1
|
Wang Z, Chen H, Sun L, Wang X, Xu Y, Tian S, Liu X. Uncovering the potential of APOD as a biomarker in gastric cancer: A retrospective and multi-center study. Comput Struct Biotechnol J 2024; 23:1051-1064. [PMID: 38455068 PMCID: PMC10918487 DOI: 10.1016/j.csbj.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
Gastric cancer (GC) poses a significant health challenge worldwide, necessitating the identification of predictive biomarkers to improve prognosis. Dysregulated lipid metabolism is a well-recognized hallmark of tumorigenesis, prompting investigation into apolipoproteins (APOs). In this study, we focused on apolipoprotein D (APOD) following comprehensive analyses of APOs in pan-cancer. Utilizing data from the TCGA-STAD and GSE62254 cohorts, we elucidated associations between APOD expression and multiple facets of GC, including prognosis, tumor microenvironment (TME), cancer biomarkers, mutations, and immunotherapy response, and identified potential anti-GC drugs. Single-cell analyses and immunohistochemical staining confirmed APOD expression in fibroblasts within the GC microenvironment. Additionally, we independently validated the prognostic significance of APOD in the ZN-GC cohort. Our comprehensive analyses revealed that high APOD expression in GC patients was notably associated with unfavorable clinical outcomes, reduced microsatellite instability and tumor mutation burden, alterations in the TME, and diminished response to immunotherapy. These findings provide valuable insights into the potential prognostic and therapeutic implications of APOD in GC.
Collapse
Affiliation(s)
- Zisong Wang
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Hongshan Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Le Sun
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xuanyu Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Yihang Xu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Sufang Tian
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xiaoping Liu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
2
|
Park YG, Kim HD, Hyung J, Park YS, Ryu MH. Factors associated with the efficacy of first-line nivolumab plus chemotherapy in advanced gastric cancer patients with deficient mismatch repair. Gastric Cancer 2024; 27:840-849. [PMID: 38780852 DOI: 10.1007/s10120-024-01509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND We aimed to investigate clinicopathologic factors leading to different clinical outcomes in patients with deficient mismatch repair protein (d-MMR) gastric cancer (GC) treated with nivolumab plus chemotherapy (nivolumab chemotherapy). METHODS This retrospective study included 28 patients with d-MMR advanced GC treated with first-line nivolumab chemotherapy. As a control group, 68 treated with first-line chemotherapy alone were included. Clinicopathological factors, including the neutrophil-to-lymphocyte ratio (NLR) and PD-L1 combined positive score (CPS), were analyzed with regards to the efficacy outcomes. RESULTS Progression-free survival (PFS) was longer (median PFS; not reached [NR] vs. 5.2 months, hazard ratio [HR] 0.28, P < 0.001), and overall survival (OS) tended to be longer (median OS; NR vs. 17.9 months, HR 0.43, P = 0.057) in patients treated with nivolumab chemotherapy than those treated with chemotherapy. The PFS benefit of nivolumab chemotherapy over chemotherapy was pronounced in the subgroup with a lower NLR (< 3.80 [median NLR]) (HR 0.10), whereas it was less prominent in patients with a high NLR (≥ 3.80) (HR 0.58). Among patients treated with nivolumab chemotherapy, PFS was worse in patients with a higher NLR (≥ 3.80) than in those with a lower NLR (< 3.80), and survival outcomes were similar between those with PD-L1 CPS ≥ 5 and < 5. CONCLUSION Nivolumab chemotherapy was associated with better efficacy outcomes than chemotherapy alone among patients with d-MMR GC, but survival outcomes were poor even with nivolumab chemotherapy for those with a high NLR. Survival outcomes were not different according to PD-L1 CPS among d-MMR patients treated with nivolumab chemotherapy.
Collapse
Affiliation(s)
- Young-Gyu Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Division of Hematology/Oncology, Department of Internal Medicine, Konyang University Hospital, Daejeon, South Korea
| | - Hyung-Don Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jaewon Hyung
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Min-Hee Ryu
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
3
|
Kim HD, Ryu MH, Park YS, Yoo C, Kim SJ, Kang YK. Clinical and Biomarker Analysis of a Phase I/II Study of PDR001 Plus Imatinib for Advanced Treatment-Refractory Gastrointestinal Stromal Tumors. Clin Cancer Res 2024; 30:2743-2750. [PMID: 38662455 DOI: 10.1158/1078-0432.ccr-23-4065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/16/2024] [Accepted: 04/22/2024] [Indexed: 07/02/2024]
Abstract
PURPOSE In this phase Ib/II study, we aimed to evaluate the safety and efficacy of PDR001, an anti-PD1 antibody, in combination with imatinib in patients with treatment-refractory gastrointestinal stromal tumor (GIST). PATIENTS AND METHODS Patients with advanced GIST whose disease had progressed on imatinib, sunitinib, and regorafenib were enrolled. In phase Ib, the standard 3 + 3 dose escalation scheme was applied. Intravenous administration of PDR001 at 400 mg for every 4 weeks plus imatinib (300 and 400 mg daily for dose levels I and II, respectively) was given. The primary outcome for phase II was the disease control rate at 12 weeks. Exploratory biomarker analysis was performed based on PDL1 IHC, next-generation sequencing, and multiplexed IHC. RESULTS No dose-limiting toxicity was observed in the phase Ib part (n = 10), and dose level II was selected as the recommended phase II dose. In the phase II part (n = 29), there was no objective response, and the disease control rate at 12 weeks was 37.9%, not meeting the primary efficacy endpoint. For patients in phase Ib-dose level II and phase II (n = 36), the median progression-free survival (PFS) and overall survival were 2.3 and 9.5 months, respectively. The most common grade 3 to 4 adverse event was anemia. Exploratory biomarker analysis indicated that a higher CD8+ T-cell density was associated with a favorable PFS but to a limited degree. Tumor mutational burden and PDL1 were not associated with better PFS. CONCLUSIONS In patients with treatment-refractory GIST, PDR001 in combination with imatinib was generally tolerable, but it was not effective.
Collapse
Affiliation(s)
- Hyung-Don Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min-Hee Ryu
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Changhoon Yoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Joo Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yoon-Koo Kang
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Ma C, Teng Q, Shang L, Du F, Li L. Tumor mutation load better predicts the prognosis of patients treated with immune checkpoint inhibitors in upper gastrointestinal cancers: A systematic review and meta-analysis. Cancer Rep (Hoboken) 2024; 7:e1959. [PMID: 38204354 PMCID: PMC10849990 DOI: 10.1002/cnr2.1959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Tumor mutational load (TML) has emerged as a potential biomarker for multiple solid tumors. However, data on its prognostic impact on upper gastrointestinal (UGI) cancer are limited. Therefore, the aim of this systematic review and meta-analysis was to assess the prognostic value of TML for the survival of patients with UGI cancer. METHOD A comprehensive search of the PubMed, Embase, Cochrane Library, and Web of Science databases was conducted up to February 13, 2023. Eleven studies met our inclusion criteria. Hazard ratios (HRs) for progression-free survival and overall survival and their 95% confidence intervals (CIs) were calculated. Subsequently, the combined HR and its 95% CI were calculated for UGI tract cancers in the high and low TML groups. I2 statistics and p-values were used to evaluate heterogeneity. Publication bias, sensitivity, and subgroup analyses were performed to determine sources of heterogeneity. RESULTS In total, 932 patients with UGI tract cancer from 11 publications were included. The high TML group treated with immunotherapy showed significantly improved overall survival (HR = 0.68; 95% CI: 0.53, 0.86; p = .001) and progression-free survival (HR = 0.74; 95% CI: 0.58, 0.95; p = .020) compared with the low TML group. CONCLUSION Our study demonstrated that patients with UGI tumors and higher TML have a better prognosis with immunotherapy, suggesting that TML is a promising predictive biomarker for immunotherapy. REGISTRATION The study protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO Registration No: CRD42023405596).
Collapse
Affiliation(s)
- Chenghao Ma
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Qiong Teng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Fengying Du
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
5
|
Kerepesi C, Abushukair HM, Ricciuti B, Nassar AH, Adib E, Alessi JV, Pecci F, Rakaee M, Fadlullah MZH, Tőkés AM, Rodig SJ, Awad MM, Tan AC, Bakacs T, Naqash AR. Association of Baseline Tumor-Specific Neoantigens and CD8 + T-Cell Infiltration With Immune-Related Adverse Events Secondary to Immune Checkpoint Inhibitors. JCO Precis Oncol 2024; 8:e2300439. [PMID: 38330262 DOI: 10.1200/po.23.00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/12/2023] [Accepted: 11/01/2023] [Indexed: 02/10/2024] Open
Abstract
PURPOSE Recent evidence has shown that higher tumor mutational burden strongly correlates with an increased risk of immune-related adverse events (irAEs). By using an integrated multiomics approach, we further studied the association between relevant tumor immune microenvironment (TIME) features and irAEs. METHODS Leveraging the US Food and Drug Administration Adverse Event Reporting System, we extracted cases of suspected irAEs to calculate the reporting odds ratios (RORs) of irAEs for cancers treated with immune checkpoint inhibitors (ICIs). TIME features for 32 cancer types were calculated on the basis of the cancer genomic atlas cohorts and indirectly correlated with each cancer's ROR for irAEs. A separate ICI-treated cohort of non-small-cell lung cancer (NSCLC) was used to evaluate the correlation between tissue-based immune markers (CD8+, PD-1/L1+, FOXP3+, tumor-infiltrating lymphocytes [TILs]) and irAE occurrence. RESULTS The analysis of 32 cancers and 33 TIME features demonstrated a significant association between irAE RORs and the median number of base insertions and deletions (INDEL), neoantigens (r = 0.72), single-nucleotide variant neoantigens (r = 0.67), and CD8+ T-cell fraction (r = 0.51). A bivariate model using the median number of INDEL neoantigens and CD8 T-cell fraction had the highest accuracy in predicting RORs (adjusted r2 = 0.52, P = .002). Immunoprofile assessment of 156 patients with NSCLC revealed a strong trend for higher baseline median CD8+ T cells within patients' tumors who experienced any grade irAEs. Using machine learning, an expanded ICI-treated NSCLC cohort (n = 378) further showed a treatment duration-independent association of an increased proportion of high TIL (>median) in patients with irAEs (59.7% v 44%, P = .005). This was confirmed by using the Fine-Gray competing risk approach, demonstrating higher baseline TIL density (>median) associated with a higher cumulative incidence of irAEs (P = .028). CONCLUSION Our findings highlight a potential role for TIME features, specifically INDEL neoantigens and baseline-immune infiltration, in enabling optimal irAE risk stratification of patients.
Collapse
Affiliation(s)
- Csaba Kerepesi
- Institute for Computer Science and Control (SZTAKI), Hungarian Research Network (HUN-REN), Budapest, Hungary
| | | | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | - Elio Adib
- Brigham and Women's Hospital, Boston, MA
| | - Joao V Alessi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Federica Pecci
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mehrdad Rakaee
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | - Anna-Mária Tőkés
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Scott J Rodig
- ImmunoProfile, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, MA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Mark M Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Aik Choon Tan
- Departments of Oncological Sciences and Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Tibor Bakacs
- Institute for Computer Science and Control (SZTAKI), Hungarian Research Network (HUN-REN), Budapest, Hungary
| | - Abdul Rafeh Naqash
- Department of Probability, Alfred Renyi Institute of Mathematics, The Eötvös Loránd Research Network, Budapest, Hungary
- Medical Oncology/TSET Phase 1 Program, Stephenson Cancer Center @The University of Oklahoma, Oklahoma City, OK
| |
Collapse
|
6
|
Yang X, Lian B, Zhang N, Long J, Li Y, Xue J, Chen X, Wang Y, Wang Y, Xun Z, Piao M, Zhu C, Wang S, Sun H, Song Z, Lu L, Dong X, Wang A, Liu W, Pan J, Hou X, Guan M, Huo L, Shi J, Zhang H, Zhou J, Lu Z, Mao Y, Sang X, Wu L, Yang X, Wang K, Zhao H. Genomic characterization and immunotherapy for microsatellite instability-high in cholangiocarcinoma. BMC Med 2024; 22:42. [PMID: 38281914 PMCID: PMC10823746 DOI: 10.1186/s12916-024-03257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Microsatellite instability-high (MSI-H) is a unique genomic status in many cancers. However, its role in the genomic features and immunotherapy in cholangiocarcinoma (CCA) is unclear. This study aimed to systematically investigate the genomic characterization and immunotherapy efficacy of MSI-H patients with CCA. METHODS We enrolled 887 patients with CCA in this study. Tumor samples were collected for next-generation sequencing. Differences in genomic alterations between the MSI-H and microsatellite stability (MSS) groups were analyzed. We also investigated the survival of PD-1 inhibitor-based immunotherapy between two groups of 139 patients with advanced CCA. RESULTS Differential genetic alterations between the MSI-H and MSS groups included mutations in ARID1A, ACVR2A, TGFBR2, KMT2D, RNF43, and PBRM1 which were enriched in MSI-H groups. Patients with an MSI-H status have a significantly higher tumor mutation burden (TMB) (median 41.7 vs. 3.1 muts/Mb, P < 0.001) and more positive programmed death ligand 1 (PD-L1) expression (37.5% vs. 11.9%, P < 0.001) than those with an MSS status. Among patients receiving PD-1 inhibitor-based therapy, those with MSI-H had a longer median overall survival (OS, hazard ratio (HR) = 0.17, P = 0.001) and progression-free survival (PFS, HR = 0.14, P < 0.001) than patients with MSS. Integrating MSI-H and PD-L1 expression status (combined positive score ≥ 5) could distinguish the efficacy of immunotherapy. CONCLUSIONS MSI-H status was associated with a higher TMB value and more positive PD-L1 expression in CCA tumors. Moreover, in patients with advanced CCA who received PD-1 inhibitor-based immunotherapy, MSI-H and positive PD-L1 expression were associated with improved both OS and PFS. TRIAL REGISTRATION This study was registered on ClinicalTrials.gov on 07/01/2017 (NCT03892577).
Collapse
Affiliation(s)
- Xu Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Breast Surgery, Peking, Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Nan Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junyu Long
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiran Li
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingnan Xue
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangqi Chen
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunchao Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanyu Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziyu Xun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingjian Piao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenpei Zhu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanshan Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huishan Sun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | - Jie Pan
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaorong Hou
- Department of Radiotherapy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mei Guan
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Huo
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jie Shi
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haohai Zhang
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Zhenhui Lu
- Hepatobiliary and Pancreatic Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Yilei Mao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinting Sang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liqun Wu
- Liver Disease Center, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaobo Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Kai Wang
- OrigiMed Co., Ltd, Shanghai, China.
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Ke L, Li S, Huang D. The predictive value of tumor mutation burden on survival of gastric cancer patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Int Immunopharmacol 2023; 124:110986. [PMID: 37748223 DOI: 10.1016/j.intimp.2023.110986] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Tumor mutation burden (TMB) is a complement to traditional biomarkers related to the efficacy of immune checkpoint inhibitors (ICIs). The relationship between TMB and the efficacy of ICIs in gastric cancer was controversial. The systematic review and meta-analysis were conducted to investigate the predictive value of TMB on survival of gastric cancer patients treated with ICIs. METHODS We searched the databases PubMed, Embase, and Web of Science for articles, then screened eligible articles according to inclusion criteria. The effective data were extracted to calculate the pooled effects of hazard ratio (HR) for overall survival (OS) and progression-free survival (PFS), then perform publication bias, sensitivity analysis, and subgroup analysis by STATA 16.0. RESULTS The high TMB patients showed significantly longer survival than the low TMB patients (OS: HR 0.65,95% CI 0.55, 0.77, p < 0.001; PFS: HR 0.51, 95% CI 0.33, 0.77, p = 0.001). In the Asian subgroup, patients with high TMB exhibited better prognosis compared to low TMB (OS: HR 0.56, 95% CI 0.43, 0.72, p < 0.001; PFS: HR 0.45, 95% CI 0.28, 0.72, p = 0.001). In the non-Asian subgroup, the survival benefit was observed to be skewed toward patients with high TMB, but it was not statistically significant (OS:HR 0.61, 95% CI 0.32, 1.16, p = 0.133; PFS:HR 0.68, 95% CI 0.31, 1.48, p = 0.322). CONCLUSIONS This meta-analysis demonstrated that gastric cancer patients with high TMB showed significant benefits from ICIs compared to those with low TMB patients, particularly in Asian populations.
Collapse
Affiliation(s)
- Liyuan Ke
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China.
| | - Su Li
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Danxue Huang
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
8
|
Cheng Y, Bu D, Zhang Q, Sun R, Lyle S, Zhao G, Dong L, Li H, Zhao Y, Yu J, Hao X. Genomic and transcriptomic profiling indicates the prognosis significance of mutational signature for TMB-high subtype in Chinese patients with gastric cancer. J Adv Res 2023; 51:121-134. [PMID: 36351537 PMCID: PMC10491970 DOI: 10.1016/j.jare.2022.10.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Gastric cancer (GC)is the third leading cause of cancer-related deaths in China and immunotherapy emerging as a revolutionary treatment for GC recently. Tumor mutational burden (TMB) is a predictive biomarker of immunotherapy in multiple cancers. However, the prognostic significance and subtype of TMB in GC is not fully understood. OBJECTIVES This study aims to evaluate the prognostic value of TMB in Chinese GC and further classify TMB-high GC (GCTMB-H) patients combing with mutational signatures. METHODS Genomic profiling of 435 cancer-gene panel was performed using 206 GC samples from Chinese people. Actionable genetic alterations were compared across all the samples to generate actionable subtyping. The prognostic value of TMB in Chinese GC was evaluated. Mutational signatures were analyzed on TMB-H subtype to stratify the prognosis of TMB. Transcriptomic analysis was applied to compare the distributed immunocytes among different subtypes. RESULTS 88.3% (182/206) of GC samples had at least one mutation, while 45.1% (93/206) had at least one somatic copy number alteration (SCNA). 29.6% (61/206) of GC samples were TMB-H, including 13 MSI-H and 48 MSS tumors. According to distinct genetic alteration profiles of 69 actionable genes, we classified GC samples into eight molecular subtypes, including TMB-H, ERBB2 amplified, ATM mutated, BRCA2 mutated, CDKN2A/B deleted, PI3KCA mutated, KRAS mutated, and less-mutated subtype. TMB-H subtype presented a remarkable immune-activated phenotype as determined by transcriptomic analysis that was further validated in the TCGA GC cohort. GCTMB-H patients exhibited significantly better survival (P = 0.047). But Signature 1-high GCTMB-H patients had relatively worse prognosis (P = 0.0209, HR = 2.571) than Signature 1-low GCTMB-H patients from Chinese GC cohort, also validated in TCGA GC cohort, presenting highly activated carbohydrate, fatty acid or lipid metabolism. CONCLUSION The Signature 1-high GCTMB-H could be a marker of poor prognosis and is associated with metabolism disorder.
Collapse
Affiliation(s)
- Yanan Cheng
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China; National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Dechao Bu
- Research Center for Ubiquitous Computing Systems, Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Qiaoling Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China; National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Rebecca Sun
- KEW, Inc., 303 Wyman Street, Waltham, MA, USA
| | | | - Gang Zhao
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Li Dong
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China; National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Yi Zhao
- Research Center for Ubiquitous Computing Systems, Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China; National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Xishan Hao
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China; National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
9
|
Wang Z, Zhang Q, Qi C, Bai Y, Zhao F, Chen H, Li Z, Wang X, Chen M, Gong J, Peng Z, Zhang X, Cai J, Chen S, Zhao X, Shen L, Li J. Combination of AKT1 and CDH1 mutations predicts primary resistance to immunotherapy in dMMR/MSI-H gastrointestinal cancer. J Immunother Cancer 2022; 10:jitc-2022-004703. [PMID: 35705314 PMCID: PMC9204428 DOI: 10.1136/jitc-2022-004703] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Background Gastrointestinal (GI) cancer is the second most common cancer type with mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) phenotype that is expected to respond to immune-checkpoint inhibitors (ICIs). However, approximately half of the patients with dMMR/MSI-H GI cancer derive no benefit from ICIs. We sought to identify the predictors of primary resistance to ICIs in dMMR/MSI-H GI cancer. Methods Three independent cohorts were included: (1) the discovery cohort (65 patients with dMMR/MSI-H GI cancer) with ICI efficacy data and pre-ICIs tissue samples for genomic profile and tumor immune infiltration; (2) the validation cohort (22 patients with dMMR/MSI-H GI cancer) with ICI efficacy data and pre-ICIs plasma samples for genomic profile; and (3) the TCGA (The Cancer Genome Atlas) cohort not receiving ICIs (152 patients with MSI-H GI cancer) with genomic profile and survival data. Results AKT1 and CDH1 mutations were identified as independent predictors of poor progression-free survival (PFS) and primary resistance to ICIs in dMMR/MSI-H GI cancer. We combined these two genes as an immuno-oncology therapy predictor (IOpred), which could recognize 52.4% (11/21) of dMMR/MSI-H patients with primary resistance to ICIs with a positive predictive value (PPV) of 91.7% (11/12). Receiver operating characteristic analysis demonstrated IOpred with a good performance in predicting primary resistance (area under the curve 0.751). Patients with IOpred-Mut (mutant AKT1 or CDH1) GI cancer had significantly shorter PFS (HR=8.36, p<0.001) and overall survival (OS, HR=5.17, p<0.001) than IOpred-WT (wild-type for both AKT1 and CDH1) cases upon ICI treatment. The validation cohort also confirmed the correlation between IOpred-mutation and poorer prognosis (PFS, HR=4.68, p=0.004; OS, HR=15.98, p<0.001) in dMMR/MSI-H patients after ICIs. The PPV of IOpred in identifying primary resistance to ICIs was 80% (4/5) in the validation cohort. Additionally, IOpred-WT patients could be further stratified by tumor mutational burden (TMB), wherein TMB-low patients (TMB ≤26.19 mutations per megabase (Mb)) had a significantly higher primary resistance rate to ICIs (34.8% vs 6.7%, p=0.014) and poorer PFS (HR=3.46, p=0.008) and OS (HR=4.42, p=0.047) than TMB-high patients (TMB >26.19 mutations/Mb). Conclusions IOpred was identified as a powerful predictor of primary resistance to ICIs in dMMR/MSI-H GI cancer, which might serve as a promising biomarker to help guide immunotherapy decision-making.
Collapse
Affiliation(s)
- Zhenghang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qi Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Changsong Qi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuezong Bai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Feilong Zhao
- Medical Affairs, 3D Medicines Inc, Shanghai, China
| | - Hui Chen
- Medical Affairs, 3D Medicines Inc, Shanghai, China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xicheng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Mifen Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jifang Gong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhi Peng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaotian Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jinping Cai
- Medical Affairs, 3D Medicines Inc, Shanghai, China
| | - Shiqing Chen
- Medical Affairs, 3D Medicines Inc, Shanghai, China
| | | | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jian Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|