1
|
Shahi Ardakani A, Benedicenti S, Solimei L, Shahabi S, Afrasiabi S. Reduction of Multispecies Biofilms on an Acrylic Denture Base Model by Antimicrobial Photodynamic Therapy Mediated by Natural Photosensitizers. Pharmaceuticals (Basel) 2024; 17:1232. [PMID: 39338394 PMCID: PMC11435042 DOI: 10.3390/ph17091232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVES The aim of this study is to investigate the antimicrobial efficacy of antimicrobial photodynamic therapy (PDT) using natural photosensitizers (curcumin, riboflavin, and phycocyanin) and light-emitting diode (LED) irradiation against multispecies biofilms in an acrylic denture base model. MATERIALS AND METHODS Forty-five acrylic specimens were fabricated using heat-curing acrylic resin. The specimens were then infected with a mixed culture of bacterial and fungal species (including Streptococcus mutans, Streptococcus sanguinis, Candida albicans, and Candida glabrata) for 4 days. The acrylic discs were divided into nine groups, with each group containing five discs: control, 0.2% chlorhexidine, 5.25% sodium hypochlorite, curcumin, riboflavin, phycocyanin alone or along with LED. After treatment, the number of colony-forming units (CFUs) per milliliter was counted. In addition, the extent of biofilm degradation was assessed using the crystal violet staining method and scanning electron microscopy. RESULTS All experimental groups exhibited a significant reduction in colony numbers for both bacterial and fungal species compared to the control (p < 0.001). The PDT groups exhibited a statistically significant reduction in colony counts for both bacteria and fungi compared to the photosensitizer-only groups. CONCLUSIONS The results of this in vitro study show that PDT with natural photosensitizers and LED devices can effectively reduce the viability and eradicate the biofilm of microorganisms responsible for causing denture infections.
Collapse
Affiliation(s)
- Ali Shahi Ardakani
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran 1441987566, Iran
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV, 16132 Genoa, Italy
| | - Luca Solimei
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV, 16132 Genoa, Italy
| | - Sima Shahabi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran 1441987566, Iran
- Department of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran 1441987566, Iran
| | - Shima Afrasiabi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran 1441987566, Iran
| |
Collapse
|
2
|
Pitaksanurat P, Mayeah N, Saithong P, Pimha S, Sirikarn P, Damrongrungruang T. Anticandidal effect of multiple sessions of erythrosine and potassium iodide-mediated photodynamic therapy. J Oral Microbiol 2024; 16:2369357. [PMID: 38903483 PMCID: PMC11188948 DOI: 10.1080/20002297.2024.2369357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
Background Erythrosine+potassium iodide-mediated photodynamic therapy has shown an anticandidal effect. Single session, however, has inadequate fungal inhibition. Objectives We aimed to examine the effects of multiple aPDT sessions on Candida albicans inhibition and singlet oxygen formation. Methods 220 μM erythrosine +/-100 mM potassium iodide was applied to C. albicans biofilms for 1 min prior to irradiation at 530±10 nm using a 250 mW/cm2 light-emitting diode. Negative and positive controls were phosphate buffer saline and nystatin, respectively. Single, double and triple irradiation sessions with a 5 min resting time between sessions were performed. Post-treatment candidal counts were done at 0, 1 6 and 24 hr while log10 colony forming unit/ml was calculated and compared using a Kruskal-Wallis with Dunn's post hoc test at a p<0.05 - Singlet oxygen amount was compared using one-way ANOVA with a post hoc test at a p< 0.05. Results Two and three irradiation sessions to erythrosine+potassium iodide could inhibit Candida albicans at 7.92 log10CFU/ml (p < 0.001) . Singlet oxygen from a combination groups was significantly higher than for erythrosine (positive control). Moreover, the correlation coefficient (r) between singlet oxygen production and decreased Candida albicans counts was equal to 1. Conclusion Multiple sessions PDT of 220 μM erythrosine+100 mM potassium iodide effectively inhibited a Candida biofilm.
Collapse
Affiliation(s)
- Pran Pitaksanurat
- Division of Oral Diagnosis, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Nirawat Mayeah
- Division of Oral Diagnosis, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Pattranun Saithong
- Division of Oral Diagnosis, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Surachai Pimha
- Department of Public Health Administration, Health Promotion, and Nutrition, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
| | - Prapatsara Sirikarn
- Division of Oral Diagnosis, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
| | - Teerasak Damrongrungruang
- Division of Oral Diagnosis, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
- Melatonin Research Program, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
3
|
Piksa M, Lian C, Samuel IC, Pawlik KJ, Samuel IDW, Matczyszyn K. The role of the light source in antimicrobial photodynamic therapy. Chem Soc Rev 2023; 52:1697-1722. [PMID: 36779328 DOI: 10.1039/d0cs01051k] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Antimicrobial photodynamic therapy (APDT) is a promising approach to fight the growing problem of antimicrobial resistance that threatens health care, food security and agriculture. APDT uses light to excite a light-activated chemical (photosensitiser), leading to the generation of reactive oxygen species (ROS). Many APDT studies confirm its efficacy in vitro and in vivo against bacteria, fungi, viruses and parasites. However, the development of the field is focused on exploring potential targets and developing new photosensitisers. The role of light, a crucial element for ROS production, has been neglected. What are the main parameters essential for effective photosensitiser activation? Does an optimal light radiant exposure exist? And finally, which light source is best? Many reports have described the promising antibacterial effects of APDT in vitro, however, its application in vivo, especially in clinical settings remains very limited. The restricted availability may partially be due to a lack of standard conditions or protocols, arising from the diversity of selected photosensitising agents (PS), variable testing conditions including light sources used for PS activation and methods of measuring anti-bacterial activity and their effectiveness in treating bacterial infections. We thus sought to systematically review and examine the evidence from existing studies on APDT associated with the light source used. We show how the reduction of pathogens depends on the light source applied, radiant exposure and irradiance of light used, and type of pathogen, and so critically appraise the current state of development of APDT and areas to be addressed in future studies. We anticipate that further standardisation of the experimental conditions will help the field advance, and suggest key optical and biological parameters that should be reported in all APDT studies. More in vivo and clinical studies are needed and are expected to be facilitated by advances in light sources, leading to APDT becoming a sustainable, alternative therapeutic option for bacterial and other microbial infections in the future.
Collapse
Affiliation(s)
- Marta Piksa
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Cheng Lian
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Imogen C Samuel
- School of Medicine, University of Manchester, Manchester, M13 9PL, UK
| | - Krzysztof J Pawlik
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Katarzyna Matczyszyn
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
4
|
Al-Qahtani MA. Efficacy of antimicrobial photodynamic therapy in disinfection of Candida biofilms on acrylic dentures: A systematic review. Photodiagnosis Photodyn Ther 2022; 40:102980. [PMID: 35809827 DOI: 10.1016/j.pdpdt.2022.102980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The aim of this systematic review was to critically analyze and summarize the currently available scientific evidence concerning antifungal efficacy of aPDT against Candida on acrylic surface. METHODS The focused question was: '"Is aPDT effective in minimizing the counts of Candida on acrylic dentures". A literature search was conducted interpedently on the following electronic research databases: PubMED/MEDLINE, Cochrane, Google Scholar and Embase. The MeSH terms used were: ((antimicrobial photodynamic therapy) OR (light) OR (laser) OR (photodynamic)) AND ((Candida) OR (denture stomatitis)) AND ((denture) OR (acrylic) OR (polymethylmethacrylate) OR (dental prosthesis)). Data was extracted from the studies and quality assessment was carried out using a modified version of the CONSORT checklist. RESULTS Eighteen in-vitro anti-microbial studies and 5 clinical studies were included. Twenty-two studies suggested that aPDT was effective in reducing the Candida count on acrylic dentures and one study did not have a significant effect. 19 out of 23 studies were graded as having 'medium' quality and 4 studies were graded as 'high'. Several photosensitizers, including methylene blue, porphyrin derivatives, toluidine blue-O and others were used. LED was the most popular light source used for photo-activation of the photosensitizers. CONCLUSION Within the limitations of this review, aPDT is effective in reducing Candida growth on acrylic dentures and may prove to be clinical effective in preventing or treating denture stomatitis. However, more long-term clinical research is required before its clinical efficacy can be determined.
Collapse
Affiliation(s)
- Mohammed Ayedh Al-Qahtani
- Prosthetic Dental Science department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia.
| |
Collapse
|
5
|
de Lapena SAB, Terra-Garcia M, Ward RADC, Rossoni RD, Melo VMM, Junqueira JC. Enhancing effect of chitosan on methylene blue-mediated photodynamic therapy against C. albicans: a study in planktonic growth, biofilms, and persister cells. Photodiagnosis Photodyn Ther 2022; 38:102837. [PMID: 35367386 DOI: 10.1016/j.pdpdt.2022.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
Abstract
Chitosan (CS) is a natural polymer extracted from the exoskeleton of crustaceans. Due to its cationic structure, CS has been studied as a possible enhancer of antimicrobial photodynamic therapy (aPDT). The objective was to evaluate the association of CS with methylene blue (MB)-mediated aPDT on Candida albicans, investigating its effects on planktonic growth, biofilms, and cells persistent to fluconazole. The ability of CS to interfere with MB absorption by Candida cells was also evaluated. For the assays, planktonic cells of C. albicans were cultivated for 24 h, and the biofilms were formed for 48 h. For the induction of persister cells, C. albicans was cultivated with high concentration of fluconazole for 48 h. Treatments were performed with MB, CS or MB+CS, followed by irradiation with LED (660 nm). As results, aPDT with MB (300 µm) reduced the planktonic cells by 1.6 log10 CFU, while the MB+CS association led to a reduction of 4.8 log10 CFU. For aPDT in biofilms, there was a microbial reduction of 2.9 log10 CFU for the treatment with MB (600 µm) and 5.3 log10 CFU for MB+CS. In relation to persister cells, the fungal reductions were 0.4 log10 CFU for MB and 1.5 log10 CFU for MB+CS. In the absorption assays, the penetration of MB into Candida cells was increased in the presence of CS. It was concluded that CS enhanced the antimicrobial activity of aPDT in planktonic growth, biofilms, and persister cells of C. albicans, probably by facilitating the penetration of MB into fungal cells.
Collapse
Affiliation(s)
- Simone Aparecida Biazzi de Lapena
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, SP, Brazil
| | - Maíra Terra-Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, SP, Brazil
| | - Rafael Araújo da Costa Ward
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, SP, Brazil
| | - Rodney Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, SP, Brazil
| | - Vania Maria Maciel Melo
- Department of Biology, Laboratory of Microbial Ecology and Biotechnology Pici, Ceará Federal University, Fortaleza, CE, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, SP, Brazil.
| |
Collapse
|
6
|
Ziental D, Mlynarczyk DT, Czarczynska-Goslinska B, Lewandowski K, Sobotta L. Photosensitizers Mediated Photodynamic Inactivation against Fungi. NANOMATERIALS 2021; 11:nano11112883. [PMID: 34835655 PMCID: PMC8621466 DOI: 10.3390/nano11112883] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 01/12/2023]
Abstract
Superficial and systemic fungal infections are essential problems for the modern health care system. One of the challenges is the growing resistance of fungi to classic antifungals and the constantly increasing cost of therapy. These factors force the scientific world to intensify the search for alternative and more effective methods of treatment. This paper presents an overview of new fungal inactivation methods using Photodynamic Antimicrobial Chemotherapy (PACT). The results of research on compounds from the groups of phenothiazines, xanthanes, porphyrins, chlorins, porphyrazines, and phthalocyanines are presented. An intensive search for a photosensitizer with excellent properties is currently underway. The formulation based on the existing ones is also developed by combining them with nanoparticles and common antifungal therapy. Numerous studies indicate that fungi do not form any specific defense mechanism against PACT, which deems it a promising therapeutic alternative.
Collapse
Affiliation(s)
- Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.Z.); (K.L.)
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Konrad Lewandowski
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.Z.); (K.L.)
| | - Lukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.Z.); (K.L.)
- Correspondence:
| |
Collapse
|
7
|
Alshehri AH. Mechanical and antimicrobial effects of riboflavin-mediated photosensitization of in vitro C. albicans formed on polymethyl methacrylate resin. Photodiagnosis Photodyn Ther 2021; 36:102488. [PMID: 34416382 DOI: 10.1016/j.pdpdt.2021.102488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE This study assessed the potential of riboflavin-mediated photodynamic therapy (RF-PDT) against Candida albicans (C. albicans) and compared the effects of RF-PDT with other therapeutic modalities in terms of mechanical and surface characteristics of acrylic denture base material. MATERIALS AND METHODS Molds (10 × 10 × 2 mm) of acrylic resin specimens were prepared and underwent artificial ageing. C. albicans were grown aerobically over the specimens and divided into four groups (n = 10/group); Group-I: no decontamination; Group-II: nystatin suspension; Group-III: riboflavin 0.1% in darkness, Group-IV: blue LED light only, and Group-V: riboflavin 0.1% for 10 minutes (pre-irradiation time) and photoactivated by the blue LED light (light dose). Fungal viability was assessed using MTT assay and characterized using scanning electron microscopy and confocal laser microscopy (CLSM). Treated specimens were subjected to surface roughness (Ra), flexural strength (FS), and flexural modulus (FM). RESULTS Group-I showed the highest C. albicans viability followed by Group-III. Nystatin group (Group-II) showed ∼50% of the viability while RF-PDT showed the least C. albicans viability among the four groups (p<0.05). On SEM, specimens treated with Group-IV and V showed almost clear and free from C. albicans that was evidenced on CLSM. Post-treated specimens and storage after 72 h revealed that FS was significantly higher for RF-PDT group as compared to any other group (>105.82 MPa) (p<0.05). The FM and Ra showed statistically no significant difference between the groups (p>0.05). CONCLUSION RF-PDT showed the highest anti-fungal capacity against C. albicans over acrylic denture surface without any surface deterioration.
Collapse
Affiliation(s)
- Abdulkarim Hussain Alshehri
- Department of Prosthetic Dental Sciences, College of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia.
| |
Collapse
|
8
|
Bila NM, Costa-Orlandi CB, Vaso CO, Bonatti JLC, de Assis LR, Regasini LO, Fontana CR, Fusco-Almeida AM, Mendes-Giannini MJS. 2-Hydroxychalcone as a Potent Compound and Photosensitizer Against Dermatophyte Biofilms. Front Cell Infect Microbiol 2021; 11:679470. [PMID: 34055673 PMCID: PMC8155603 DOI: 10.3389/fcimb.2021.679470] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
Dermatophytes, fungi that cause dermatophytosis, can invade keratinized tissues in humans and animals. The biofilm-forming ability of these fungi was described recently, and it may be correlated with the long treatment period and common recurrences of this mycosis. In this study, we evaluated the anti-dermatophytic and anti-biofilm activity of 2-hydroxychalcone (2-chalcone) in the dark and photodynamic therapy (PDT)-mediated and to determine its mechanism of action. Trichophyton rubrum and Trichophyton mentagrophytes strains were used in the study. The antifungal susceptibility test of planktonic cells, early-stage biofilms, and mature biofilms were performed using colorimetric methods. Topographies were visualized by scanning electron microscopy (SEM). Human skin keratinocyte (HaCat) monolayers were also used in the cytotoxicity assays. The mechanisms of action of 2-chalcone in the dark and under photoexcitation were investigated using confocal microscopy and the quantification of ergosterol, reactive oxygen species (ROS), and death induction by apoptosis/necrosis. All strains, in the planktonic form, were inhibited after treatment with 2-chalcone (minimum inhibitory concentration (MIC) = 7.8-15.6 mg/L), terbinafine (TRB) (MIC = 0.008–0.03 mg/L), and fluconazole (FLZ) (1–512 mg/L). Early-stage biofilm and mature biofilms were inhibited by 2-chalcone at concentrations of 15.6 mg/L and 31.2 mg/L in all tested strains. However, mature biofilms were resistant to all the antifungal drugs tested. When planktonic cells and biofilms (early-stage and mature) were treated with 2-chalcone-mediated PDT, the inhibitory concentrations were reduced by four times (2–7.8 mg/L). SEM images of biofilms treated with 2-chalcone showed cell wall collapse, resulting from a probable extravasation of cytoplasmic content. The toxicity of 2-chalcone in HaCat cells showed higher IC50 values in the dark than under photoexcitation. Further, 2-chalcone targets ergosterol in the cell and promotes the generation of ROS, resulting in cell death by apoptosis and necrosis. Overall, 2-chalcone-mediated PDT is a promising and safe drug candidate against dermatophytes, particularly in anti-biofilm treatment.
Collapse
Affiliation(s)
- Níura Madalena Bila
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil.,Department of Para-Clinic, School of Veterinary, Universidade Eduardo Mondlane (UEM), Maputo, Mozambique
| | - Caroline Barcelos Costa-Orlandi
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Carolina Orlando Vaso
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Jean Lucas Carvalho Bonatti
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Letícia Ribeiro de Assis
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, Universidade Estadual Paulista (UNESP), Sao Jose do Rio Preto, Brazil
| | - Luís Octavio Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, Universidade Estadual Paulista (UNESP), Sao Jose do Rio Preto, Brazil
| | - Carla Raquel Fontana
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | | |
Collapse
|
9
|
Garcia BA, Panariello BHD, de Freitas Pontes KM, Duarte S. Regimen and different surfaces interfere with photodynamic therapy on Candida albicans biofilms. J Microbiol Methods 2020; 178:106080. [PMID: 33039543 DOI: 10.1016/j.mimet.2020.106080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 01/10/2023]
Abstract
The aim of this study is to compare antimicrobial photodynamic therapy (aPDT) against Candida albicans biofilms formed on two different substrates - acrylic resin or bottom of polystyrene plate; and two aPDT application regimens - twice-daily over the course of 48 h or single treatment after 48 h biofilm formation. C. albicans SN425 biofilms cultivated on Roswell Park Memorial Institute medium were incubated for 5 min with toluidine blue O (44 μM) used as a photosensitizer before red light (635 nm; 175.2 J/cm2) exposure for 2 min. As negative control, ultrapure water, and as positive control 0.12% chlorhexidine (CHX) were used. Biofilms were analyzed for colony forming units (CFU) and cells morphology by confocal scanning laser microscopy. Single treatment and twice-daily aPDT on polystyrene plate and single treatment on acrylic resin did not significantly reduce the CFU (p > 0.05); in contrast, twice-daily aPDT on acrylic resin has reduced C. albicans below the detection limit, similarly to CHX treatment. Single aPDT treatment on polystyrene plate and on the resin presented a bulky and homogeneous biofilm predominantly formed by pseudohyphae. In contrast, in the resin group, the biofilm treated twice-daily with aPDT was predominantly formed by yeast cells, whilst pseudohyphae were occasionally visible. In conclusion, biofilms formed on polystyrene plates are more resistant to aPDT than biofilms formed on acrylic resin. Moreover, applying aPDT twice-daily reduces C. albicans biofilm development on acrylic resin and is a better approach against C. albicans biofilms than one single application on the mature biofilm.
Collapse
Affiliation(s)
- Bruna Albuquerque Garcia
- Department of Restorative Dentistry, Federal University of Ceara, Fortaleza, Ceara, Brazil. Monsenhor Furtado Street - Rodolfo Teófilo, Fortaleza, CE 60430-355, Brazil.
| | - Beatriz Helena Dias Panariello
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, Indianapolis, Indiana, USA. 1121 W. Michigan Street, DS 406; Indianapolis, IN, 46202, USA.
| | - Karina Matthes de Freitas Pontes
- Department of Restorative Dentistry, Federal University of Ceara, Fortaleza, Ceara, Brazil. Monsenhor Furtado Street - Rodolfo Teófilo, Fortaleza, CE 60430-355, Brazil.
| | - Simone Duarte
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, Indianapolis, Indiana, USA. 1121 W. Michigan Street, DS 406; Indianapolis, IN, 46202, USA.
| |
Collapse
|
10
|
Marcolan De Mello M, De Barros PP, de Cassia Bernardes R, Alves SR, Ramanzini NP, Figueiredo-Godoi LMA, Prado ACC, Jorge AOC, Junqueira JC. Antimicrobial photodynamic therapy against clinical isolates of carbapenem-susceptible and carbapenem-resistant Acinetobacter baumannii. Lasers Med Sci 2019; 34:1755-1761. [DOI: 10.1007/s10103-019-02773-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/07/2019] [Indexed: 12/13/2022]
|
11
|
Tsutsumi-Arai C, Arai Y, Terada-Ito C, Takebe Y, Ide S, Umeki H, Tatehara S, Tokuyama-Toda R, Wakabayashi N, Satomura K. Effectiveness of 405-nm blue LED light for degradation of Candida biofilms formed on PMMA denture base resin. Lasers Med Sci 2019; 34:1457-1464. [DOI: 10.1007/s10103-019-02751-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/12/2019] [Indexed: 12/19/2022]
|
12
|
Terra Garcia M, Correia Pereira AH, Figueiredo-Godoi LMA, Jorge AOC, Strixino JF, Junqueira JC. Photodynamic therapy mediated by chlorin-type photosensitizers against Streptococcus mutans biofilms. Photodiagnosis Photodyn Ther 2018; 24:256-261. [PMID: 30157462 DOI: 10.1016/j.pdpdt.2018.08.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022]
Abstract
Photodynamic therapy (PDT) can be used for the control of oral pathogens and different photosensitizers (PS) have been investigated. This study evaluated the efficacy of PDT against Streptococcus mutans biofilms using two second-generation PS derived from chlorin: Photoditazine® (PDZ) and Fotoenticine® (FTC). These PS were compared to methylene blue (MB), a dye with proven antimicrobial activity against S. mutans. Suspensions of S. mutans were cultured in contact with bovine tooth disks for biofilm formation. After 48 h, the biofilms were treated with PDZ (0.6 mg/mL), FTC (0.6 mg/mL) or MB (1 mg/mL) and submitted to laser irradiation (660 nm, 50 mW/cm2). The biofilms were quantified by the determination of CFU/mL count and analyzed by scanning electron microscopy (SEM). All PS used for PDT reduced the number of S. mutans, with a statistically significant difference compared to the untreated groups. PDT achieved microbial reductions of 4 log with MB and 6 log with PDZ, while the use of FTC resulted in the complete elimination of S. mutans biofilms. SEM analysis confirmed the CFU/mL results, showing that all PS, particularly FTC, were able to detach the biofilms and to eliminate the bacteria. In conclusion, PDT mediated by chlorin-type PS exhibited greater antimicrobial activity against S. mutans than MB-mediated PDT, indicating that these PS can be useful for the control of dental caries.
Collapse
Affiliation(s)
- Maíra Terra Garcia
- Institute of Science and Technology, Univ Estadual Paulista/UNESP, São José dos Campos, SP, Brazil.
| | - André Henrique Correia Pereira
- Laboratório de Terapia Fotodinâmica, Instituto de Pesquisa e Desenvolvimento (IP&D), Universidade do Vale do Paraíba/UNIVAP, São José dos Campos, SP, Brazil
| | | | | | - Juliana Ferreira Strixino
- Laboratório de Terapia Fotodinâmica, Instituto de Pesquisa e Desenvolvimento (IP&D), Universidade do Vale do Paraíba/UNIVAP, São José dos Campos, SP, Brazil
| | - Juliana Campos Junqueira
- Institute of Science and Technology, Univ Estadual Paulista/UNESP, São José dos Campos, SP, Brazil
| |
Collapse
|