1
|
Zheng G, Han L, Zheng B, Bian J, Zhao Y, Pan H, Wang M, Zhang H. Enhanced strength, toughness and heat resistance of poly (lactic acid) with good transparency and biodegradability by uniaxial pre-stretching. Int J Biol Macromol 2024; 278:135222. [PMID: 39256127 DOI: 10.1016/j.ijbiomac.2024.135222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/20/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Sustainable poly (lactic acid) (PLA) with excellent strength, toughness, heat resistance, transparency, and biodegradability was achieved by uniaxial pre-stretching at 70 °C. The effect of pre-stretched ratio (PSR) on the microstructure and properties of the PLA was investigated. The undrawn PLA was brittle. However, after pre-stretching, the elongation at break was increased significantly. The maximum value of 161.2 % was obtained at pre-stretching ratio (PSR) of 1.0. With the increase of PSR, the modulus and strength were improved obviously (from 1601 MPa and 60.2 MPa for undrawn PLA to 2932 MPa and 106.3 MPa for the ps-PLA at PSR =3.0). Meanwhile, the heat resistance of PLA was improved obviously with the increase of PSR. For the ps-PLA3.0, there were almost no deformation and shrink at 140 °C. Interestingly, after pre-stretching, the PLA still maintained the good transparency and biodegradability. The brittleness for undrawn PLA was attributed to the network structure of cohesional entanglements. After pre-stretching, the destruction of the network structure and formation of the orientation, mesophase and oriented nanosized crystalline phase lead to the increased the toughness, strength and heat resistance without sacrificing the transparency and biodegradability. This work provides a significant guidance for the fabrication of PLA material with excellent comprehensive performance including strength, toughness, heat resistance, transparency, and biodegradability.
Collapse
Affiliation(s)
- Gaofei Zheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Lijing Han
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Intelligent Manufacturing and Materials Engineering, Gannan University of science and technology, Ganzhou 341000, China.
| | - Bihuang Zheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Junjia Bian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yan Zhao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hongwei Pan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Mingyu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Huiliang Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Martínez-Camarena Á, Bellia F, Paz Clares M, Vecchio G, Nicolas J, García-España E. Polymeric Nanozyme with SOD Activity Capable of Inhibiting Self- and Metal-Induced α-Synuclein Aggregation. Chemistry 2024; 30:e202401331. [PMID: 38687026 DOI: 10.1002/chem.202401331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
Despite decades of research, Parkinson's disease is still an idiopathic pathology for which no cure has yet been found. This is partly explained by the multifactorial character of most neurodegenerative syndromes, whose generation involves multiple pathogenic factors. In Parkinson's disease, two of the most important ones are the aggregation of α-synuclein and oxidative stress. In this work, we address both issues by synthesizing a multifunctional nanozyme based on grafting a pyridinophane ligand that can strongly coordinate CuII, onto biodegradable PEGylated polyester nanoparticles. The resulting nanozyme exhibits remarkable superoxide dismutase activity together with the ability to inhibit the self-induced aggregation of α-synuclein into amyloid-type fibrils. Furthermore, the combination of the chelator and the polymer produces a cooperative effect whereby the resulting nanozyme can also halve CuII-induced α-synuclein aggregation.
Collapse
Affiliation(s)
- Álvaro Martínez-Camarena
- ICMol, Departament de Química Inorgànica, Universitat de València, C/Catedrático José Beltrán 2, Paterna, 46980, Spain
- Institut Galien Paris-Saclay, CNRS, Université Paris-Saclay, Orsay, 91400, France
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, Catania, 95125, Italy
- MatMoPol Research Group, Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, Madrid, 28040, Spain
| | - Francesco Bellia
- Istituto di Cristallografia, CNR, P. Gaifami 18, Catania, 95126, Italy
| | - M Paz Clares
- ICMol, Departament de Química Inorgànica, Universitat de València, C/Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, Catania, 95125, Italy
| | - Julien Nicolas
- Institut Galien Paris-Saclay, CNRS, Université Paris-Saclay, Orsay, 91400, France
| | - Enrique García-España
- ICMol, Departament de Química Inorgànica, Universitat de València, C/Catedrático José Beltrán 2, Paterna, 46980, Spain
| |
Collapse
|
3
|
Zhang Y, Wang D, Gong H, Tang H, Dong G, Wang B, Xia H. A biomechanical study of a polymer material bundled rib fracture fixator. Technol Health Care 2024; 32:4681-4694. [PMID: 39093098 PMCID: PMC11612998 DOI: 10.3233/thc-240928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/15/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Rib fractures are one of the most common blunt injuries, accounting for approximately 10% of all trauma patients and 60% of thoracic injuries. Multiple rib fractures, especially flail chest, can cause local chest wall softening due to the loss of rib support, leading to paradoxical breathing, severe pain, and a high likelihood of accompanying lung contusions. OBJECTIVE This study investigates the mechanical properties of a new polymer material rib internal fixator to provide theoretical data for its clinical use. METHODS We conducted in vitro mechanical tests on 20 fresh caudal fin sheep ribs, using different fracture models across four randomly assigned groups (five ribs per group). The fixators were assessed using non-destructive three-point bending, torsion, and unilateral compression tests, with results averaged. Additionally, finite element analysis compared stress and strain in the polymer fixators and titanium alloy rib plates during bending and torsion tests. RESULTS In vitro tests showed that the polymer fixators handled loads effectively up to a maximum without increase beyond a certain displacement. Bending and torsion tests via finite element analysis showed the polymer material sustained lower maximum equivalent stresses (84.455 MPa and 14.426 MPa) compared to titanium alloy plates (219.88 MPa and 46.47 MPa). CONCLUSION The polymer rib fixator demonstrated sufficient strength for rib fracture fixation and was superior in stress management compared to titanium alloy plates in both bending and torsion tests, supporting its potential clinical application.
Collapse
Affiliation(s)
- Yongmin Zhang
- Department of Cardiothoracic Surgery, Tianjin Hospital Affiliated to Tianjin University, Tianjin, China
| | - Dongbin Wang
- Department of Cardiothoracic Surgery, Tianjin Hospital Affiliated to Tianjin University, Tianjin, China
| | - Hao Gong
- Department of Cardiothoracic Surgery, Tianjin Hospital Affiliated to Tianjin University, Tianjin, China
| | - Haosen Tang
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Guangqi Dong
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Bin Wang
- School of Materials, Tianjin University, Tianjin, China
| | - Honggang Xia
- Department of Cardiothoracic Surgery, Tianjin Hospital Affiliated to Tianjin University, Tianjin, China
| |
Collapse
|
4
|
Schwarz DB, Patil A, Singla S, Dhinojwala A, Eagan JM. Metal-catalyzed copolymerizations of epoxides and carbon disulfide for high-refractive index low absorbance adhesives and plastics. Front Chem 2023; 11:1287528. [PMID: 38025056 PMCID: PMC10652881 DOI: 10.3389/fchem.2023.1287528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
High-refractive index plastics are useful materials due to their optical properties, ease of processing, and low-costs compared to their inorganic counterparts. Catalytic carbon disulfide (CS2) copolymerization with epoxides is one method for producing low-cost high refractive index polymers. The reaction is accompanied by an oxygen-sulfur exchange reaction which produces irregular microstructures in the repeating units. In this study, metal salen catalysts were investigated with different metal centers (Al, Cr, Co) and salen ligand electronics, sterics, backbones, and co-catalyst in the copolymerization of CS2 with propylene oxide (PO) and cyclohexene oxide (CHO). The results reveal the essential nature of Cr metal centers on reactivity and the backbone geometry on monomer selectivity. There were no significant impacts on the O-S exchange reaction when ligand design changed, however PO and CHO/CS2 copolymers yield different monothiocarbonate microstructures. Additionally, the effects of microstructure on optical and thermal properties were investigated using spectroscopic ellipsometry and calorimetry, respectively. The CHO system produced high T g plastics (93°C) with high refractive indexes (n up to 1.64), modest absorbance (κ < 0.020), and Abbe numbers of 32.2 while PO yielded low T g adhesives (T g = 9°C) with high refractive indexes (n up to 1.73), low absorbance (κ < 0.005), and low Abbe numbers (V D = 19.1).
Collapse
Affiliation(s)
| | | | | | | | - James M. Eagan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, United States
| |
Collapse
|
5
|
Chen X, Yao J, Yu J, Mi M, Xu Y, Bai H. Toward Heat-Resistant and Transparent Poly( l-lactide) by Tailoring Crystallization with an Aliphatic Amide as a Nucleating Agent. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaonan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Ju Yao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jing Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Mingmei Mi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yichen Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Hongwei Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
6
|
Chen X, Ding Y, Li Y, Li J, Sun L, Wei X, Wei J, Zhang K, Wang H, Pan L, He S, Li Y. Modification of polylactide by poly(ionic liquid)-b-polylactide copolymer and bio-based ionomers: Excellent toughness, transparency and antibacterial property. Int J Biol Macromol 2022; 221:1512-1526. [PMID: 35998852 DOI: 10.1016/j.ijbiomac.2022.08.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Polylactide (PLA) is one of the most attractive bioplastics as it can be produced from nontoxic renewable feedstock. However, its inherently poor toughness greatly limits its large-scale application. Cost-effectively toughening PLA without sacrificing its transparency remains a big challenge. We herein prepared an imidazolium-based poly(ionic liquid)-b-PLA copolymer (ILA) and ionomers as toughening agent for PLA through an integrative approach including continuous-monomer-feeding copolymerization, quaternization reaction, ion exchange and inter-ionomers blending. By blending PLA with the ILA and ionomers, we successfully obtained PLA materials with combined features including high toughness, good transparency and antibacterial properties. The effects of regulated ionomer composition and ILA compatibilizer on phase morphology, mechanical properties and transparency of the blends were systematically studied. The optimum formulation (PLA/E12/ILA 60/40/5) shows an impressive transmittance of 89-93 %, high impact strength of 45 kJ/m2 and elongation at break at 170 %, which are about 17 and 24 times that of pure PLA, respectively. More interestingly, the presence of imidazolium cation and anion groups endows the blends with attractive antibacterial properties. Ion exchange between ILA copolymer and the imidazolium-containing ionomeric system leads to a synergistic effect of compatibilization and efficient toughening, providing a new strategy for develop high performance PLA materials.
Collapse
Affiliation(s)
- Xiangjian Chen
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yingli Ding
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yang Li
- Advanced Materials Research Center, Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China
| | - Jinshan Li
- Advanced Materials Research Center, Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China
| | - Liming Sun
- Advanced Materials Research Center, Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China
| | - Xiaohui Wei
- Advanced Materials Research Center, Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China
| | - Jie Wei
- Advanced Materials Research Center, Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China
| | - Kunyu Zhang
- Advanced Materials Research Center, Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China.
| | - Hao Wang
- State Key Laboratory of Heavy Oil Processing and the Key Laboratory of Catalysis of CNPC, China University of Petroleum, Beijing 102249, China
| | - Li Pan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Shengbao He
- Advanced Materials Research Center, Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
7
|
Zhang X, Lu X, Huang D, Ding Y, Li J, Dai Z, Sun L, Li J, Wei X, Wei J, Li Y, Zhang K. Ultra-Tough Polylactide/Bromobutyl Rubber-Based Ionomer Blends via Reactive Blending Strategy. Front Chem 2022; 10:923174. [PMID: 35783218 PMCID: PMC9244537 DOI: 10.3389/fchem.2022.923174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
A series of ultra-toughened sustainable blends were prepared from poly(lactic acid) (PLA) and bromobutyl rubber-based ionomers (i-BIIRs) via reactive blending, in which dicumyl peroxide (DCP) and Joncryl®ADR-4440 (ADR) were used as reactive blending additives. The miscibility, phase morphology and mechanical property of the PLA/i-BIIRs blends were thoroughly investigated through DMA, SEM, tensile and impact tests. The influence of different ionic groups and the effects of DCP and ADR on the compatibility between the phases, phase structure and mechanical properties were analyzed. The introduction of the imidazolium-based ionic groups and the reactive agents enable the i-BIIRs play multiple roles as effective compatibilizers and toughening agents, leading to improved interfacial compatibility and high toughness of the blends. The mechanical properties test showed that the PLA/i-BIIRs blends exhibit excellent toughness: impact strength and the elongation at break of AR-OH(30)+AD reached 95 kJ/m2 and 286%, respectively. The impact fracture surface showed the large-scale plastic deformation of the PLA matrix in the blends, resulting in greatly absorbing the impact energy. The results proved that simultaneously applying reactive blend and multiple intermolecular interactions methods is an effective toughening strategy for toughening modification of the PLA blends.
Collapse
Affiliation(s)
- Xingfang Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xu Lu
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, China
| | - Dong Huang
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Yingli Ding
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Jinshan Li
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, China
| | - Zhenyu Dai
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, China
| | - Liming Sun
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, China
| | - Jin Li
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, China
| | - Xiaohui Wei
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, China
| | - Jie Wei
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, China
| | - Yang Li
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, China
- *Correspondence: Kunyu Zhang, , ; Yang Li,
| | - Kunyu Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, China
- *Correspondence: Kunyu Zhang, , ; Yang Li,
| |
Collapse
|
8
|
Transparent Fiber-Reinforced Composites Based on a Thermoset Resin Using Liquid Composite Molding (LCM) Techniques. MATERIALS 2021; 14:ma14206087. [PMID: 34683679 PMCID: PMC8538785 DOI: 10.3390/ma14206087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
In this study, optically transparent glass fiber-reinforced polymers (tGFRPs) were produced using a thermoset matrix and an E-glass fabric. In situ polymerization was combined with liquid composite molding (LCM) techniques both in a resin transfer molding (RTM) mold and a lite-RTM (L-RTM) setup between two glass plates. The RTM specimens were used for mechanical characterization while the L-RTM samples were used for transmittance measurements. Optimization in terms of the number of glass fabric layers, the overall degree of transparency of the composite, and the mechanical properties was carried out and allowed for the realization of high mechanical strength and high-transparency tGFRPs. An outstanding degree of infiltration was achieved maintaining up to 75% transmittance even when using 29 layers of E-glass fabric, corresponding to 50 v.% fiber, using an L-RTM setup. RTM specimens with 44 v.% fiber yielded a tensile strength of 435.2 ± 17.6 MPa, and an E-Modulus of 24.3 ± 0.7 GPa.
Collapse
|
9
|
Wang H, Chen X, Ding Y, Huang D, Ma Y, Pan L, Zhang K, Wang H. Combining novel polyether-based ionomers and polyethylene glycol as effective toughening agents for polylactide. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Zuo H, Chen X, Ding Y, Cui L, Fan B, Pan L, Zhang K. Novel Designed
PEG‐Dicationic Imidazolium‐Based
Ionic Liquids as Effective Plasticizers for Sustainable Polylactide. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Huijie Zuo
- School of Chemical Engineering and Technology Tianjin University Tianjin 300350 China
| | - Xiangjian Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University Tianjin 300350 China
| | - Yingli Ding
- School of Chemical Engineering and Technology Tianjin University Tianjin 300350 China
| | - Liang Cui
- Polyolefin Research Department Petrochina Petrochemical Research Institute Beijing 102206 China
| | - Baomin Fan
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing 100048 China
| | - Li Pan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University Tianjin 300350 China
| | - Kunyu Zhang
- School of Chemical Engineering and Technology Tianjin University Tianjin 300350 China
| |
Collapse
|