1
|
Siqueira RC. Photobiomodulation Using Light-Emitting Diode (LED) for Treatment of Retinal Diseases. Clin Ophthalmol 2024; 18:215-225. [PMID: 38283180 PMCID: PMC10813238 DOI: 10.2147/opth.s441962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024] Open
Abstract
Photobiomodulation (PBM) is a type of phototherapy that employs light-emitting diodes (LEDs) or low-power lasers to selectively administer specific wavelengths of visible light, ranging from 500 to 1000 nm, including near-infrared (NIR) wavelengths. LEDs are advantageous compared to lasers due to their ability to treat large areas at a lower cost, lack of tissue damage potential in humans, and reduced risk of eye-related accidents. The ophthalmology community has recently taken interest in PBM as a promising novel approach for managing various retinal conditions such as age-related macular degeneration, retinopathy of prematurity, retinitis pigmentosa, diabetic retinopathy, Leber's hereditary optic neuropathy, amblyopia, methanol-induced retinal damage, and potentially others. This review critically assesses the existing body of research on PBM applications in the retina, focusing on elucidating the underlying mechanisms of action and evaluating the clinical outcomes associated with this therapeutic modality.
Collapse
Affiliation(s)
- Rubens Camargo Siqueira
- Department of Retina, Rubens Siqueira Research Center, São José do Rio Preto, São Paulo, Brazil
- Postgraduate Department, Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
2
|
Zhang P, Zhang X, Zhu H. Photobiomodulation at 660 nm promotes collagen synthesis via downregulation of HIF-1α expression without photodamage in human scleral fibroblasts in vitro in a hypoxic environment. Graefes Arch Clin Exp Ophthalmol 2023; 261:2535-2545. [PMID: 37074407 DOI: 10.1007/s00417-023-06066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 04/20/2023] Open
Abstract
PURPOSE The increasing prevalence of myopia is a global public health issue. Because of the complexity of myopia pathogenesis, current control methods for myopia have great limitations. The aim of this study was to explore the effect of photobiomodulation (PBM) on human sclera fibroblasts (HSFs) under hypoxia, in the hope of providing new ideas for myopia prevention and control. METHODS Hypoxic cell model was established at 0, 6, 12, and 24 h time points to simulate myopia microenvironment and explore the optimal time point. Control, hypoxia, hypoxia plus light, and normal plus light cell models were set up for the experiments, and cells were incubated for 24 or 48 h after PBM (660 nm, 5 J/cm2), followed by evaluation of hypoxia-inducible factor 1α (HIF-1α) and collagen I a1 (COL1A1) proteins using Western blotting and immunofluorescence, and photo damage was detected by CCK-8, scratch test, and flow cytometry assays. We also used transfection technology to further elucidate the regulatory mechanism. RESULTS The change of target proteins is most obvious when hypoxia lasts for 24 h (p < 0.01). PBM at 660 nm increased extracellular collagen content (p < 0.001) and downregulated expression of HIF-1α (p < 0.05). This treatment did not affect the migration and proliferation of cells (p > 0.05), and effectively inhibited apoptosis under hypoxia (p < 0.0001). After overexpression of HIF-1α, the effect of PBM was attenuated (p > 0.05). CONCLUSIONS Photobiomodulation at 660 nm promotes collagen synthesis via downregulation of HIF-1α expression without photodamage.
Collapse
Affiliation(s)
- Pengbo Zhang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xibo Zhang
- Department of Ophthalmology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Huang Zhu
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
3
|
Tang K, Luo ML, Zhou W, Niu LN, Chen JH, Wang F. The integration of peri-implant soft tissues around zirconia abutments: Challenges and strategies. Bioact Mater 2023; 27:348-361. [PMID: 37180640 PMCID: PMC10172871 DOI: 10.1016/j.bioactmat.2023.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/23/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023] Open
Abstract
Stable soft tissue integration around the implant abutment attenuates pathogen penetration, protects underlying bone tissue, prevents peri-implantitis and is essential in maintaining long-term implant stability. The desire for "metal free" and "aesthetic restoration" has favored zirconia over titanium abutments, especially for implant restorations in the anterior region and for patients with thin gingival biotype. Soft tissue attachment to the zirconia abutment surface remains a challenge. A comprehensive review of advances in zirconia surface treatment (micro-design) and structural design (macro-design) affecting soft tissue attachment is presented and strategies and research directions are discussed. Soft tissue models for abutment research are described. Guidelines for development of zirconia abutment surfaces that promote soft tissue integration and evidence-based references to inform clinical choice of abutment structure and postoperative maintenance are presented.
Collapse
Affiliation(s)
- Kai Tang
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Meng-Lin Luo
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, The First Medical Center, Chinese PLA General Hospital & Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Zhou
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Li-Na Niu
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ji-Hua Chen
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Corresponding author.
| | - Fu Wang
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Corresponding author.
| |
Collapse
|
4
|
Giolo FP, Santos GS, Pacheco VF, Huber SC, Malange KF, Rodrigues BL, Bassora F, Mosaner T, Azzini G, Ribeiro LL, Parada CA, Lana JFSD. Photobiomodulation therapy for osteoarthritis: Mechanisms of action. World J Transl Med 2022; 10:29-42. [DOI: 10.5528/wjtm.v10.i3.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/23/2022] [Accepted: 08/05/2022] [Indexed: 02/05/2023] Open
Abstract
Photobiomodulation (PBM) is a non-invasive therapeutic modality with demonstrated effects in many fields related to regenerative medicine. In the field of orthopedics, in particular, PBM at various wavelengths has demonstrated the capacity to trigger multiple biological effects associated with protective mechanisms in musculoskeletal tissues. The articles cited in this review show that devices operating close to or within the near infrared range at low intensities can provoke responses which favor the shift in the predominant catabolic microenvironment typically seen in degenerative joint diseases, especially osteoarthritis (OA). These responses include proliferation, differentiation and expression of proteins associated with stable cell cycles. Additionally, PBM can also modulate oxidative stress, inflammation and pain by exerting regulatory effects on immune cells and blocking the transmission of pain through sensory neuron fibers, without adverse events. Collectively, these effects are essential in order to control the progression of OA, which is in part attributed to exacerbated inflammation and degradative enzymatic reactions which gradually contribute to the destruction of joint tissues. PBM may offer medical experts ease of application, financial viability, efficacy and lack of serious adverse events. Therefore, it may prove to be a suitable ally in the management of mild to moderate degrees of OA. This review explores and discusses the principal biological mechanisms of PBM and how the produced effects may contribute to the amelioration of osteoarthritic progression. Literature was reviewed using PubMed and Google Scholar in order to find studies describing the mechanisms of PBM. The investigation included a combination of nomenclature such as: “photobiomodulation”, “phototherapy”, “laser therapy”, “PBM”, “osteoarthritis”, low level light therapy”, “inflammation” and “cartilage”. We considered only articles written in English, with access to the full text.
Collapse
Affiliation(s)
- Fábio Pericinoto Giolo
- Department of Physical Therapy, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil
| | - Gabriel Silva Santos
- Biomedical Science, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil
| | - Victor Fontes Pacheco
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil
| | - Stephany Cares Huber
- Biomedical Science, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil
| | - Kaue Franco Malange
- Neurobiology of Pain and Regenerative Medicine, The University of Campinas, Campinas 13083-862, Brazil
| | - Bruno Lima Rodrigues
- Biomedical Science, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil
| | - Fernanda Bassora
- Department of Hematology, The University of Campinas, Campinas 13083-878, Brazil
| | - Tomas Mosaner
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil
| | - Gabriel Azzini
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil
| | - Lucas Leite Ribeiro
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil
| | - Carlos Amilcar Parada
- Neurobiology of Pain and Regenerative Medicine, The University of Campinas, Campinas 13083-862, Brazil
| | | |
Collapse
|
5
|
Titanium alkalinization improves response of osteoblasts to zoledronic acid. Biointerphases 2022; 17:031004. [PMID: 35618545 DOI: 10.1116/6.0001670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This investigation is aimed to determine the effect of the modification of titanium surface with NaOH on the metabolism of osteoblasts treated with zoledronic acid (ZA). Machined and NaOH-treated titanium disks were used. Surfaces were characterized by scanning electron microscopy, confocal microscopy, and x-ray photoelectron spectroscopy (XPS) analysis. Human osteoblasts were seeded onto the disks. After 24 h, cells were treated with ZA at 5 μM for 7 days. At this point, cell viability, collagen synthesis, total protein production, alkaline phosphatase activity, and mineral nodule deposition were assessed. The results of surface roughness were descriptively and statistically analyzed (t-Student), while the XPS results were qualitatively described. Cell metabolism data were analyzed by the analysis of variance two-way and Tukey tests at a 5% significance level. The results demonstrated that NaOH-treatment increased surface roughness (p < .05) and confirmed the presence of sodium titanate and a pH switch on the NaOH-treated disks. This modification also resulted in higher cell viability, collagen synthesis, total protein production, and alkaline phosphatase by osteoblasts when compared to cells seeded onto machined disks (p < 0.05). In the presence of ZA, all cellular metabolism and differentiation parameters were significantly reduced for cells seeded on both surfaces (p < 0.05); however, the cells seeded onto modified surfaces showed higher values for these parameters, except for mineral nodule deposition (p < 0.05). NaOH modification improved cell adhesion and metabolism of osteogenic cells even in the presence of ZA. The surface modification of titanium with NaOH solution may be an interesting strategy to improve metabolism and differentiation of osteoblasts and accelerate osseointegration process, mainly for tissues exposed to ZA.
Collapse
|
6
|
Raji H, Arjmand B, Rahim F. The Probable Protective Effect of Photobiomodulation on the Inflammation of the Airway and Lung in COVID-19 Treatment: A Preclinical and Clinical Meta-Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:29-44. [PMID: 34907516 DOI: 10.1007/5584_2021_665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Preliminary studies also show that many of the fatalities of COVID-19 are due to over-activity of the immune system, and photobiomodulation (PBM) therapy mainly accelerates wound healing and reduces pain and inflammation. Therefore, this systematic review and meta-analysis was conducted to evaluate the probable effect of the PBM therapy on the lung inflammation or ARDS and accelerate the regeneration of the damaged tissue. We systematically searched major indexing databases, including PubMed/Medline, ISI web of science (WOS), Scopus, Embase, and Cochrane central, using standard terms without any language, study region, or type restrictions. Of the 438 studies found through initial searches, 13 met the inclusion criteria. After applying the exclusion criteria, the main properties of 13 articles on 384 animals included in this meta-analysis with a wide range of species include rat (n = 10) and rabbit (n = 3). The analysis revealed that PBM therapy reduced TNFα (SMD:-3.75, 95% CI: -4.49, -3.02, P < 0.00001, I2 = 10%), IL-1β (SMD:-4.65, 95% CI: -6.15, -3.16, P < 0.00001, I2 = 62%), and IL-6 (SMD:-4.20, 95% CI: -6.42, -1.97, P = 0.0002, I2 = 88%) significantly compared with the model controls. Hence, PBM therapy increased IL-10 significantly compared with the model controls (SMD:-4.65, 95% CI: -6.15, -3.16, P < 0.00001, I2 = 62%). PBM therapy also reduced MPO activity (SMD:-2.13, 95% CI: -3.38, -0.87, P = 0.0009, I2 = 64%) and vascular permeability (SMD:-2.59, 95% CI: -4.40, -0.77, P = 0.0052, I2 = 71%) in the lung using the Evans blue extravasation technique significantly compared with the model controls. This systematic review and meta-analysis revealed that the PBM therapy does utilize beneficial anti-inflammatory effect, modulation of the immune system, lung permeability, or bronchoalveolar lavage on lung damage in both animal models and clinical studies. However, animal model and clinical studies appear limited considering the quality of the included evidences; therefore, large clinical trials are still required.
Collapse
Affiliation(s)
- Hanieh Raji
- Department of Internal Medicine, Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fakher Rahim
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,PhD in Clinical Bioinformatics, Health Research Institute, Thalassemia and Hemoglobinopathies Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
7
|
Souza C, Jayme CC, Rezende N, Tedesco AC. Synergistic effect of photobiomodulation and phthalocyanine photosensitizer on fibroblast signaling responses in an in vitro three-dimensional microenvironment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 222:112256. [PMID: 34330080 DOI: 10.1016/j.jphotobiol.2021.112256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/12/2021] [Accepted: 07/04/2021] [Indexed: 12/22/2022]
Abstract
Photobiomodulation (PBM) is a promising medical treatment modality in the area of photodynamic therapy (PDT). In this study, we investigated the effect of combined therapy in a 3D microenvironment using aluminum chloride phthalocyanines (AlClPc) as the photosensitizing agent. Normal human fibroblast-containing collagen biomatrix was prepared and treated with an oil-in-water (o/a) AlClPc-loaded nanoemulsion (from 0.5 to 3.0 μM) and irradiated at a range of fluences (from 0.1 to 3.0 J/cm2) using a continuous-wave light-emitting diode (LED) irradiation system (660 nm). PBM at 1.2 J/cm2 and AlClPc/NE at 0.5 μM modified the fibroblast signaling response under 3D conditions, promoting collagen synthesis, ROS production, MMP-9 secretion, proliferation of the actin network, and facile myofibroblastic differentiation. PBM alone (at 1.2 J/cm2 and 0.3 J/cm2) had no significant effect on any of these parameters. The combined therapy affected myofibroblastic differentiation, inflammatory response, and extracellular matrix pliability, and should thus be examined further in subsequent studies considering that no side effects of PBM have been reported. Even though significant progress has been made in the field of phototherapy in recent years, it is necessary to further elucidate the detailed mechanisms underlying its effects already shown in 2D conditions to increase the acceptance of this beneficial and non-invasive therapeutic approach.
Collapse
Affiliation(s)
- Carla Souza
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto-FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Cristiano Ceron Jayme
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto-FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Nayara Rezende
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto-FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto-FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil.
| |
Collapse
|
8
|
Fuchs C, Schenk MS, Pham L, Cui L, Anderson RR, Tam J. Photobiomodulation Response From 660 nm is Different and More Durable Than That From 980 nm. Lasers Surg Med 2021; 53:1279-1293. [PMID: 33998008 DOI: 10.1002/lsm.23419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/28/2021] [Accepted: 04/24/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Photobiomodulation (PBM) therapy uses light at various wavelengths to stimulate wound healing, grow hair, relieve pain, and more-but there is no consensus about optimal wavelengths or dosimetry. PBM therapy works through putative, wavelength-dependent mechanisms including direct stimulation of mitochondrial respiration, and/or activation of transmembrane signaling channels by changes in water activity. A common wavelength used in the visible red spectrum is ~660 nm, whereas recently ~980 nm is being explored and both have been proposed to work via different mechanisms. We aimed to gain more insight into identifying treatment parameters and the putative mechanisms involved. STUDY DESIGN/MATERIALS AND METHODS Fluence-response curves were measured in cultured keratinocytes and fibroblasts exposed to 660 or 980 nm from LED sources. Metabolic activity was assessed using the MTT assay for reductases. ATP production, a major event triggered by PBM therapy, was assessed using a luminescence assay. To measure the role of mitochondria, we used an ELISA to measure COX-1 and SDH-A protein levels. The respective contributions of cytochrome c oxidase and ATP synthase to the PBM effects were gauged using specific inhibitors. RESULTS Keratinocytes and fibroblasts responded differently to exposures at 660 nm (red) and 980 nm (NIR). Although 980 nm required much lower fluence for cell stimulation, the resulting increase in ATP levels was short-term, whereas 660 nm stimulation elevated ATP levels for at least 24 hours. COX-1 protein levels were increased following 660 nm treatment but were unaffected by 980 nm. In fibroblasts, SDH-A levels were affected by both wavelengths, whereas in keratinocytes only 660 nm light impacted SDH-A levels. Inhibition of ATP synthase nearly completely abolished the effects of both wavelengths on ATP synthesis. Interestingly, inhibiting cytochrome c oxidase did not prevent the rise in ATP levels in response to PBM treatment. CONCLUSION To the best of our knowledge, this is the first demonstration of differing kinetics in response to PBM therapy at red versus NIR wavelength. We also found cell-type-specific differences in PBM therapy response to the two wavelengths studied. These findings confirm that different response pathways are involved after 660 and 980 nm exposures and suggest that 660 nm causes a more durable response. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Christiane Fuchs
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, 02114.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, 02115
| | - Merle Sophie Schenk
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, 02114
| | - Linh Pham
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, 02114
| | - Lian Cui
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, 02114
| | - Richard Rox Anderson
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, 02114.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, 02115
| | - Joshua Tam
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, 02114.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, 02115
| |
Collapse
|
9
|
Rech CA, Pansani TN, Cardoso LM, Ribeiro IM, Silva-Sousa YTC, de Souza Costa CA, Basso FG. Photobiomodulation using LLLT and LED of cells involved in osseointegration and peri-implant soft tissue healing. Lasers Med Sci 2021; 37:573-580. [PMID: 33844114 DOI: 10.1007/s10103-021-03299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/22/2021] [Indexed: 11/29/2022]
Abstract
This study evaluated the influence of photobiomodulation (PBM) using low-level laser therapy (PBM/LLLT) or light-emitting diode (PBM/LED) therapy on peri-implant tissue healing. A laboratory model was used to assess the adhesion and metabolism of osteoblasts (SaOs-2), human gingival fibroblasts (HGF), and normal oral keratinocytes (NOK) seeded on a titanium (Ti) surface. After seeding the cells on disks of Ti placed in wells of 24-well plates, three irradiations were performed every 24 h at energy density of 3 J/cm2. For PBM/LLLT, a LaserTABLE device was used with a wavelength of 780 nm and 25 mW, while for PBM/LED irradiation, a LEDTABLE device was used at 810 nm, 20 mW, at a density of 3 J/cm2. After irradiations, the number of cells (NC) attached and spread on the Ti surface, cell viability (CV), total protein (TP), and collagen (Col) synthesis were assessed. Alkaline phosphate activity (ALP) was evaluated only for SaOs-2. Data were submitted to ANOVA complemented by Turkey statistical tests at a 5% significance level. PBM significantly increased adherence of NOK to the Ti surface, while no significant effect was observed for SaOs-2 and HGF. PBM positively affected CV, as well as Col and TP synthesis, in distinct patterns according to the cell line. Increased ALP activity was observed only in those cells exposed to PBM/LLLT. Considering cell specificity, this investigation reports that photobiomodulation with low-power laser and LED at determined parameters enhances cellular functions related to peri-implant tissue healing in a laboratory model.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fernanda Gonçalves Basso
- Universidade de Ribeirão Preto, UNAERP, Ribeirão Preto, SP, Brazil. .,Department of Dentistry, Ribeirão Preto University (UNAERP), 2201 Costábile Romano Avenue, Ribeirão Preto, SP, 14096-900, Brazil.
| |
Collapse
|
10
|
Effect of NIR Laser Therapy by MLS-MiS Source on Fibroblast Activation by Inflammatory Cytokines in Relation to Wound Healing. Biomedicines 2021; 9:biomedicines9030307. [PMID: 33809724 PMCID: PMC8002295 DOI: 10.3390/biomedicines9030307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
The fine control of inflammation following injury avoids fibrotic scars or impaired wounds. Due to side effects by anti-inflammatory drugs, the research is continuously active to define alternative therapies. Among them, physical countermeasures such as photobiomodulation therapy (PBMT) are considered effective and safe. To study the cellular and molecular events associated with the anti-inflammatory activity of PBMT by a dual-wavelength NIR laser source, human dermal fibroblasts were exposed to a mix of inflammatory cytokines (IL-1β and TNF-α) followed by laser treatment once a day for three days. Inducible inflammatory key enzymatic pathways, as iNOS and COX-2/mPGES-1/PGE2, were upregulated by the cytokine mix while PBMT reverted their levels and activities. The same behavior was observed with the proangiogenic factor vascular endothelial growth factor (VEGF), involved in neovascularization of granulation tissue. From a molecular point of view, PBMT retained NF-kB cytoplasmatic localization. According to a change in cell morphology, differences in expression and distribution of fundamental cytoskeletal proteins were observed following treatments. Tubulin, F-actin, and α-SMA changed their organization upon cytokine stimulation, while PBMT reestablished the basal localization. Cytoskeletal rearrangements occurring after inflammatory stimuli were correlated with reorganization of membrane α5β1 and fibronectin network as well as with their upregulation, while PBMT induced significant downregulation. Similar changes were observed for collagen I and the gelatinolytic enzyme MMP-1. In conclusion, the present study demonstrates that the proposed NIR laser therapy is effective in controlling fibroblast activation induced by IL-1β and TNF-α, likely responsible for a deleterious effect of persistent inflammation.
Collapse
|
11
|
Gambino A, Cabras M, Cafaro A, Broccoletti R, Carossa S, Hopper C, Conrotto D, Porter SR, Arduino PG. Preliminary evaluation of the utility of optical coherence tomography in detecting structural changes during photobiomodulation treatment in patients with atrophic-erosive oral lichen planus. Photodiagnosis Photodyn Ther 2021; 34:102255. [PMID: 33727132 DOI: 10.1016/j.pdpdt.2021.102255] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/15/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Oral lichen planus (OLP) is a common oral inflammatory condition. Against symptomatic atrophic-erosive OLP, topical steroids, or photobiomodulation (PBM) are deployed. Optical coherence tomography (OCT) provides a real-time, non-invasive, tissue investigation. Aim of this study was to evaluate modifications of OCT pattern in patients with painful atrophic-erosive OLP, before and after treatment with PBM, comparing those results with patients treated with topical steroid. METHODS Two groups of 20 OLP patients were evaluated. Group A underwent two daily application of 0.05 % clobetasol propionate for 8 weeks; group B was treated with eight weekly PBM sessions using a 980/645 nm diode laser. OCT scans were performed before and after treatment, and six months after end of the proposed protocol. Changes of width of stratified epithelium (EP) and lamina propria (LP) were quantified. RESULTS After 8-weeks, both groups experienced a significant increase of EP width (p < 0.05), and a significant decrease of LP width (p < 0.05), with Δ-EP in Group A significantly higher than Group B (p = 0.0015); conversely, Δ-LP was not significantly different (p > 0.05). After six months, significant increase of EP width remained only in group B (p = 0.01), with no significant decrease of LP mean width in both groups (p > 0.05). CONCLUSIONS Increase of EP and decrease of LP might be explained as consequence of clobetasol and PBM ability to promote epithelial healing, and to reduce interface inflammation. When investigated with OCT, clobetasol appears to provide more significant short-term structural changes, whereas PBM might guarantee long-term alterations.
Collapse
Affiliation(s)
- Alessio Gambino
- Department of Surgical Sciences, Oral Medicine Section, CIR-Dental School, University of Turin, Italy.
| | - Marco Cabras
- Department of Surgical Sciences, Oral Medicine Section, CIR-Dental School, University of Turin, Italy
| | - Adriana Cafaro
- Department of Surgical Sciences, Oral Medicine Section, CIR-Dental School, University of Turin, Italy
| | - Roberto Broccoletti
- Department of Surgical Sciences, Oral Medicine Section, CIR-Dental School, University of Turin, Italy
| | - Stefano Carossa
- Department of Surgical Sciences, Oral Medicine Section, CIR-Dental School, University of Turin, Italy
| | - Colin Hopper
- Department of Clinical Research, UCL Eastman Dental Institute, London, United Kingdom
| | - Davide Conrotto
- Department of Surgical Sciences, Oral Medicine Section, CIR-Dental School, University of Turin, Italy
| | - Stephen R Porter
- Department of Clinical Research, UCL Eastman Dental Institute, London, United Kingdom
| | - Paolo G Arduino
- Department of Surgical Sciences, Oral Medicine Section, CIR-Dental School, University of Turin, Italy
| |
Collapse
|
12
|
Ailioaie LM, Litscher G. Molecular and Cellular Mechanisms of Arthritis in Children and Adults: New Perspectives on Applied Photobiomodulation. Int J Mol Sci 2020; 21:E6565. [PMID: 32911717 PMCID: PMC7554967 DOI: 10.3390/ijms21186565] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Juvenile idiopathic arthritis and adult rheumatoid arthritis are two major groups with chronic joint pain and inflammation, extra-articular manifestations, and high risk of comorbidities, which can cause physical and ocular disability, as well as create great socio-economic pressure worldwide. The pathogenesis of arthritis manifested in childhood and adulthood is multifactorial, unclear, and overly complex, in which immunity plays an important role. Although there are more and more biological agents with different mechanisms of action for the treatment of arthritis, the results are not as expected, because there are partial responses or non-responsive patients to these compounds, high therapeutic costs, side effects, and so on; therefore, we must turn our attention to other therapeutic modalities. Updating knowledge on molecular and cellular mechanisms in the comparative pathogenesis of chronic arthritis in both children and adults is necessary in the early and correct approach to treatment. Photobiomodulation (PBM) represents a good option, offering cost-effective advantages over drug therapy, with a quicker, more positive response to treatment and no side effects. The successful management of PBM in arthritis is based on the clinician's ability to evaluate correctly the inflammatory status of the patient, to seek the optimal solution, to choose the best technology with the best physical parameters, and to select the mode of action to target very precisely the immune system and the molecular signaling pathways at the molecular level with the exact amount of quantum light energy in order to obtain the desired immune modulation and the remission of the disease. Light is a very powerful tool in medicine because it can simultaneously target many cascades of immune system activation in comparison with drugs, so PBM can perform very delicate tasks inside our cells to modulate cellular dysfunctions, helping to initiate self-organization phenomena and finally, healing the disease. Interdisciplinary teams should work diligently to meet these needs by also using single-cell imaging devices for multispectral laser photobiomodulation on immune cells.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iaşi, Romania;
- Ultramedical & Laser Clinic, 83 Arcu Street, 700135 Iaşi, Romania
| | - Gerhard Litscher
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, and Traditional Chinese Medicine (TCM) Research Center Graz, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
| |
Collapse
|
13
|
|