1
|
Xia NN, Zhang DH, Wu Q, Zhang ZP, Rong MZ, Zhang MQ. Self-passivation/self-delivery/self-healing anticorrosion polymer coating for marine applications. J Colloid Interface Sci 2025; 678:494-502. [PMID: 39214001 DOI: 10.1016/j.jcis.2024.08.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Corrosion of steel in the marine environment greatly reduces their service life. Polymeric coatings are the most popular anticorrosion technology, but seawater penetration cannot be prohibited because of the distinct stacking structure of the macromolecular chains. In this context, a novel anticorrosive hyperbranched polyurethane-based coating with dopamine (DOPA) at the terminals is prepared herein. The built-in DOPA is able to capture the iron ions released from the corroded substrate and form DOPA-Fe3+ complexation, which further cooperates with the surrounding seawater and imparts self-passivation, self-delivery and self-healing capabilities to the coating. Under the joint action of these measures, the corrosion of tinplate (serving as the steel model) is reduced to a record-low level (corrosion current = 1 × 10-9 A cm-2, corrosion rate = 1 × 10-5 mm year-1). Conceptually, the present dynamic active anticorrosion strategy greatly outperforms the traditional static passive approach, and turns the unfavorable but unavoidable seawater into a favorable factor, which paves the way for the development of long-lasting marine coatings.
Collapse
Affiliation(s)
- Nan Nan Xia
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Dao Hong Zhang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Qin Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Ze Ping Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Min Zhi Rong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ming Qiu Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
2
|
Si C, Tian X, Wang Y, Wang Z, Wang X, Lv D, Wang A, Wang F, Geng L, Zhao J, Hu R, Zhu Q. A Polyvinyl Alcohol-Tannic Acid Gel with Exceptional Mechanical Properties and Ultraviolet Resistance. Gels 2022; 8:751. [PMID: 36421573 PMCID: PMC9689605 DOI: 10.3390/gels8110751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2023] Open
Abstract
Design and preparation of gels with excellent mechanical properties has garnered wide interest at present. In this paper, preparation of polyvinyl alcohol (PVA)-tannic acid (TA) gels with exceptional properties is documented. The crystallization zone and hydrogen bonding acted as physical crosslinkages fabricated by a combination of freeze-thaw treatment and a tannic acid compound. The effect of tannic acid on mechanical properties of prepared PVA-TA gels was investigated and analyzed. When the mass fraction of PVA was 20.0 wt% and soaking time was 12 h in tannic acid aqueous solution, tensile strength and the elongation at break of PVA-TA gel reached 5.97 MPa and 1450%, respectively. This PVA-TA gel was far superior to a pure 20.0 wt% PVA hydrogel treated only with the freeze-thaw process, as well as most previously reported PVA-TA gels. The toughness of a PVA-TA gel is about 14 times that of a pure PVA gel. In addition, transparent PVA-TA gels can effectively prevent ultraviolet-light-induced degradation. This study provides a novel strategy and reference for design and preparation of high-performance gels that are promising for practical application.
Collapse
Affiliation(s)
- Chunqing Si
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xintong Tian
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Zhigang Wang
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xinfang Wang
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Dongjun Lv
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Aili Wang
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Fang Wang
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Longlong Geng
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Jing Zhao
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Ruofei Hu
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Qingzeng Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
3
|
Xu J, Zhu L, Nie Y, Li Y, Wei S, Chen X, Zhao W, Yan S. Advances and Challenges of Self-Healing Elastomers: A Mini Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5993. [PMID: 36079373 PMCID: PMC9457332 DOI: 10.3390/ma15175993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
In the last few decades, self-healing polymeric materials have been widely investigated because they can heal the damages spontaneously and thereby prolong their service lifetime. Many ingenious synthetic procedures have been developed for fabricating self-healing polymers with high performance. This mini review provides an impressive summary of the self-healing polymers with fast self-healing speed, which exhibits an irreplaceable role in many intriguing applications, such as flexible electronics. After a brief introduction to the development of self-healing polymers, we divide the development of self-healing polymers into five stages through the perspective of their research priorities at different periods. Subsequently, we elaborated the underlying healing mechanism of polymers, including the self-healing origins, the influencing factors, and direct evidence of healing at nanoscopic level. Following this, recent advance in realizing the fast self-healing speed of polymers through physical and chemical approaches is extensively overviewed. In particular, the methodology for balancing the mechanical strength and healing ability in fast self-healing elastomers is summarized. We hope that it could afford useful information for research people in promoting the further technical development of new strategies and technologies to prepare the high performance self-healing elastomers for advanced applications.
Collapse
Affiliation(s)
- Jun Xu
- School of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lei Zhu
- School of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yongjia Nie
- School of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yuan Li
- School of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Shicheng Wei
- School of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xu Chen
- School of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Wenpeng Zhao
- Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Shouke Yan
- Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
4
|
Zhao J, Li J, Zeng Q, Wang H, Yu J, Ren K, Dai Z, Zhang H, Zheng J, Hu R. A Chewing Gum Residue-Based Gel with Superior Mechanical Properties and Self-Healability for Flexible Wearable Sensor. Macromol Rapid Commun 2022; 43:e2200234. [PMID: 35483003 DOI: 10.1002/marc.202200234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/17/2022] [Indexed: 02/06/2023]
Abstract
Chewing gum residue is hard to decompose and easy to cause pollution, which is highly desirable to realize the recycling. In this paper, a chewing gum gel with enhanced mechanical properties and self-healing properties is prepared by using polyvinyl alcohol (PVA) as the backbone in chewing gum residue. The hydrogen bond and the borax ester bond are employed to construct reversible interaction to enhance the self-healing ability. The physical crosslinking is realized by further freeze-thaw treatment to improve its mechanical properties. The gel demonstrates high elongation at break of 610% and strength of 0.11 MPa, as well as excellent self-healing performance and recyclable property. In particular, the gel with a fast signal response is successfully applied as a wearable strain sensor to monitor different types of human motion. The gel as a sensor exhibits self-healing properties suggesting superior safety and stability, and displays wide linear sensitivity (the gauge factor is 0.417 and 0.170). The gel can be further served to explore temperature changes, implying the application in temperature monitoring. This study develops a novel approach for the recycle and reuse of chewing gum residue. The obtained gel may be a promising candidate for the fabrication of flexible wearable sensor. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jing Zhao
- Shandong Collegial Key Laboratory of Biotechnology and Utilization of Biological Resources, College of Life Science, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Jiahui Li
- Shandong Collegial Key Laboratory of Biotechnology and Utilization of Biological Resources, College of Life Science, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Qiangcheng Zeng
- Shandong Collegial Key Laboratory of Biotechnology and Utilization of Biological Resources, College of Life Science, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Huixin Wang
- Shandong Collegial Key Laboratory of Biotechnology and Utilization of Biological Resources, College of Life Science, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Jie Yu
- Shandong Collegial Key Laboratory of Biotechnology and Utilization of Biological Resources, College of Life Science, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Ke Ren
- Shandong Collegial Key Laboratory of Biotechnology and Utilization of Biological Resources, College of Life Science, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Zhongmin Dai
- Shandong Collegial Key Laboratory of Biotechnology and Utilization of Biological Resources, College of Life Science, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Hong Zhang
- Shandong Collegial Key Laboratory of Biotechnology and Utilization of Biological Resources, College of Life Science, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Junping Zheng
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Ruofei Hu
- Shandong Collegial Key Laboratory of Biotechnology and Utilization of Biological Resources, College of Life Science, Dezhou University, Dezhou, 253023, People's Republic of China.,Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China
| |
Collapse
|
5
|
|
6
|
Ou ZR, Peng WL, Rong MZ, Zhang MQ. Controllable Depolymerization and Recovery of Interlocked Covalent Adaptable Networks via Cascading Reactions of the Built-In Reversible Bonds. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhi Rong Ou
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Wei Li Peng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Min Zhi Rong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ming Qiu Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
7
|
Dynamic Oxime-Urethane Bonds, a Versatile Unit of High Performance Self-healing Polymers for Diverse Applications. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2625-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Xie ZH, Rong MZ, Zhang MQ. Dynamically Cross-Linked Polymeric Binder-Made Durable Silicon Anode of a Wide Operating Temperature Li-Ion Battery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28737-28748. [PMID: 34106701 DOI: 10.1021/acsami.1c01472] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The colossal volumetric expansion (up to 300%) of the silicon (Si) anode during repeated charge-discharge cycles destabilizes the electrode structure and causes a drastic drop in capacity. Here in this work, commercial poly(acrylic acid) (PAA) is cross-linked by hydroxypropyl polyrotaxane (HPR) via reversible boronic ester bonds to achieve a water-soluble polymeric binder (PAA-B-HPR) for making the Si anode of the Li-ion battery. Slidable α-cyclodextrins of modified polyrotaxane are allowed to move around when the unwanted volume variation occurs in the course of lithiation and delithiation so that the accumulated internal stress can be equalized throughout the system, while the reversible boronic ester bonds are capable of healing the damages created during manufacturing and service to maintain the electrode integrity. As a result, the Li-ion battery assembled with the Si anode comprised of the PAA-B-HPR binder possesses outstanding specific capacity and cycle stability within a wide temperature range from 25 to 55 °C. Especially, the Si@PAA-B-HPR anode exhibits a discharge specific capacity of 1056 mA h/g at 1.4 A/g after 500 cycles under a higher temperature of 55 °C, and the corresponding capacity fading rate per cycle is only 0.10%. The present work opens an avenue toward the practical application of the Si anode for Li-ion batteries.
Collapse
Affiliation(s)
- Zhen Hua Xie
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, P. R. China
| | - Min Zhi Rong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, P. R. China
| | - Ming Qiu Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, P. R. China
| |
Collapse
|
9
|
Preparation of mechanically robust and autonomous self-healable elastomer based on multiple dynamic interactions. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|