1
|
Yen CY, Rana S, Awasthi K, Ohta N, Oh-E M. Characterizing the photoluminescence of fluorescein-labeled cellulose in aqueous and alcohol solutions: influence of the cellulose backbone. Sci Rep 2024; 14:26223. [PMID: 39482331 PMCID: PMC11528010 DOI: 10.1038/s41598-024-72773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/10/2024] [Indexed: 11/03/2024] Open
Abstract
Although many dyes have been introduced into cellulose, whether bound to its backbone or within a cellulose matrix, few studies have determined whether the backbone statically or dynamically quenches the photoluminescence of the dye. To advance cellulosic fluorescent films, the influence of the cellulose backbone on photoluminescence must be understood. We determined the fluorescence properties of fluorescein isothiocyanate (FITC) and fluorescein-labeled cellulose (FLC) in water and alcohol, including their quantum yields [Formula: see text], lifetimes [Formula: see text], and rates of radiative [Formula: see text] and nonradiative [Formula: see text] decay. Dissolved FLC had a ~ 30× lower [Formula: see text] than FITC, suggesting that incorporating FITC into the cellulose backbone remarkably reduces the fluorescence efficiency. The FLC solutions had a six-fold lower [Formula: see text] than their FITC counterparts but a 10-20 times higher [Formula: see text]. Presumably, this was because the cellulose backbone interacted weakly with the fluorescein moieties, suggesting a quenching mechanism that can be termed quasi-static, corresponding to static quenching between the fluorescein moieties and cellulose backbone, in addition to the fluorescence quenching caused by the intramolecular nonradiative processes of fluorescein, as observed in conventional molecules. Using the Strickler‒Berg formula, we deduced the analytical radiative decay rate constants [Formula: see text] and eventually estimated the number of very short-lived fluorescein moieties per single fluorescent fluorescein moiety, corresponding well with static quenching.
Collapse
Affiliation(s)
- Chi-Yang Yen
- Institute of Photonics Technologies, Department of Electrical Engineering, National Tsing Hua University, 101 Sec. 2 Kuang-Fu Road, Hsinchu, 300044, Taiwan
| | - Shailesh Rana
- Department of Applied Chemistry, Institute of Molecular Science, Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu, 300093, Taiwan
| | - Kamlesh Awasthi
- Department of Applied Chemistry, Institute of Molecular Science, Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu, 300093, Taiwan
| | - Nobuhiro Ohta
- Department of Applied Chemistry, Institute of Molecular Science, Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu, 300093, Taiwan.
| | - Masahito Oh-E
- Institute of Photonics Technologies, Department of Electrical Engineering, National Tsing Hua University, 101 Sec. 2 Kuang-Fu Road, Hsinchu, 300044, Taiwan.
| |
Collapse
|
2
|
Zhou Q, Wang J, Lei X, Li C, Wu Q, Sun J. Elucidation of the photoluminescence mechanism and determination of the configuration content of arabinose isomer solution by fluorescence analysis. Chem Commun (Camb) 2024; 60:12758-12761. [PMID: 39400031 DOI: 10.1039/d4cc04323e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A fluorescence method has been successfully constructed to accurately measure the D/L-Arb configuration content in optical isomers, and its application in ion detection has been expanded, which has greater sensitivity and universality than the circular dichroism (CD) method. It also promotes the study of the emission mechanism of nonconventional luminogens.
Collapse
Affiliation(s)
- Qing Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
- Zhejiang Sci-Tech University Shaoxing-Keqiao Research Institute, Cross border E-commerce Park, Huashe Street, Keqiao District, Shaoxing City, Zhejiang, 312030, China.
| | - Jun Wang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiaoping Lei
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Chuchu Li
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Qingfeng Wu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jingzhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Jiang N, Meng YJ, Zhu CY, Li KX, Li X, Xu YH, Xu JW, Bryce MR. Nonconjugated Polyurethane Derivatives with Aggregation-Induced Luminochromism for Multicolor and White Photoluminescent Films. ACS Macro Lett 2024; 13:1226-1232. [PMID: 39248726 PMCID: PMC11483944 DOI: 10.1021/acsmacrolett.4c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
A simple and effective strategy to obtain solid-state multicolor emitting materials is a particularly attractive topic. Nonconventional/nonconjugated polymers are receiving widespread attention because of their advantages of rich structural diversity, low cost, and good processability. However, it is difficult to control the molecular conformation or to obtain the crystal structure of amorphous molecules, which means it is a challenge to obtain nontraditional polymeric materials with multicolor emission. In this work, a polyurethane derivative (PUH) with red-shifted emission was synthesized by a simple one-pot polymerization reaction. By exploiting the aggregation-induced luminochromism of PUH, a series of plastic films with tunable emission from blue to orange, and white-light emission, was obtained by doping different amounts of PUH into poly(methyl methacrylate) (PMMA), thereby changing the aggregation degree of PUH. This work demonstrates the excellent promise of polyurethane derivatives for the simple fabrication of large-scale flexible luminescent films.
Collapse
Affiliation(s)
- Nan Jiang
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Ya-Jie Meng
- Ministry-of-Education
Key Laboratory of Numerical Simulation of Large-Scale Complex System
(NSLSCS) and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chang-Yi Zhu
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Ke-Xin Li
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Xin Li
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Yan-Hong Xu
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Jia-Wei Xu
- Ministry-of-Education
Key Laboratory of Numerical Simulation of Large-Scale Complex System
(NSLSCS) and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
4
|
Jiang N, Zhu CY, Li KX, Xu YH, Bryce MR. Recent Progress in Nonconventional Luminescent Macromolecules and their Applications. Macromolecules 2024; 57:5561-5577. [PMID: 38948183 PMCID: PMC11210344 DOI: 10.1021/acs.macromol.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024]
Abstract
Traditional π-conjugated luminescent macromolecules typically suffer from aggregation-caused quenching (ACQ) and high cytotoxicity, and they require complex synthetic processes. In contrast, nonconventional luminescent macromolecules (NCLMs) with nonconjugated structures possess excellent biocompatibility, ease of preparation, unique luminescence behavior, and emerging applications in optoelectronics, biology, and medicine. NCLMs are currently believed to produce inherent luminescence due to through-space conjugation of overlapping electron orbitals in solid/aggregate states. However, as experimental facts continue to exceed expectations or even overturn some previous assumptions, there is still controversy about the detailed luminous mechanism of NCLMs, and extensive studies are needed to further explore the mechanism. This Perspective highlights recent progress in NCLMs and classifies and summarizes these advances from the viewpoint of molecular design, mechanism exploration, applications, and challenges and prospects. The aim is to provide guidance and inspiration for the huge fundamental and practical potential of NCLMs.
Collapse
Affiliation(s)
- Nan Jiang
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun, 130103, China
| | - Chang-Yi Zhu
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun, 130103, China
| | - Ke-Xin Li
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun, 130103, China
| | - Yan-Hong Xu
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun, 130103, China
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| |
Collapse
|
5
|
Liu X, Chu B, Xiong Z, Liu B, Tu W, Zhang Z, Zhang H, Sun JZ, Zhang X, Tang BZ. Heteroatom-facilitated blue to near-infrared emission of nonconjugated polyesters. MATERIALS HORIZONS 2024; 11:1579-1587. [PMID: 38268396 DOI: 10.1039/d3mh01732j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Making nonconjugated polymers to emit visible light remains a formidable challenge, let alone near-infrared (NIR) light, although NIR luminophores have many advanced applications. Herein, we propose an electron-bridging strategy of using heteroatoms (O, N, and S) to achieve tunable emission from blue to NIR regions (440-800 nm) in nonconjugated polyesters. Especially, sulfur-containing polyester P4 exhibits NIR clusteroluminescence (CL) on changing either the concentration or excitation wavelength. Experimental characterization and theoretical calculation demonstrate that the introduction of heteroatoms significantly enhances the through-space interactions (TSIs) via the electron-bridging effect between heteroatoms and carbonyls. The strength of the electron-bridging effect follows the order of S > N > O, based on two synergistic effects: electronic structure and van der Waals radius of heteroatoms. This work provides a low-cost, scalable platform to produce new-generation nonconjugated luminophores with deeper insight into the photophysical mechanism.
Collapse
Affiliation(s)
- Xiong Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Centre for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Bo Chu
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Centre for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Zuping Xiong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Bin Liu
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
| | - Weihao Tu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Ziteng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Centre for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Xinghong Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Centre for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangzhou 518172, China.
| |
Collapse
|
6
|
Shi Z, Yang D, Zhou Y, Chen X, Gan L, Huang J. Micro assembly strategies for enhancing solid-state emission of cellulose nanocrystals and application in photoluminescent inks. Carbohydr Polym 2024; 324:121539. [PMID: 37985112 DOI: 10.1016/j.carbpol.2023.121539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023]
Abstract
Crystalline cellulose exhibits photoluminescent properties, making it ideal for solid-state emission through properly assembling crystal arrays. However, assembling in water or other polar solvents poses structural integrity issues. To address this, a micro-assembly method is proposed. Cellulose nanocrystals (CNCs) are organized within a sub-micrometer-sized ZIF-8 metal-organic framework and coated with TiO2. Notably, the assembly within ZIF-8 improves the CNCs' emission quantum yield to 37.8 %. The bonding between ZIF-8 and CNCs relies on electrostatic interactions and hydrogen bonds, which are sensitive to polar solvents. Yet, the sturdy coordination bonds between TiO2 and ZIF-8 enhance resistance. Solvent-resistance tests confirm that TiO2 prevents CNC assembly breakdown, resulting in only an 8.0 % drop in photoluminescent intensity in an alkaline solution after 24 h, compared to 33 % without the coating. For anti-counterfeiting purposes, TiO2@ZIF-8@CNC is combined with a polymer matrix, allowing information to be revealed under specific wavelengths using screen-printed labels.
Collapse
Affiliation(s)
- Zhenxu Shi
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Dimei Yang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan Zhou
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xinyu Chen
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Lin Gan
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Jin Huang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Gao Q, Shi M, Chen M, Hao X, Chen G, Bian J, Lü B, Ren J, Peng F. Facile Preparation of Full-Color Tunable Room Temperature Phosphorescence Cellulose via Click Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2309131. [PMID: 37967324 DOI: 10.1002/smll.202309131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Indexed: 11/17/2023]
Abstract
Sustainable long-lived room temperature phosphorescence (RTP) materials with color-tunable afterglows are attractive but rarely reported. Here, cellulose is reconstructed by directed redox to afford ample active hydroxyl groups and water-solubility; arylboronic acids with various π conjugations can be facilely anchored to reconstructed cellulose via click chemistry within 1 min in pure water, resulting in full-color tunable RTP cellulose. The rigid environment provided by the B─O covalent bonds and hydrogen bonds can stabilize the triplet excitons, thus the target cellulose displays outstanding RTP performances with the lifetime of 2.67 s, phosphorescence quantum yield of 9.37%, and absolute afterglow luminance of 348 mcd m-2 . Furthermore, due to the formation of various emissive species, the smart RTP cellulose shows excitation- and time-dependent afterglows. Taking advantages of sustainability, ultralong lifetime, and full-color tunable afterglows, et al, the environmentally friendly RTP cellulose is successfully used for nontoxic afterglow inks, delay lighting, and afterglow display.
Collapse
Affiliation(s)
- Qian Gao
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Meichao Shi
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Mingxing Chen
- Analytical Instrumentation Center of Peking University, Peking University, Beijing, 100871, China
| | - Xiang Hao
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Gegu Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jing Bian
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Baozhong Lü
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing, 100083, China
| |
Collapse
|
8
|
Peng F, Chen Y, Liu H, Chen P, Peng F, Qi H. Color-Tunable, Excitation-Dependent, and Water Stimulus-Responsive Room-Temperature Phosphorescence Cellulose for Versatile Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304032. [PMID: 37501388 DOI: 10.1002/adma.202304032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Smart-response materials with ultralong room-temperature phosphorescence (RTP) are highly desirable, but they have rarely been described, especially those originating from sustainable polymers. Herein, a variety of cellulose derivatives with 1,4-dihydropyridine (DHP) rings are synthesized through the Hantzsch reaction, giving impressive RTP with a long lifetime of up to 1251 ms. Specifically, the introduction of acetoacetyl groups and DHP rings promotes the spin-orbit coupling and intersystem crossing process; and multiple interactions between cellulose induce clustering and inhibit the nonradiative transitions, boosting long-live RTP. Furthermore, the resulting transparent and flexible cellulose films also exhibit excitation-dependent and color-tunable afterglows by introducing different extended aromatic groups. More interestingly, the RTP performance of these films is sensitive to water and can be repeated in response to wet/dry stimuli. Inspired by these advantages, the RTP cellulose demonstrates advanced applications in information encryption and anti-counterfeiting. This work not only enriches the photophysical properties of cellulose but also provides a versatile platform for the development of sustainable afterglows.
Collapse
Affiliation(s)
- Fang Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yian Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Hongchen Liu
- College of Textiles, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Pan Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
9
|
Luo X, Tian B, Zhai Y, Guo H, Liu S, Li J, Li S, James TD, Chen Z. Room-temperature phosphorescent materials derived from natural resources. Nat Rev Chem 2023; 7:800-812. [PMID: 37749285 DOI: 10.1038/s41570-023-00536-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/27/2023]
Abstract
Room-temperature phosphorescent (RTP) materials have enormous potential in many different areas. Additionally, the conversion of natural resources to RTP materials has attracted considerable attention. Owing to their inherent luminescent properties, natural materials can be efficiently converted into sustainable RTP materials. However, to date, only a few reviews have focused on this area of endeavour. Motivated by this lack of coverage, in this Review, we address this shortcoming and introduce the types of natural resource available for the preparation of RTP materials. We mainly focus on the inherent advantages of natural resources for RTP materials, strategies for activating and enhancing the RTP properties of the natural resources as well as the potential applications of these RTP materials. In addition, we discuss future challenges and opportunities in this area of research.
Collapse
Affiliation(s)
- Xiongfei Luo
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Bing Tian
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yingxiang Zhai
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Hongda Guo
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Jian Li
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Shujun Li
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, P. R. China.
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China.
| |
Collapse
|
10
|
Tang X, Jiang B, Gong Y, Jin Y, He J, Xie H, Guo S, Liu Y. Designing Nonconventional Luminescent Materials with Efficient Emission in Dilute Solutions via Modulation of Dynamic Hydrogen Bonds. Molecules 2023; 28:5240. [PMID: 37446901 DOI: 10.3390/molecules28135240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 07/15/2023] Open
Abstract
Nonconventional luminescent materials (NLMs) which do not contain traditional aromatic chromophores are of great interest due to their unique chemical structures, optical properties, and their potential applications in various areas, such as cellular imaging and chemical sensing. However, most reported NLMs show weak or no emission in dilute solutions, which severely limits their applications. In this work, dynamic hydrogen bonds were utilized to design NLMs with efficient emission in dilute solutions. To further validate the results, polymers P1 and P2 were successfully prepared and investigated. It was found that the luminescence quantum efficiency of P1 and P2 at a concentration of 0.1 mg/mL in water solution was 8.9 and 0.6%, respectively. The high efficiency can be attributed to the fact that polymer P1 has more intra- or intermolecular dynamic hydrogen bonds and other short interactions than P2 in dilute solutions, allowing P1 to achieve the through-space conjugation effect to increase the degree of system conjugation, restrict molecular motion, and decrease nonradiative transitions, which can effectively improve luminescence. In addition, polymer P2 exhibits the characteristics of clustering-triggered emission, excitation wavelength-dependent and concentration-dependent fluorescence properties, excellent photobleaching resistance, low cytotoxicity, and selective recognition of Fe3+. The present study investigates the manipulation of luminescence properties of NLMs in dilute solutions through the modulation of dynamic hydrogen bonds. This approach can serve as a semi-empirical technique for designing and building innovative NLMs in the times ahead.
Collapse
Affiliation(s)
- Xuansi Tang
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China
| | - Bingli Jiang
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yongyang Gong
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China
| | - Yuxin Jin
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Jiao He
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China
| | - Huihong Xie
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China
| | - Song Guo
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China
| | - Yuanli Liu
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
11
|
Zhang B, Wei L, Tang X, Jiang Z, Guo S, Zou L, Xie H, Gong Y, Liu Y. Preparation and Characterization of Carbazole-Based Luminogen with Efficient Emission in Solid and Solution States. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114193. [PMID: 37297328 DOI: 10.3390/ma16114193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Organic luminescent materials with high luminescence efficiency in both solution and solid states, namely dual-state emission (DSE), have attracted considerable attention due to their promising applications in various fields. In order to enrich the variety of DSE materials, carbazole, similar to triphenylamine (TPA), was utilized to construct a novel DSE luminogen named 2-(4-(9H-carbazol-9-yl)phenyl)benzo[d]thiazole (CZ-BT). CZ-BT exhibited DSE characteristics with fluorescence quantum yields of 70, 38 and 75% in solution, amorphous and crystalline states, respectively. CZ-BT shows thermochromic and mechanochromic properties in solution and solids, respectively. Theoretical calculations show that there is a small conformational difference between the ground state and the lowest singly excited state of CZ-BT and that it exhibits a low non-radiative transition characteristic. The oscillator strength during the transition from the single excited state to the ground state reaches 1.0442. CZ-BT adopts a distorted molecular conformation with intramolecular hindrance effects. The excellent DSE properties of CZ-BT can be explained well using theoretical calculations and experimental results. In terms of application, the CZ-BT has a detection limit for the hazardous substance picric acid of 2.81 × 10-7 mol/L.
Collapse
Affiliation(s)
- Beibei Zhang
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Lingzhong Wei
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xuansi Tang
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Zizhan Jiang
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Song Guo
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Linmin Zou
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Huihong Xie
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yongyang Gong
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yuanli Liu
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
12
|
Xu L, Mo Y, Su N, Shi C, Sun N, Zhang Y, Duan L, Lu ZH, Ding J. D-O-A based organic phosphors for both aggregation-induced electrophosphorescence and host-free sensitization. Nat Commun 2023; 14:1678. [PMID: 36966127 PMCID: PMC10039947 DOI: 10.1038/s41467-023-37414-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/16/2023] [Indexed: 03/27/2023] Open
Abstract
Pure organic phosphors capable of room-temperature phosphorescence show a great potential in organic light-emitting diodes, while it is limited by the big challenge to realize efficient electroluminescence under electric excitation. Herein, we develop a class of organic phosphors based on acridine as the electron donor, triazine as the electron acceptor and oxygen as the bridge between them. Benefitting from the characteristic donor-oxygen-acceptor geometry, these compounds are found to behave an exciting aggregation-induced organic room-temperature electrophosphorescence, and achieve a record-high external quantum efficiency of 15.8% for non-doped devices. Furthermore, they can sensitize multi-resonant emitters in the absence of any additional wide bandgap host, leading to an effective narrowband emission with a peak external quantum efficiency of 26.4% and a small full-width at half maximum of 26 nm. The results clearly indicate that donor-oxygen-acceptor geometry is a promising strategy to design organic phosphors suitable for organic light-emitting diodes.
Collapse
Affiliation(s)
- Lulin Xu
- School of Chemical Science and Technology, Yunnan University, 650091, Kunming, People's Republic of China
| | - Yuhang Mo
- School of Chemical Science and Technology, Yunnan University, 650091, Kunming, People's Republic of China
| | - Ning Su
- School of Chemical Science and Technology, Yunnan University, 650091, Kunming, People's Republic of China
| | - Changshen Shi
- School of Physics and Astronomy, Yunnan University, 650091, Kunming, People's Republic of China.
| | - Ning Sun
- School of Physics and Astronomy, Yunnan University, 650091, Kunming, People's Republic of China
| | - Yuewei Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, People's Republic of China.
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Zheng-Hong Lu
- School of Physics and Astronomy, Yunnan University, 650091, Kunming, People's Republic of China
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada
| | - Junqiao Ding
- School of Chemical Science and Technology, Yunnan University, 650091, Kunming, People's Republic of China.
- Southwest United Graduate School, 650092, Kunming, People's Republic of China.
| |
Collapse
|
13
|
Yan K, Wan Y, Xu F, Lu J, Yang C, Li X, Lu Z, Wang X, Wang D. Ionic crosslinking of alginate/carboxymethyl chitosan fluorescent hydrogel for bacterial detection and sterilization. Carbohydr Polym 2023; 302:120427. [PMID: 36604089 DOI: 10.1016/j.carbpol.2022.120427] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Herein, a polysaccharide-based fluorescent hydrogel with multi-responsiveness simply implemented by concurrent effects of ionic crosslinking/rehydration processes is presented. Specifically, the alginate and carboxymethyl chitosan are chosen to prepare the interpenetrating polymer matrix while a pair of metal cations has been selectively sequentially integrated to alter hydrogel mechanical and fluorescent properties. Experimental results indicate the hydrogels show tunable fluorescent emission in response to multiple cations and pH conditions, and display a reversible "ON/OFF" fluorescent response to Mn+/ethylenediaminetetraacetic acid. Moreover, this synergistic ionic crosslinking strategy is proved to be highly effective in preparing multifunctional metallohydrogels possessing robust/anisotropic mechanical properties, typical shape memory and cation/pH-responsive fluorescence performance, and a proof-of-application for bacterial detection and sterilization has also been demonstrated. Therefore, we believe this study would provide new insights into multifunctional luminescent hydrogels for advanced biomedical systems.
Collapse
Affiliation(s)
- Kun Yan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Yekai Wan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Feiyang Xu
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Jing Lu
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Chenguang Yang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Xiufang Li
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Zhentan Lu
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Xungai Wang
- School of Fashion and Textile, Hong Kong Polytechnic University, Hong Kong, China
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
14
|
Clusteroluminescence in Organic, Inorganic, and Hybrid Systems: A Review. THEOR EXP CHEM+ 2023. [DOI: 10.1007/s11237-023-09747-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
15
|
Chen F, Jin Y, Luo J, Wei L, Jiang B, Guo S, Wei C, Gong Y. Poly-L-aspartic acid based nonconventional luminescent biomacromolecules with efficient emission in dilute solutions for Al 3+ detection. Int J Biol Macromol 2023; 226:1387-1395. [PMID: 36455817 DOI: 10.1016/j.ijbiomac.2022.11.251] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Nonconventional luminescent macromolecules exhibiting bright fluorescence or phosphorescence emission at high concentrations and solid-state have attracted significant attention due to their promising application in different fields. However, most reported nonconventional luminescent macromolecules show weak or no emission in dilute solutions, limiting their large-scale applications. Herein, nonconventional luminescent biomacromolecules with hydrophobic rigid chains, hydrophilic flexibility and inter- or intra-molecular hydrogen bonding interactions were proposed to achieve effective luminescence in dilute solutions. Poly-L-aspartic acid (PASA) with a fluorescence quantum yield of 4.6 % in a dilute solution (0.8 mg/mL) was synthesized to validate this design strategy. The fluorescence intensity of PASA solution increased with the increase of the concentration, demonstrating a clustering-triggered emission (CTE) effect. Furthermore, the fluorescence intensity significantly enhanced when adding Al3+ into PASA aqueous solution via the Al3+ recognition effect. The detection limits for Al3+ (1.71 × 10-6 mol/L) meet the World Health Organization (WHO) requirements for food detection. At last, PASA solid-state samples exhibit room temperature phosphorescence emission.
Collapse
Affiliation(s)
- Feixia Chen
- College of Pharmacy, Guilin Medical University, No. 1 Zhiyuan Rd., Lingui District, Guilin 541199, China
| | - Yuxin Jin
- College of Pharmacy, Guilin Medical University, No. 1 Zhiyuan Rd., Lingui District, Guilin 541199, China
| | - Ji Luo
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, No.12 Jian'gan Rd., Qixing District, Guilin 541004, China
| | - Lingzhong Wei
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, No.12 Jian'gan Rd., Qixing District, Guilin 541004, China
| | - Bingli Jiang
- College of Pharmacy, Guilin Medical University, No. 1 Zhiyuan Rd., Lingui District, Guilin 541199, China.
| | - Song Guo
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, No.12 Jian'gan Rd., Qixing District, Guilin 541004, China
| | - Chun Wei
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, No.12 Jian'gan Rd., Qixing District, Guilin 541004, China.
| | - Yongyang Gong
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, No.12 Jian'gan Rd., Qixing District, Guilin 541004, China.
| |
Collapse
|
16
|
Zhang Q, Huang C, Zhang Y, Guo M. Water-soluble polymers with aggregation-induced emission and ultra-long room temperature phosphorescence. Polym Chem 2023. [DOI: 10.1039/d3py00138e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Achieving sky blue fluorescence emission and durable green RTP emission materials under air conditions by free radical polymerization.
Collapse
|
17
|
Synthesis and Characterization of Cellulose Diacetate-Graft-Polylactide via Solvent-Free Melt Ring-Opening Graft Copolymerization. Polymers (Basel) 2022; 15:polym15010143. [PMID: 36616493 PMCID: PMC9824652 DOI: 10.3390/polym15010143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Cellulose diacetate (CDA) and L-lactide (L-LA) were used to prepare CDA-g-PLLA with a low glass transition temperature under different process conditions. Given the high glass transition temperature (Tg) of CDA, the thermal processing performance of CDA is poor, which greatly limits its application fields. To decrease the Tg of CDA, graft copolymerization was used in this research. A CDA-g-PLLA graft copolymer was synthesized by grafting CDA with L-LA under different reaction conditions using stannous octanoate as the catalyst and variations in the grafting rate under different reaction conditions were compared. The chemical structure and crystal structure of the CDA-g-PLLA were investigated, and thermal properties were also studied. The results showed that the grafting rate was the highest at the L-LA/CDA mass ratio of 4:1 under a reaction temperature of 150 °C for 90 min, and no poly-L-lactide (PLLA) homopolymer was found among the CDA-g-PLLA graft copolymers after purification. The Tg of CDA-g-PLLA was 54.2 °C, and the initial temperature of weightlessness of CDA-g-PLLA was 218.7 °C. The regularity of the original CDA molecular chains was destroyed after grafting PLLA molecular chains. In this research, we investigated the optimal grafting conditions for CDA-g-PLLA and the CDA-g-PLLA had a low Tg, which improves the thermal processing performance of CDA and broadens its application prospects in the industry.
Collapse
|
18
|
Liu B, Chu B, Zhu L, Zhang H, Yuan WZ, Zhao Z, Wan WM, Zhang XH. Clusteroluminescence: A gauge of molecular interaction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Liu K, Han P, Yu S, Wu X, Tian Y, Liu Q, Wang J, Zhang M, Zhao C. Hydrogen-Bonding-Induced Clusteroluminescence and UCST-Type Thermoresponsiveness of Nonconjugated Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kang Liu
- Institution State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo Key Laboratory of Specialty Polymers, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Pengbo Han
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Shunfeng Yu
- Institution State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo Key Laboratory of Specialty Polymers, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xinjun Wu
- Institution State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo Key Laboratory of Specialty Polymers, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yueyi Tian
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Qianhan Liu
- Institution State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo Key Laboratory of Specialty Polymers, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jinhui Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chuanzhuang Zhao
- Institution State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo Key Laboratory of Specialty Polymers, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
20
|
Li C, Shi X, Zhang X. Clustering-Triggered Emission of EPS-605 Nanoparticles and Their Application in Biosensing. Polymers (Basel) 2022; 14:polym14194050. [PMID: 36235999 PMCID: PMC9571269 DOI: 10.3390/polym14194050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Natural carbohydrates with intrinsic luminescent properties have drawn increasing attention thanks to their fundamental importance and promising applications. To expand the range of natural nonconventional biomacromolecule luminogens and to gain deep insights into their emission mechanism, we prepared EPS-605, a naturally occurring spherical nanoparticle based on negatively charged exopolysaccharides (EPS), and studied its emission behavior. It was found that EPS-605 was highly emissive in the aggregate state, such as powder and film. Furthermore, EPS-605 aqueous solutions exhibited concentration-enhanced emission characteristics. According to fluorescence spectra and confocal images, the fluorescence phenomenon of EPS-605 was not affected by the pH value and the carbon sources. The emission behavior of EPS-605 was attributed to the clustering-triggered emission (CTE) mechanism. Moreover, EPS-605 was successfully utilized for Fe3+ detection since its fluorescence could be selectively quenched by Fe3+. It could be used to detect Fe3+ with a low limit of detection (0.06 μM) and a wide detection range from 0.05 to 250 μM. Overall, these findings not only benefit the exploitation of EPS-based nonconventional biomacromolecule luminogens, but also reveal the potential applications of EPS-605 in biosensing/bioimaging, anticounterfeiting, and encryption owing to its excellent biocompatibility, environmental friendliness, and intrinsic photoluminescence property.
Collapse
Affiliation(s)
- Chengcheng Li
- College of Light Industry and Food Engineering, Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Co-Innovation Center for Efficient Processing, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaotong Shi
- College of Light Industry and Food Engineering, Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Co-Innovation Center for Efficient Processing, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaodong Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Correspondence:
| |
Collapse
|
21
|
Fluorescence Behavior and Emission Mechanisms of Poly(ethylene succinamide) and Its Applications in Fe3+ Detection and Data Encryption. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Liu C, Bian X, Kwok RTK, Lam JWY, Han L, Tang BZ. Biological Synthesis and Process Monitoring of an Aggregation-Induced Emission Luminogen-Based Fluorescent Polymer. JACS AU 2022; 2:2162-2168. [PMID: 36186567 PMCID: PMC9516714 DOI: 10.1021/jacsau.2c00436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
As the most abundant and renewable biopolymer on earth, cellulose can be functionalized for various advanced applications by chemical modification. In addition, fluorescent polymers with aggregation-induced emission (AIE) are generally prepared using chemical approaches, and the biosynthesis of AIE-active polymers are rarely investigated. Herein, fluorescent cellulose was successfully synthesized by bacterial fermentation, where glucosamine-modified AIE luminogen was incorporated into cellulose to achieve AIE-active biopolymers. Excitingly, real-time visualization of the synthetic process was realized, which is crucial for investigating the process of bacterial fermentation. The biosynthesized cellulose exhibited better performance with uniform fluorescence distribution and high stability, compared with that prepared by physical absorption. Additionally, fluorescent mats were fabricated by electrospinning of AIE-active cellulose, demonstrating its great potential applications in flexible display and tissue engineering.
Collapse
Affiliation(s)
- Chenchen Liu
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Xuhui Bian
- College
of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Lei Han
- College
of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Guangdong
Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- School
of Science and Engineering, Shenzhen Key Laboratory of Functional
Aggregate Materials, The Chinese University
of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
23
|
Xu L, Cao J, Zhong S, Gao Y, Cui X. Sustainable aggregation-induced emission material based on pectin-l-lysine: Potential antibacterial and monitoring in food spoilage. Int J Biol Macromol 2022; 218:202-208. [PMID: 35872308 DOI: 10.1016/j.ijbiomac.2022.07.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 11/05/2022]
Abstract
The demand of smart food detection system which in detecting food spoilage is increasing. In this work, a new type of aggregation-induced emission (AIE) compound was synthesized based on pectin (P) and l-lysine (Lys). P-Lys is an AIE active compound which has the advantages of simple synthesis, easy modification and processability, it also has good water solubility and biocompatibility. Moreover, P-Lys has potential application in detecting Fe3+ (oxidation from Fe2+) and bacterial in monitoring pork spoilage. In addition, P-Lys also has spectral antibacterial properties which can prevent pork spoilage. The research results shown that P-Lys, as a new type of food testing agent has a useful future in monitoring and protecting the freshness of food.
Collapse
Affiliation(s)
- Lifeng Xu
- College of Chemistry, Jilin University, Changchun, 2699 Qianjin Street, 130012, PR China
| | - Jungang Cao
- College of Chemistry, Jilin University, Changchun, 2699 Qianjin Street, 130012, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun, 2888 Xincheng Street, 130118, PR China
| | - Yan Gao
- College of Chemistry, Jilin University, Changchun, 2699 Qianjin Street, 130012, PR China; Weihai Institute for Bionics, Jilin University, Weihai 264400, PR China
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun, 2699 Qianjin Street, 130012, PR China; Weihai Institute for Bionics, Jilin University, Weihai 264400, PR China.
| |
Collapse
|
24
|
Chu B, Zhang H, Chen K, Liu B, Yu QL, Zhang CJ, Sun J, Yang Q, Zhang XH, Tang BZ. Aliphatic Polyesters with White-Light Clusteroluminescence. J Am Chem Soc 2022; 144:15286-15294. [PMID: 35796412 DOI: 10.1021/jacs.2c05948] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Single-molecule white-light emission (SMWLE) has many advantages in practical applications; however, the fabrication of SMWLE from nonconjugated luminescent polymers, namely, clusteroluminogens (CLgens), is still a big challenge. Herein, the first example of linear nonconjugated polyesters with SMWLE is reported. Twenty-four kinds of nonconjugated aliphatic polyesters with tunable clusteroluminescence (CL) colors and efficiency were synthesized by the copolymerization of six epoxides and four anhydrides. Experimental and calculation results prove that, at the primary structure level, the balance of structural flexibility and rigidity via adjusting the side-chain length significantly enhances the efficiency of CL without wavelength change. However, altering the chemical structures of the monomer from succinic anhydride to trans-maleic anhydride (MA), cis-MA, and citraconic anhydride (CA), secondary structures of these polyesters change from helix to straight and folding sheet accompanied by gradually red-shifted CL from 460 to 570 nm due to the increase in through-space n-π* interactions, as demonstrated by the computational and experimental results. Then, pure SMWLE with CIE coordination (0.30, 0.32) based on overlapped short-wavelength and long-wavelength CL is achieved in CA-based polyesters. This work not only provides further insights into the emission mechanism of CL but also provides a new strategy to manipulate the properties of CL by regulating the hierarchical structures of CLgens.
Collapse
Affiliation(s)
- Bo Chu
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haoke Zhang
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China.,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Kailuo Chen
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bin Liu
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Qing-Lei Yu
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Cheng-Jian Zhang
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jingzhi Sun
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qing Yang
- State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Xing-Hong Zhang
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
25
|
Zhou Q, Liu M, Li C, Lu S, Lei B, Jiang J, Yin Y, Zhang Y, Shen Y. Tunable Photoluminescence Properties of Cotton Fiber With Gradually Changing Crystallinity. Front Chem 2022; 10:805252. [PMID: 35836680 PMCID: PMC9274137 DOI: 10.3389/fchem.2022.805252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 05/13/2022] [Indexed: 11/19/2022] Open
Abstract
The alkali mercerizing process of semicrystalline cotton fiber (CF) is widely used in the printing and dyeing industry. The crystallinity change in the mercerizing process has been studied and certain laws have been obtained, but there is still a certain distance between the theoretical research results and the practical applications. CF is almost composed of cellulose, combined with the photoluminescence (PL) phenomenon of cellulose; herein, the varying crystallinity is correlated with its PL behavior after being treated with different concentrations of NaOH. In line with the characteristics of nonconventional luminogens, CF enjoys excitation-dependent emission and persistent room temperature phosphorescence (p-RTP) behavior. The emission spectra of all samples under the same excitation wavelength indicate that the change of CF crystallinity has a significant impact on its fluorescence and p-RTP emission. As the concentration of NaOH increases, the varying trend of quantum efficiency (QY) is consistent with the changed crystallinity of CF. Interestingly, the lifetime of p-RTP is exactly the opposite of the crystallinity change law. Clustering-triggered emission (CTE), crystallization-Induced Phosphorescence (CIP) mechanism, and the swelling due to hydrated sodium ions can reasonably explain these interesting photophysical processes, which also can be supported by theoretical calculations. The above studies have basically clarified the inherent law between the crystalline change of CF and the PL emission behavior during the alkali treatment process, which can be used as a theoretical reference for real-time monitoring of CF crystallinity changes using the spectral method in the actual cotton mercerizing process.
Collapse
Affiliation(s)
- Qing Zhou
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Qing Zhou, ; Yifeng Shen,
| | - Man Liu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, China
| | - Chuchu Li
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, China
| | - Shijia Lu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, China
| | - Bin Lei
- Dali Silk (Zhejiang) Co., Ltd., Dali Science and Technology Park, Nanyan Provincial High-tech Development Zone, Shaoxing, China
| | - Jiantang Jiang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, China
| | - Ying Yin
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuanchao Zhang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, China
| | - Yifeng Shen
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Qing Zhou, ; Yifeng Shen,
| |
Collapse
|
26
|
Zhang X, Cheng Y, You J, Zhang J, Wang Y, Zhang J. Irreversible Humidity-Responsive Phosphorescence Materials from Cellulose for Advanced Anti-Counterfeiting and Environmental Monitoring. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16582-16591. [PMID: 35357123 DOI: 10.1021/acsami.2c00043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic phosphorescence materials have many unique advantages, such as a large Stokes shift, high signal-to-noise ratio, and no interference from background fluorescence and scattered light. But, they generally lack responsiveness. Herein, we developed a new type of biopolymer-based phosphorescence materials with excellent processability and irreversible humidity-responsiveness, via introducing the imidazolium cation to cellulose chain. In the resultant cellulose derivatives, the imidazolium cation promotes the intersystem crossing, meanwhile the cation, chloride anion, and hydroxyl group form multiple hydrogen bonding interactions and electrostatic attraction interactions, which successfully inhibit the nonradiative transitions. As a result, the ionic cellulose derivatives exhibit green phosphorescence at room temperature and can be processed into phosphorescent films, coatings, and patterns. More interestingly, their phosphorescence emission changes when the different processing solvents are used. The ionic cellulose derivatives processed with acetone have a negligible phosphorescence, while they give an irreversible humidity-responsive phosphorescence, which means that the ionic cellulose derivatives processed with acetone exhibit significantly enhanced phosphorescence once they meet water vapor. Such novel irreversible responsive phosphorescence materials have huge potential in advanced anticounterfeiting, information encryption, molecular logic gates, smart tags, and process monitoring.
Collapse
Affiliation(s)
- Xin Zhang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaohui Cheng
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingxuan You
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinming Zhang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Yirong Wang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Zhang X, Cheng Y, You J, Zhang J, Yin C, Zhang J. Ultralong phosphorescence cellulose with excellent anti-bacterial, water-resistant and ease-to-process performance. Nat Commun 2022; 13:1117. [PMID: 35236853 PMCID: PMC8891296 DOI: 10.1038/s41467-022-28759-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/04/2022] [Indexed: 01/27/2023] Open
Abstract
Herein, we present a phosphorescent cationized cellulose derivative by simply introducing ionic structures, including cyanomethylimidazolium cations and chloride anions, into cellulose chains. The imidazolium cations with the cyano group and nitrogen element promote intersystem crossing. The cyano-containing cations, chloride anions and hydroxyl groups of cellulose form multiple hydrogen bonding interactions and electrostatic attraction interactions, effectively inhibiting the non-radiative transitions. The resultant cellulose-based RTP material is easily processed into phosphorescent films, fibers, coatings and patterns by using eco-friendly aqueous solution processing strategies. Furthermore, after we construct a cross-linking structure by adding a small amount of glutaraldehyde as the cross-linking agent, the as-fabricated phosphorescent patterns exhibit excellent antibacterial properties and water resistance. Therefore, considering the outstanding biodegradability and sustainability of cellulose materials, cellulose-based easy-to-process RTP materials can act as antibacterial, water-resistant, and eco-friendly phosphorescent patterns, coatings and bulk materials, which have enormous potential in advanced anti-counterfeiting, information encryption, disposable smart labels, etc.
Collapse
Affiliation(s)
- Xin Zhang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yaohui Cheng
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jingxuan You
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jinming Zhang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100190, Beijing, China.
| | - Chunchun Yin
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jun Zhang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100190, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
28
|
Zhang X, Zhang B, Luo J, Guo S, Wei C, Gong Y. Room Temperature Phosphorescence Emission From Multi-States. Front Chem 2022; 9:810458. [PMID: 35186894 PMCID: PMC8847601 DOI: 10.3389/fchem.2021.810458] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Organic room temperature phosphorescence (RTP) materials have received considerable attention due to their fascinating photophysical properties. During the past decade, various organic luminogens exhibiting RTP emission in solid states were reported. However, the phosphorescence emission of organic compounds can hardly be observed in their solutions at room temperature. Herein, we reported two fluorene derivatives that can emit RTP in degassed organic solvents, polymer doped film, and crystalline states. Furthermore, those RTP luminogens emitted different colors with different phosphorescence lifetimes in multi-states. These results indicated that the phosphorescence performance can be adjusted flexibly in different condensed states. To our knowledge, this is the first example possessing diverse organic RTP at multi-states, including solution state.
Collapse
Affiliation(s)
| | | | | | - Song Guo
- *Correspondence: Song Guo, ; Chun Wei, ; Yongyang Gong,
| | - Chun Wei
- *Correspondence: Song Guo, ; Chun Wei, ; Yongyang Gong,
| | - Yongyang Gong
- *Correspondence: Song Guo, ; Chun Wei, ; Yongyang Gong,
| |
Collapse
|
29
|
Deng J, Jia H, Xie W, Wu H, Li J, Wang H. Nontraditional Organic/Polymeric Luminogens with Red‐Shifted Fluorescence Emissions. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Junwen Deng
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 China
| | - Haoyuan Jia
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 China
| | - Wendi Xie
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 China
| | - Hangrui Wu
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 China
| | - Jingyun Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 China
| | - Huiliang Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 China
| |
Collapse
|
30
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1450-1466. [DOI: 10.1093/jpp/rgab176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/26/2022] [Indexed: 11/12/2022]
|
31
|
Yang T, Zhou J, Shan B, Li L, Zhu C, Ma C, Gao H, Chen G, Zhang K, Wu P. Hydrated hydroxide complex dominates the AIE property of nonconjugated polymeric luminophores. Macromol Rapid Commun 2021; 43:e2100720. [PMID: 34962323 DOI: 10.1002/marc.202100720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/01/2021] [Indexed: 11/11/2022]
Abstract
Nontraditional intrinsic luminescence (NTIL) which always accompanied with aggregation-induced emission (AIE) features has received considerable attention due to their importance in the understanding of basic luminescence principle and potential practical applications. However, the rational modulation of the NTIL of nonconventional luminophores remains difficult, on account of the limited understanding of emission mechanisms. Herein, the emission colour of nonconjugated poly(methyl vinyl ether-alt-maleic anhydride) (PMVEMA) could be readily regulated from blue to red by controlling the alkalinity during the hydrolysis process. The nontraditional photoluminescence with AIE property was from the new formed p-band state, resulting from the strong overlapping of p orbitals of the clustered O atoms through space interactions. Hydrated hydroxide complexes embedded in the entangled polymer chain make big difference on the clustering of O atoms which dominates the AIE property of nonconjugated PMVEMA. These new insights into the photoluminescence mechanism of NTIL should stimulate additional experimental and theoretical studies and could benefit the molecular-level design of nontraditional chromophores for optoelectronics and other applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Taiqun Yang
- Taiqun Yang, Lei Li, Chun Zhu, Chaoqun Ma, Hui Gao, Guoqing Chen, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China.,Taiqun Yang, Jiafeng Zhou, Bingqian Shan, Kun Zhang and Peng Wu, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Laboratory of Interface and Water Science, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663, North Zhongshan Road, Shanghai, 200062, China
| | - Jiafeng Zhou
- Taiqun Yang, Jiafeng Zhou, Bingqian Shan, Kun Zhang and Peng Wu, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Laboratory of Interface and Water Science, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663, North Zhongshan Road, Shanghai, 200062, China
| | - Bingqian Shan
- Taiqun Yang, Jiafeng Zhou, Bingqian Shan, Kun Zhang and Peng Wu, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Laboratory of Interface and Water Science, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663, North Zhongshan Road, Shanghai, 200062, China
| | - Lei Li
- Taiqun Yang, Lei Li, Chun Zhu, Chaoqun Ma, Hui Gao, Guoqing Chen, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Chun Zhu
- Taiqun Yang, Lei Li, Chun Zhu, Chaoqun Ma, Hui Gao, Guoqing Chen, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Chaoqun Ma
- Taiqun Yang, Lei Li, Chun Zhu, Chaoqun Ma, Hui Gao, Guoqing Chen, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Hui Gao
- Taiqun Yang, Lei Li, Chun Zhu, Chaoqun Ma, Hui Gao, Guoqing Chen, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Guoqing Chen
- Taiqun Yang, Lei Li, Chun Zhu, Chaoqun Ma, Hui Gao, Guoqing Chen, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Kun Zhang
- Taiqun Yang, Jiafeng Zhou, Bingqian Shan, Kun Zhang and Peng Wu, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Laboratory of Interface and Water Science, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663, North Zhongshan Road, Shanghai, 200062, China
| | - Peng Wu
- Taiqun Yang, Jiafeng Zhou, Bingqian Shan, Kun Zhang and Peng Wu, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Laboratory of Interface and Water Science, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663, North Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
32
|
Du C, Cheung CS, Zheng H, Li D, Du W, Gao H, Liang G, Gao H. Bathochromic-Shifted Emissions by Postfunctionalization of Nonconjugated Polyketones. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59288-59297. [PMID: 34856800 DOI: 10.1021/acsami.1c18822] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Most nontraditional intrinsic luminescent (NTIL) polymers currently show blue fluorescence. Tuning the emission color of NTIL polymers is of fundamental importance for their applications, but it still remains a scientific challenge. Herein, we initially develop an efficient strategy for bathochromic shifting of NTIL polymers by through-space acceptor-donor charge transfer between the in chain and the side chain. A variety of functionalized polyketones (FPK-R; where R = H, Ph, Me, tBu, F, and Cl) with furan rings built into the polymer chain were prepared by the Paal-Knorr reaction. FPK-R polymers showed bright and bathochromic-shifted fluorescence compared with their counterparts. The emission color could be tuned by changing the postfunctionalization conversion and varying the styrenic monomer substituent. Experimental and theoretical investigations revealed that the color tunability originated from enhanced through-space charge transfer between the side chain phenyl and the in chain furan rings.
Collapse
Affiliation(s)
- Cheng Du
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518035, China
| | - Chi Shing Cheung
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Handou Zheng
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Donghui Li
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenbo Du
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Heng Gao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Guodong Liang
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Haiyang Gao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
33
|
Zhang H, Tang BZ. Through-Space Interactions in Clusteroluminescence. JACS AU 2021; 1:1805-1814. [PMID: 34841401 PMCID: PMC8611663 DOI: 10.1021/jacsau.1c00311] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 05/16/2023]
Abstract
Conventional π-conjugated luminophores suffer from problems such as emission quenching, biotoxicity, environmental pollution, etc. The emerging nonconjugated and nonaromatic clusteroluminogens (CLgens) are expected to overcome these stubborn drawbacks, so research of CLgens shows great significance not only for practical application but also for the construction of fundamental photophysical theories. This perspective summarizes the unusual features of CLgens in comparison to traditional chromophores, such as nonconjugated molecular structures, unmatched absorption and excitation, excitation-dependent luminescence, multiple emission peaks, and room-temperature phosphorescence. Different from the theory of through-bond conjugation in π-conjugated luminophores, through-space interactions, including through-space n···n interaction and through-space n···π interaction, are regarded as the emitting sources of nonconjugated CLgens. In addition, the formation of network clusters is proposed as an efficient strategy to improve the performance of CLgens, and their potential applications of anticounterfeiting, photoelectronic devices, and bioimaging are prospected.
Collapse
Affiliation(s)
- Haoke Zhang
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Hangzhou 311215, China
- Guangdong
Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- Shenzhen
Institute of Aggregate Science and Technology, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen 518172, China
- Center
for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute,
State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- AIE Institute, Guangzhou 510530, China
| |
Collapse
|
34
|
Tang S, Yang T, Zhao Z, Zhu T, Zhang Q, Hou W, Yuan WZ. Nonconventional luminophores: characteristics, advancements and perspectives. Chem Soc Rev 2021; 50:12616-12655. [PMID: 34610056 DOI: 10.1039/d0cs01087a] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nonconventional luminophores devoid of remarkable conjugates have attracted considerable attention due to their unique luminescence behaviors, updated luminescence mechanism of organics and promising applications in optoelectronic, biological and medical fields. Unlike classic luminogens consisting of molecular segments with greatly extended electron delocalization, these unorthodox luminophores generally possess nonconjugated structures based on subgroups such as ether (-O-), hydroxyl (-OH), halogens, carbonyl (CO), carboxyl (-COOH), cyano (CN), thioether (-S-), sulfoxide (SO), sulfone (OSO), phosphate, and aliphatic amine, as well as their grouped functionalities like amide, imide, anhydride and ureido. They can exhibit intriguing intrinsic luminescence, generally featuring concentration-enhanced emission, aggregation-induced emission, excitation-dependent luminescence and prevailing phosphorescence. Herein, we review the recent progress in exploring these nonconventional luminophores and discuss the current challenges and future perspectives. Notably, different mechanisms are reviewed and the clustering-triggered emission (CTE) mechanism is highlighted, which emphasizes the clustering of the above mentioned electron rich moieties and consequent electron delocalization along with conformation rigidification. The CTE mechanism seems widely applicable for diversified natural, synthetic and supramolecular systems.
Collapse
Affiliation(s)
- Saixing Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Tianjia Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Zihao Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Tianwen Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Qiang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Wubeiwen Hou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Wang Zhang Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| |
Collapse
|
35
|
A new acrylated monomer from macaw vegetable oil that polymerizes without external photoinitiators. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02787-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Liu P, Hadjichristidis N. Boron-Catalyzed Polymerization of Phenyl-Substituted Allylic Arsonium Ylides toward Nonconjugated Emissive Materials from C3/C1 Monomeric Units. ACS Macro Lett 2021; 10:1287-1294. [PMID: 35549048 DOI: 10.1021/acsmacrolett.1c00514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two novel allylic arsonium ylide monomers with a phenyl (steric and electronic effect) group at different positions were synthesized and used in boron-catalyzed polymerization to produce a series of well-defined polymers, poly(2-phenyl-propenylene-co-2-phenyl-propenylidene) (P2-PhAY) and poly(3-phenyl-propenylene-co-3-phenyl-propenylidene) (P3-PhAY), with unusual structures but a controllable molecular weight and relatively low polydispersity. The backbone of these polymers consists of a mixture of C1 (chain grows by one carbon atom at a time) and C3 (chain grows by three carbon atoms at a time) monomeric units, as determined by 1H, 13C, and 1H-13C HSQC 2D NMR. Based on the experimental results and density functional theoretical (DFT) calculations, we were able to propose a mechanism that takes into account not only the steric hindrance, but also the electron effect of the phenyl group. In addition, a nontraditional intrinsic luminescence was observed from the nonconjugated P2-PhAY and P3-PhAY; such unexpected emission is attributed to the formation of C3-unit clusters, as evidenced by ultraviolet-visible and fluorescence spectroscopy.
Collapse
Affiliation(s)
- Pibo Liu
- Division of Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (DICP), Dalian, Liaoning 116023, Republic of China
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| |
Collapse
|
37
|
Zhang Z, Zhang H, Kang M, Li N, Wang D, Tang BZ. Oxygen and sulfur-based pure n-electron dendrimeric systems: generation-dependent clusteroluminescence towards multicolor cell imaging and molecular ruler. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1067-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Liao P, Zang S, Wu T, Jin H, Wang W, Huang J, Tang BZ, Yan Y. Generating circularly polarized luminescence from clusterization-triggered emission using solid phase molecular self-assembly. Nat Commun 2021; 12:5496. [PMID: 34535652 PMCID: PMC8448880 DOI: 10.1038/s41467-021-25789-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
Purely-organic clusterization-triggered emission (CTE) has displayed promising abilities in bioimaging, chemical sensing, and multicolor luminescence. However, it remains absent in the field of circularly polarized luminescence (CPL) due to the difficulties in well-aligning the nonconventional luminogens. We report a case of CPL generated with CTE using the solid phase molecular self-assembly (SPMSA) of poly-L-lysine (PLL) and oleate ion (OL), that is, the macroscopic CPL supramolecular film self-assembled by the electrostatic complex of PLL/OL under mechanical pressure. Well-defined interface charge distribution, given by lamellar mesophases of OL ions, forces the PLL chains to fold regularly as a requirement of optimal electrostatic interactions. Further facilitated by hydrogen bonding, the through-space conjugation (TSC) of orderly aligned electron-rich O and N atoms leads to CTE-based CPL, which is capable of transferring energy to an acceptor via a Förster resonance energy transfer (FRET) process, making it possible to develop environmentally friendly and economic CPL from sustainable and renewable materials.
Collapse
Affiliation(s)
- Peilong Liao
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Shihao Zang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Tongyue Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hongjun Jin
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wenkai Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, 2001 Longxiang Boulevard, Longgang, Shenzhen, Guangdong, 518172, China.
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
39
|
Alarcon RT, Gaglieri C, Santos GC, Moralles AC, Morgon NH, Souza AR, Bannach G. AIE Effect by Oxygen Clustering in Vegetable Oil‐Based Polymers. ChemistrySelect 2021. [DOI: 10.1002/slct.202100889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Rafael T. Alarcon
- School of Sciences, Department of Chemistry UNESP- São Paulo State University Bauru 17033-260, SP Brazil
| | - Caroline Gaglieri
- School of Sciences, Department of Chemistry UNESP- São Paulo State University Bauru 17033-260, SP Brazil
| | - Giovanny C. Santos
- School of Sciences, Department of Chemistry UNESP- São Paulo State University Bauru 17033-260, SP Brazil
| | - Ana C. Moralles
- Institute of Chemistry Department of Physical Chemistry UNICAMP-Campinas State University Campinas SP Brazil
| | - Nelson H. Morgon
- Institute of Chemistry Department of Physical Chemistry UNICAMP-Campinas State University Campinas SP Brazil
| | - Aguinaldo R. Souza
- School of Sciences, Department of Chemistry UNESP- São Paulo State University Bauru 17033-260, SP Brazil
| | - Gilbert Bannach
- School of Sciences, Department of Chemistry UNESP- São Paulo State University Bauru 17033-260, SP Brazil
| |
Collapse
|
40
|
Jiang J, Lu S, Liu M, Li C, Zhang Y, Yu TB, Yang L, Shen Y, Zhou Q. Tunable Photoluminescence Properties of Microcrystalline Cellulose with Gradually Changing Crystallinity and Crystal Form. Macromol Rapid Commun 2021; 42:e2100321. [PMID: 34254396 DOI: 10.1002/marc.202100321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/11/2021] [Indexed: 02/01/2023]
Abstract
Nonconventional luminogens with persistent room temperature phosphoresce (p-RTP) are attracting increasing attention owing to their momentous significance and diverse technical applications in optoelectronic and biomedical. So far, the p-RTP emission of some amorphous powders or single crystals has been studied in depth. The p-RTP emission of amorphous and fully crystalline states and their emission properties are widely divergent, while the difference of their p-RTP emission mechanism is still controversial. The relevance between crystallinity change and p-RTP properties is rarely studied. Furthermore, there is almost no research on the photoluminescence (PL) property change and emission mechanism under the crystal form transformation of semi-crystalline polymer. Herein, microcrystalline cellulose (MCC) is chosen as a model compound to explore its crystallinity and the change in luminescence during the crystal form transformation to make up for this gap. By precisely adjusting the crystallinity and crystal cellulose conversion of MCC, the changing trend of quantum efficiency, and p-RTP lifetime is consistent with the change of crystallinity, and the cellulose I may be more beneficial to PL emission than cellulose II. Clustering-triggered emission mechanism can reasonably explain these interesting photophysical processes, which also can be supported by single-crystal analysis and theoretical calculations.
Collapse
Affiliation(s)
- Jiantang Jiang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018, China
| | - Shijia Lu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018, China
| | - Man Liu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018, China
| | - Chuchu Li
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018, China
| | - Yuanchao Zhang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018, China
| | - Tian Bo Yu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018, China
| | - Lei Yang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018, China
| | - Yifeng Shen
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018, China
| | - Qing Zhou
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 928 Second Avenue, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
41
|
Xu L, Cao J, Zhong S, Gao Y, Cui X. Seeking Aggregation-Induced Emission Materials in Food: Oat β-Glucan and Its Diverse Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7680-7686. [PMID: 34196548 DOI: 10.1021/acs.jafc.1c02567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the basic understanding and broad application prospects of luminescent materials, the emission mechanism of unconventional luminescent agents has been revealed gradually. Here, we report a non-conjugated biomass material, oat β-glucan (oat-β-Glu), which actually does not emit light in a dilute solution but emits significantly when forming aggregates. Inherently visible emission of oat-β-Glu from the concentrated solutions and solid state could be observed. In addition, we have observed room temperature phosphorescence in oat-β-Glu powders, which is also unusual in pure organic materials. It can be proposed that the luminescence property of oat-β-Glu originates from the spatial conjugation of the oxygen atoms of oat-β-Glu. This clustering-triggered emission mechanism may well be expanded to other unconventional biomacromolecules, inspiring the rational design of luminescent agents. Due to its good biocompatibility and intrinsic emission characteristics, oat-β-Glu has shown great potential application prospects in bioimaging and biosensors.
Collapse
Affiliation(s)
- Lifeng Xu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Jungang Cao
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Yan Gao
- College of Chemistry, Jilin University, Changchun 130012, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Weihai Institute for Bionics-Jilin University, Weihai 264400, China
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, China
- Weihai Institute for Bionics-Jilin University, Weihai 264400, China
| |
Collapse
|
42
|
Xu L, Liang X, Zhong S, Gao Y, Cui X. Seeking brightness from nature: Sustainable AIE macromolecule with clustering-triggered emission of xanthan gum and its multiple applications. Colloids Surf B Biointerfaces 2021; 206:111961. [PMID: 34224933 DOI: 10.1016/j.colsurfb.2021.111961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Unconventional biomacromolecule luminescent agents have attracted widespread attention due to the potential applications in diverse fields. In order to explore new luminescent agents and gain a comprehensive understanding of their emission mechanism, the emission behavior of xanthan gum was investigated. Xanthan gum shown obvious aggregation-induced emission (AIE) characteristics in concentration solution. Moreover, xanthan gum has shown potential values in intracellular imaging and can be used as a biosensor for detecting Fe3+ and Cu2+ in human serum.
Collapse
Affiliation(s)
- Lifeng Xu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiao Liang
- College of Life Sciences, Jilin University, Changchun, 130012, China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Yan Gao
- College of Chemistry, Jilin University, Changchun, 130012, China; Weihai Institute for Bionics-Jilin University, Weihai, 264400, China
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun, 130012, China; Weihai Institute for Bionics-Jilin University, Weihai, 264400, China.
| |
Collapse
|
43
|
Li W, Chen Z, Yu H, Li J, Liu S. Wood-Derived Carbon Materials and Light-Emitting Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000596. [PMID: 32484297 DOI: 10.1002/adma.202000596] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 06/11/2023]
Abstract
Wood is a sustainable and renewable material that naturally has a hierarchical structure. Cellulose, hemicellulose, and lignin are the three main components of wood. The unique physical and chemical properties of wood and its derivatives endow them with great potential as resources to fabricate advanced materials for use in bioengineering, flexible electronics, and clean energy. Nevertheless, comprehensive information on wood-derived carbon and light-emitting materials is scarce, although much excellent progress has been made in this area. Here, the unique characteristics of wood-derived carbon and light-emitting materials are summarized, with regard to the fabrication principles, properties, applications, challenges, and future prospects of wood-derived carbon and light-emitting materials, with the aim of deepening the understanding and inspiring new ideas in the area of advanced wood-based materials.
Collapse
Affiliation(s)
- Wei Li
- Key laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin, 150040, P. R. China
| | - Zhijun Chen
- Key laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin, 150040, P. R. China
| | - Haipeng Yu
- Key laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin, 150040, P. R. China
| | - Jian Li
- Key laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin, 150040, P. R. China
| | - Shouxin Liu
- Key laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin, 150040, P. R. China
| |
Collapse
|
44
|
Xu L, Cao J, Zhong S, Wang J, Yang Y, Gao Y, Cui X. Photoluminescence of Tilapia skin collagen: Aggregation-induced emission with clustering triggered emission mechanism and its multiple applications. Int J Biol Macromol 2021; 182:1437-1444. [PMID: 34019921 DOI: 10.1016/j.ijbiomac.2021.05.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
There is an urgent need for natural sources of aggregation-induced emission (AIE) materials which have good water solubility, biocompatibility, and can be produced in large quantities. Here, Tilapia skin collagen (Tsc) is a very abundant protein in nature, with solid-phase and solution-state fluorescence emission effect and its multiple applications was explored. Due to Tsc was in high concentration or aggregation state which shown AIE property. This obvious emission can be account for clustering-triggered emission (CTE) mechanism. The photoluminescence property of Tsc not only provide a deeper understanding of the emission characteristics of proteins, but also has important guiding significance for further elucidating the basis of fluorescence properties.
Collapse
Affiliation(s)
- Lifeng Xu
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Jungang Cao
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China
| | - Jingfei Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yongyan Yang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yan Gao
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
45
|
Liao Q, Li Q, Li Z. Substituent Effects in Organic Luminogens with Room Temperature Phosphorescence. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qiuyan Liao
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials Department of Chemistry Wuhan University Wuhan 430072 China
| | - Qianqian Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials Department of Chemistry Wuhan University Wuhan 430072 China
| | - Zhen Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials Department of Chemistry Wuhan University Wuhan 430072 China
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| |
Collapse
|
46
|
Wang J, Xu L, Zhong S, Yang Y, Feng G, Meng Q, Gao Y, Cui X. Clustering-triggered emission of poly(vinyl) alcohol. Polym Chem 2021. [DOI: 10.1039/d1py01033f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PVA can emit blue light under UV light and the mechanism of this fluorescence was studied in this paper. PVA can be added to other materials to broaden their properties. The fluorescence of PVA has great application prospects.
Collapse
Affiliation(s)
- Jingfei Wang
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Lifeng Xu
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Yongyan Yang
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Gangying Feng
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Qingye Meng
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Yan Gao
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
- Weihai Institute for Bionics-Jilin University, Weihai, 264400, P.R. China
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
- Weihai Institute for Bionics-Jilin University, Weihai, 264400, P.R. China
| |
Collapse
|
47
|
Han T, Wang X, Wang D, Tang BZ. Functional Polymer Systems with Aggregation-Induced Emission and Stimuli Responses. Top Curr Chem (Cham) 2021; 379:7. [PMID: 33428022 PMCID: PMC7797498 DOI: 10.1007/s41061-020-00321-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 12/18/2020] [Indexed: 01/31/2023]
Abstract
Functional polymer systems with stimuli responses have attracted great attention over the years due to their diverse range of applications. Such polymers are capable of altering their chemical and/or physical properties, such as chemical structures, chain conformation, solubility, shape, morphologies, and optical properties, in response to single or multiple stimuli. Among various stimuli-responsive polymers, those with aggregation-induced emission (AIE) properties possess the advantages of high sensitivity, fast response, large contrast, excellent photostability, and low background noise. The changes in fluorescence signal can be conveniently detected and monitored using portable instruments. The integration of AIE and stimuli responses into one polymer system provides a feasible and effective strategy for the development of smart polymers with high sensitivity to environmental variations. Here, we review the recent advances in the design, preparation, performance, and applications of functional synthetic polymer systems with AIE and stimuli responses. Various AIE-based polymer systems with responsiveness toward single physical or chemical stimuli as well as multiple stimuli are summarized with specific examples. The current challenges and perspectives on the future development of this research area will also be discussed at the end of this review.
Collapse
Affiliation(s)
- Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xinnan Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Ben Zhong Tang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
48
|
Du C, Chu H, Xiao Z, Zhong L, Zhou Y, Qin W, Liang G, Gao H. Alternating Vinylarene–Carbon Monoxide Copolymers: Simple and Efficient Nonconjugated Luminescent Macromolecules. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Cheng Du
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Hongling Chu
- Daqing Petrochemical Research Center of Petrochina, Daqing 163714, China
| | - Zefan Xiao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Liu Zhong
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Yusheng Zhou
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei Qin
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Guodong Liang
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Haiyang Gao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
49
|
Li X, Li M, Yang M, Xiao H, Wang L, Chen Z, Liu S, Li J, Li S, James TD. “Irregular” aggregation-induced emission luminogens. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213358] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Xu RM, Yang TT, Vidović E, Jia RN, Zhang JM, Mi QY, Zhang J. Cellulose Acetate Thermoplastics with High Modulus, Dimensional Stability and Anti-migration Properties by Using CA-g-PLA as Macromolecular Plasticizer. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2470-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|