1
|
Yang W, Wang J, Jia L, Li J, Liu S. Stereo-Complex and Click-Chemical Bicrosslinked Amphiphilic Network Gels with Temperature/pH Response. Gels 2023; 9:647. [PMID: 37623102 PMCID: PMC10454454 DOI: 10.3390/gels9080647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Stimulus-responsive hydrogels have been widely used in the field of drug delivery because of their three-dimensional pore size and the ability to change the drug release rate with the change in external environment. In this paper, the temperature-sensitive monomer 2-methyl-2-acrylate-2-(2-methoxyethoxy-ethyl) ethyl ester (MEO2MA) and oligoethylene glycol methyl ether methacrylate (OEGMA) as well as the pH-sensitive monomer N,N-Diethylaminoethyl methacrylate (DEAEMA) were used to make the gel with temperature and pH response. Four kinds of physicochemical double-crosslinked amphiphilic co-network gels with different polymerization degrees were prepared by the one-pot method using the stereocomplex between polylactic acid as physical crosslinking and click chemistry as chemical crosslinking. By testing morphology, swelling, thermal stability and mechanical properties, the properties of the four hydrogels were compared. Finally, the drug release rate of the four gels was tested by UV-Vis spectrophotometer. It was found that the synthetic hydrogels had a good drug release rate and targeting, and had great application prospect in drug delivery.
Collapse
Affiliation(s)
| | | | | | | | - Shouxin Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China; (W.Y.); (J.W.); (L.J.); (J.L.)
| |
Collapse
|
2
|
Chopra H, Verma R, Kaushik S, Parashar J, Madan K, Bano A, Bhardwaj R, Pandey P, Kumari B, Purohit D, Kumar M, Bhatia S, Rahman MH, Mittal V, Singh I, Kaushik D. Cyclodextrin-Based Arsenal for Anti-Cancer Treatments. Crit Rev Ther Drug Carrier Syst 2023; 40:1-41. [PMID: 36734912 DOI: 10.1615/critrevtherdrugcarriersyst.2022038398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Anti-cancer drugs are mostly limited in their use due to poor physicochemical and biopharmaceutical properties. Their lower solubility is the most common hurdle limiting their use upto their potential. In the recent years, the cyclodextrin (CD) complexation have emerged as existing approach to overcome the problem of poor solubility. CD-based nano-technological approaches are safe, stable and showed well in vivo tolerance and greater payload for encapsulation of hydrophobic drugs for the targeted delivery. They are generally chosen due to their ability to get self-assembled to form liposomes, nanoparticles, micelles and nano-sponges etc. This review paper describes a birds-eye view of the various CD-based nano-technological approaches applied for the delivery of anti-cancer moieties to the desired target such as CD based liposomes, niosomes, niosoponges, micelles, nanoparticles, monoclonal antibody, magnetic nanoparticles, small interfering RNA, nanorods, miscellaneous formulation of anti-cancer drugs containing CD. Moreover, the author also summarizes the various shortcomings of such a system and their way ahead.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Ravinder Verma
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram 122103, India
| | - Sakshi Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Jatin Parashar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Kumud Madan
- Lloyd Institute of Management and Technology (Pharm), Knowledge Park, Greater Noida, U.P., India
| | - Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, India
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram 122413, India
| | - Beena Kumari
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, India
| | - Deepika Purohit
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, India
| | - Manish Kumar
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| |
Collapse
|
3
|
Li S, Guo Z, Zhang H, Li X, Li W, Liu P, Ren Y, Li X. ABC Triblock Copolymers Antibacterial Materials Consisting of Fluoropolymer and Polyethylene Glycol Antifouling Block and Quaternary Ammonium Salt Sterilization Block. ACS APPLIED BIO MATERIALS 2021; 4:3166-3177. [PMID: 35014404 DOI: 10.1021/acsabm.0c01571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sen Li
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, People’s Republic of China
| | - Zhaoyuan Guo
- The No. 4 Hospital of Jinan, 50 Shifan Road, Jinan 250031, People’s Republic of China
| | - Hongxia Zhang
- The No. 4 Hospital of Jinan, 50 Shifan Road, Jinan 250031, People’s Republic of China
| | - Xuelian Li
- The No. 4 Hospital of Jinan, 50 Shifan Road, Jinan 250031, People’s Republic of China
| | - Wenting Li
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, People’s Republic of China
| | - Peng Liu
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, People’s Republic of China
| | - Yufang Ren
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, People’s Republic of China
| | - Xue Li
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, People’s Republic of China
| |
Collapse
|
4
|
Lignin-Based Hollow Nanoparticles for Controlled Drug Delivery: Grafting Preparation Using β-Cyclodextrin/Enzymatic-Hydrolysis Lignin. NANOMATERIALS 2019; 9:nano9070997. [PMID: 31373282 PMCID: PMC6669448 DOI: 10.3390/nano9070997] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 12/26/2022]
Abstract
Due to its abundance, degradability, and low toxicity, lignin is a promising raw material for the preparation of nanomaterials. However, efficient encapsulation using lignin-nanomaterial for sustained-release medications remains a challenge. This study involves grafting β-cyclodextrin (β-CD), with a hollow toroidal structure, onto the enzymatic-hydrolysis lignin (EHL) to form CD-EHL. The modified lignin was next used to prepare hollow nanoparticles (LHNPs) via self-assembly to encapsulate the antitumor drug hydroxycamptothecin (HCPT). The results indicated that β-CD improved the network structure of modified lignin molecules. Moreover, LHNPs that self-assembled using CD-EHL had an increased specific surface area and greater porosity, and exhibited a spherical hollow structure and stability in phosphate-buffered saline. The drug loading and encapsulation efficiency of HCPT were 70.6 ± 9% and 22.02 ± 2%, respectively. An in vitro study showed that lignin-based nanoparticles have low toxicity, and the modified LHNPs demonstrated a good sustained-release capability. This study broadened the potential application of lignin as a renewable biomass material.
Collapse
|
5
|
Raut SY, Manne AS, Kalthur G, Jain S, Mutalik S. Cyclodextrins as Carriers in Targeted Delivery of Therapeutic Agents: Focused Review on Traditional and Inimitable Applications. Curr Pharm Des 2019; 25:444-454. [DOI: 10.2174/1381612825666190306163602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/25/2019] [Indexed: 11/22/2022]
Abstract
The objective of the article is to provide a comprehensive review on the application of cyclodextrin
complexation in the delivery of drugs, bioactive molecules or macromolecules, with more emphasis on targeted
drug delivery. Classically the cyclodextrins have been considered only as a means of improving the solubility of
drugs; however, many attempts have been made to use cyclodextrins as drug delivery carriers. The cyclodextrin
surface can be modified with various ligands for active targeting of drugs. It can also be passively targeted
through various triggering mechanisms like thermal, magnetic, pH dependent, light dependent, ultrasound, etc. A
comprehensive literature review has been done in the area of drug delivery using cyclodextrins. Applications of
inclusion complexes in the drug delivery through various routes with examples are discussed. This review focuses
on receptor mediated active targeting as well as stimuli responsive passive targeting of drugs/genes by using
cyclodextrins. The article provides a detailed insight of the use of cyclodextrins and their derivatives on the targeted
delivery of the drugs/genes.
Collapse
Affiliation(s)
- Sushil Y. Raut
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka State, India
| | - Alekhya S.N. Manne
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka State, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka State, India
| |
Collapse
|
6
|
Seidi F, Shamsabadi AA, Amini M, Shabanian M, Crespy D. Functional materials generated by allying cyclodextrin-based supramolecular chemistry with living polymerization. Polym Chem 2019. [DOI: 10.1039/c9py00495e] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclodextrin molecules are cyclic oligosaccharides that display a unique structure including an inner side and two faces on their outer sides.
Collapse
Affiliation(s)
- Farzad Seidi
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | | | - Mojtaba Amini
- Department of Chemistry
- Faculty of Science
- University of Maragheh
- Maragheh
- Iran
| | - Meisam Shabanian
- Faculty of Chemistry and Petrochemical Engineering
- Standard Research Institute (SRI)
- Karaj
- Iran
| | - Daniel Crespy
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| |
Collapse
|
7
|
Mendrek B, Fus A, Klarzyńska K, Sieroń AL, Smet M, Kowalczuk A, Dworak A. Synthesis, Characterization and Cytotoxicity of Novel Thermoresponsive Star Copolymers of N, N'-Dimethylaminoethyl Methacrylate and Hydroxyl-Bearing Oligo(Ethylene Glycol) Methacrylate. Polymers (Basel) 2018; 10:E1255. [PMID: 30961179 PMCID: PMC6401879 DOI: 10.3390/polym10111255] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022] Open
Abstract
Novel, nontoxic star copolymers of N,N-dimethylaminoethyl methacrylate (DMAEMA) and hydroxyl-bearing oligo(ethylene glycol) methacrylate (OEGMA-OH) were synthesized via atom transfer radical polymerization (ATRP) using hyperbranched poly(arylene oxindole) as the macroinitiator. Stars with molar masses from 100,000 g/mol to 257,000 g/mol and with various amounts of OEGMA-OH in the arms were prepared. As these polymers can find applications, e.g., as carriers of nucleic acids, drugs or antibacterial or antifouling agents, in this work, much attention has been devoted to exploring their solution behavior and their stimuli-responsive properties. The behavior of the stars was studied in aqueous solutions under various pH and temperature conditions, as well as in PBS buffer, in Dulbecco's modified Eagle's medium (DMEM) and in organic solvents for comparison. The results indicated that increasing the content of hydrophilic OEGMA-OH units in the arms up to 10 mol% increased the cloud point temperature. For the stars with an OEGMA-OH content of 10 mol%, the thermo- and pH-responsivity was switched off. Since cytotoxicity experiments have shown that the obtained stars are less toxic than homopolymer DMAEMA stars, the presented studies confirmed that the prepared polymers are great candidates for the design of various nanosystems for biomedical applications.
Collapse
Affiliation(s)
- Barbara Mendrek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland.
| | - Agnieszka Fus
- Department of Molecular Biology and Genetics, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland.
| | - Katarzyna Klarzyńska
- Department of Molecular Biology and Genetics, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland.
| | - Aleksander L Sieroń
- Department of Molecular Biology and Genetics, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland.
| | - Mario Smet
- Department of Chemistry, University of Leuven, Celestijnenlaan, 200F, B-3001 Leuven (Heverlee), Belgium.
| | - Agnieszka Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland.
| | - Andrzej Dworak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland.
| |
Collapse
|
8
|
Wang L, Li Z, Huang P, He Z, Ding W. Synthesis of a double-hydrophilic star-block copolymer by aqueous SET-LRP and its dual-stimuli responses. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4398-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Song L, Zhang B, Jin E, Xiao C, Li G, Chen X. A reduction-sensitive thermo-responsive polymer: Synthesis, characterization, and application in controlled drug release. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.02.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Li JY, Qiu L, Xu XF, Pan CY, Hong CY, Zhang WJ. Photo-responsive camptothecin-based polymeric prodrug coated silver nanoparticles for drug release behaviour tracking via the nanomaterial surface energy transfer (NSET) effect. J Mater Chem B 2018; 6:1678-1687. [DOI: 10.1039/c7tb02998e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A photo-responsive hybrid drug delivery system for drug release behaviour tracking via the nanomaterial surface energy transfer (NSET) effect.
Collapse
Affiliation(s)
- Jiao-Yang Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China
- Hefei 230026
- China
| | - Liang Qiu
- Institute of Biophysics, Hebei University of Technology
- Tianjin 300401
- China
| | - Xiao-Fei Xu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China
- Hefei 230026
- China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China
- Hefei 230026
- China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China
- Hefei 230026
- China
| | - Wen-Jian Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China
- Hefei 230026
- China
| |
Collapse
|