence interval [CI] 69.8 to 74.2) and 98.9% (95% CI 98.6 to 99.1). When manufacturer instructions were followed, sensitivity increased to 76.3% (95% CI 73.7 to 78.7). Sensitivity was markedly better on samples with lower RT-PCR cycle threshold (Ct) values (97.9% [95% CI 96.9 to 98.9] and 90.6% [95% CI 88.3 to 93.0] for Ct-values <20 and <25, compared to 54.4% [95% CI 47.3 to 61.5] and 18.7% [95% CI 13.9 to 23.4] for Ct-values ≥25 and ≥30) and was estimated to increase by 2.9 percentage points (95% CI 1.7 to 4.0) for every unit decrease in mean Ct-value when adjusting for testing procedure and patients' symptom status. Concordantly, we found the mean Ct-value to be lower for true positive (22.2 [95% CI 21.5 to 22.8]) compared to false negative (30.4 [95% CI 29.7 to 31.1]) results. Testing in the first week from symptom onset resulted in substantially higher sensitivity (81.9% [95% CI 77.7 to 85.5]) compared to testing after 1 week (51.8%, 95% CI 41.5 to 61.9). Similarly, sensitivity was higher in symptomatic (76.2% [95% CI 73.3 to 78.9]) compared to asymptomatic (56.8% [95% CI 50.9 to 62.4]) persons. However, both effects were mainly driven by the Ct-value of the sample. With regards to sample type, highest sensitivity was found for nasopharyngeal (NP) and combined NP/oropharyngeal samples (70.8% [95% CI 68.3 to 73.2]), as well as in anterior nasal/mid-turbinate samples (77.3% [95% CI 73.0 to 81.0]). Our analysis was limited by the included studies' heterogeneity in viral load assessment and sample origination. CONCLUSIONS Ag-RDTs detect most of the individuals infected with SARS-CoV-2, and almost all (>90%) when high viral loads are present. With viral load, as estimated by Ct-value, being the most influential factor on their sensitivity, they are especially useful to detect persons with high viral load who are most likely to transmit the virus. To further quantify the effects of other factors influencing test sensitivity, standardization of clinical accuracy studies and access to patient level Ct-values and duration of symptoms are needed.
Collapse
Affiliation(s)
- Lukas E. Brümmer
- Division of Infectious Disease and Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Sean McGrath
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Stephani Schmitz
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mary Gaeddert
- Division of Infectious Disease and Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Marc Bota
- Agaplesion Bethesda Hospital, Hamburg, Germany
| | - Maurizio Grilli
- Library, University Medical Center Mannheim, Mannheim, Germany
| | - Jan Larmann
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus A. Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nira R. Pollock
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | | | | | | | | | | | - Claudia M. Denkinger
- Division of Infectious Disease and Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
9
|
Smith DRM, Duval A, Zahar JR, Opatowski L, Temime L. Rapid antigen testing as a reactive response to surges in nosocomial SARS-CoV-2 outbreak risk. Nat Commun 2022; 13:236. [PMID: 35017499 PMCID: PMC8752617 DOI: 10.1038/s41467-021-27845-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/07/2021] [Indexed: 11/24/2022] Open
Abstract
Healthcare facilities are vulnerable to SARS-CoV-2 introductions and subsequent nosocomial outbreaks. Antigen rapid diagnostic testing (Ag-RDT) is widely used for population screening, but its health and economic benefits as a reactive response to local surges in outbreak risk are unclear. We simulate SARS-CoV-2 transmission in a long-term care hospital with varying COVID-19 containment measures in place (social distancing, face masks, vaccination). Across scenarios, nosocomial incidence is reduced by up to 40-47% (range of means) with routine symptomatic RT-PCR testing, 59-63% with the addition of a timely round of Ag-RDT screening, and 69-75% with well-timed two-round screening. For the latter, a delay of 4-5 days between the two screening rounds is optimal for transmission prevention. Screening efficacy varies depending on test sensitivity, test type, subpopulations targeted, and community incidence. Efficiency, however, varies primarily depending on underlying outbreak risk, with health-economic benefits scaling by orders of magnitude depending on the COVID-19 containment measures in place.
Collapse
Affiliation(s)
- David R M Smith
- Institut Pasteur, Epidemiology and Modelling of Antibiotic Evasion (EMAE), Paris, France.
- Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology team, Montigny-Le-Bretonneux, France.
- Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire national des arts et métiers, Paris, France.
| | - Audrey Duval
- Institut Pasteur, Epidemiology and Modelling of Antibiotic Evasion (EMAE), Paris, France
- Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology team, Montigny-Le-Bretonneux, France
- IAME, UMR 1137, Université Paris 13, Sorbonne Paris Cité, Paris, France
| | - Jean Ralph Zahar
- IAME, UMR 1137, Université Paris 13, Sorbonne Paris Cité, Paris, France
- Service de Microbiologie Clinique et Unité de Contrôle et de Prévention du Risque Infectieux, Groupe Hospitalier Paris Seine Saint-Denis, AP-HP, Bobigny, France
| | - Lulla Opatowski
- Institut Pasteur, Epidemiology and Modelling of Antibiotic Evasion (EMAE), Paris, France
- Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology team, Montigny-Le-Bretonneux, France
| | - Laura Temime
- Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire national des arts et métiers, Paris, France
- PACRI unit, Institut Pasteur, Conservatoire national des arts et métiers, Paris, France
| |
Collapse
|