1
|
Liu S, Kong Z, Guo H, Zhang Y, Han X, Gao Y, Daigger GT, Zhang G, Li R, Liu Y, Zhang P, Song G. Performance, mechanism regulation and resource recycling of bacteria-algae symbiosis system for wastewater treatment: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125019. [PMID: 39326826 DOI: 10.1016/j.envpol.2024.125019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
The bacteria-algae synergistic wastewater treatment process not only efficiently eliminates nutrients and absorbs heavy metals, but also utilizes photosynthesis to convert light energy into chemical energy, generating valuable bioresource. The study systematically explores the formation, algal species, and regulatory strategies of the bacterial-algal symbiosis system. It provides a detailed analysis of various interaction mechanisms, with a particular focus on nutrient exchange, signal transduction, and gene transfer. Additionally, the efficacy of the system in removing nitrogen, phosphorus, and heavy metals, as well as its role in CO2 reduction and bioresource recycling, is thoroughly elaborated. Potential future research of bacteria-algae cell factory producing bioenergy production, feed or fertilizers are summarized. This paper clearly presents effective strategies for efficiently removing pollutants, reducing carbon emissions, and promoting resource recycling in the field of wastewater treatment. It also provides recommendations for further research on utilizing microbial-algal symbiotic systems to remove novel pollutants from wastewater and extract value-added products from the resulting biomass.
Collapse
Affiliation(s)
- Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China; Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Zhihui Kong
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Haoyi Guo
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yuhong Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Xiaohong Han
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yatong Gao
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Glen T Daigger
- Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Ruihua Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yuhao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Peng Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Gangfu Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Phyu K, Zhi S, Liang J, Chang CC, Liu J, Cao Y, Wang H, Zhang K. Microalgal-bacterial consortia for the treatment of livestock wastewater: Removal of pollutants, interaction mechanisms, influencing factors, and prospects for application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123864. [PMID: 38554837 DOI: 10.1016/j.envpol.2024.123864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
The livestock sector is responsible for a significant amount of wastewater globally. The microalgal-bacterial consortium (MBC) treatment has gained increasing attention as it is able to eliminate pollutants to yield value-added microalgal products. This review offers a critical discussion of the source of pollutants from livestock wastewater and the environmental impact of these pollutants. It also discusses the interactions between microalgae and bacteria in treatment systems and natural habitats in detail. The effects on MBC on the removal of various pollutants (conventional and emerging) are highlighted, focusing specifically on analysis of the removal mechanisms. Notably, the various influencing factors are classified into internal, external, and operating factors, and the mutual feedback relationships between them and the target (removal efficiency and biomass) have been thoroughly analysed. Finally, a wastewater recycling treatment model based on MBC is proposed for the construction of a green livestock farm, and the application value of various microalgal products has been analysed. The overall aim was to indicate that the use of MBC can provide cost-effective and eco-friendly approaches for the treatment of livestock wastewater, thereby advancing the path toward a promising microalgal-bacterial-based technology.
Collapse
Affiliation(s)
- KhinKhin Phyu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China.
| | - Suli Zhi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Key Laboratory of Low-Carbon Green Agriculture, North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| | - Junfeng Liang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Key Laboratory of Low-Carbon Green Agriculture, North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| | - Chein-Chi Chang
- Washington D.C. Water and Sewer Authority, Ellicott City, MD, 21042, USA.
| | - Jiahua Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China.
| | - Yuang Cao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China.
| | - Han Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China.
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Key Laboratory of Low-Carbon Green Agriculture, North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
3
|
Dai C, Wang F. Potential applications of microalgae-bacteria consortia in wastewater treatment and biorefinery. BIORESOURCE TECHNOLOGY 2024; 393:130019. [PMID: 38000638 DOI: 10.1016/j.biortech.2023.130019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
The use of microalgae-bacteria consortia (MBC) for wastewater treatment has garnered attention as their interactions impart greater environmental adaptability and stability compared with that obtained by only microalgae or bacteria use, thereby improving the efficiency of pollutant removal and bio-product productivity. Additionally, the value-added bio-products produced via biorefineries can improve economic competitiveness and environmental sustainability. Therefore, this review focuses on the interaction between microalgae and bacteria that leads to nutrient exchange, gene transfer and signal transduction to comprehensively understand the interaction mechanisms underlying their strong adaptability. In addition, it includes recent research in which MBC has been efficiently used to treat various wastewater. Moreover, the review summarizes the use of MBC-produced biomass in a biorefining context to produce biofuel, biomaterial, high-value bio-products and bio-fertilizer. Overall, more effort is needed to identify the symbiotic mechanism in MBC to provide a foundation for circular bio-economy and environmentally friendly development programmes.
Collapse
Affiliation(s)
- Chenming Dai
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Feifei Wang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
4
|
Vale F, Sousa CA, Sousa H, Simões LC, McBain AJ, Simões M. Bacteria and microalgae associations in periphyton-mechanisms and biotechnological opportunities. FEMS Microbiol Rev 2023; 47:fuad047. [PMID: 37586879 DOI: 10.1093/femsre/fuad047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023] Open
Abstract
Phototrophic and heterotrophic microorganisms coexist in complex and dynamic structures called periphyton. These structures shape the biogeochemistry and biodiversity of aquatic ecosystems. In particular, microalgae-bacteria interactions are a prominent focus of study by microbial ecologists and can provide biotechnological opportunities for numerous applications (i.e. microalgal bloom control, aquaculture, biorefinery, and wastewater bioremediation). In this review, we analyze the species dynamics (i.e. periphyton formation and factors determining the prevalence of one species over another), coexisting communities, exchange of resources, and communication mechanisms of periphytic microalgae and bacteria. We extend periphyton mathematical modelling as a tool to comprehend complex interactions. This review is expected to boost the applicability of microalgae-bacteria consortia, by drawing out knowledge from natural periphyton.
Collapse
Affiliation(s)
- Francisca Vale
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cátia A Sousa
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Henrique Sousa
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Lúcia C Simões
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory in Biotechnology, Bioengineering and Microelectromechanical Systems, Braga/Guimarães, Portugal
| | - Andrew J McBain
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Manuel Simões
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
5
|
Collao J, García-Encina PA, Blanco S, Bolado-Rodríguez S, Fernandez-Gonzalez N. Current Concentrations of Zn, Cu, and As in Piggery Wastewater Compromise Nutrient Removals in Microalgae–Bacteria Photobioreactors Due to Altered Microbial Communities. BIOLOGY 2022; 11:biology11081176. [PMID: 36009803 PMCID: PMC9405037 DOI: 10.3390/biology11081176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 01/04/2023]
Abstract
Simple Summary Photobioreactor systems based on consortia of microalgae and bacteria are a promising, efficient and sustainable alternative for treatment of wastewaters with high nitrogen content, such as piggery wastewater. In these biological systems, microorganisms play a key role in wastewater treatment by degradation of organic matter and accumulation of nutrients into the generated biomass. However, these wastewaters often contain high concentrations of zinc, copper and arsenic, which can severely affect the activity and growth of microorganisms, and so, the wastewater treatment performance. This article studies the effect of high concentrations of zinc, copper and arsenic on microbial communities, specifically microalgae and bacteria, in photobioreactors treating piggery wastewater, with the aim of elucidating their impact on wastewater treatment performance. For this purpose, the growth of microalgae and the composition and structure of bacterial communities exposed to these pollutants were studied. The performance of the reactors was also evaluated by determining the removal of nutrients, zinc, copper and arsenic. The results showed that high concentrations of zinc, copper and arsenic in piggery wastewater significantly affect the microbiome of the reactors without recovery after exposure to these contaminants, resulting in poorer performance of the reactors and compromising the environmental and health impact of treated effluents. Abstract The treatment of pig manure is a major environmental issue, and photobioreactors containing consortia of microalgae and bacteria have proven to be a promising and sustainable treatment alternative. This work studies the effect of Cu, Zn and As, three toxic elements frequently present in piggery wastewater, on the performance and microbiome of photobioreactors. After dopage with Zn (100 mg/L), Cu (100 mg/L), and As (500 µg/L), the high biomass uptake of Zn (69–81%) and Cu (81–83%) decreased the carbon removal in the photobioreactors, inhibited the growth of Chlorella sp., and affected heterotrophic bacterial populations. The biomass As uptake result was low (19%) and actually promoted microalgae growth. The presence of Cu and As decreased nitrogen removal, reducing the abundance of denitrifying bacterial populations. The results showed that metal(loid)s significantly affected 24 bacterial genera and that they did not recover after exposure. Therefore, this study makes an important contribution on the impact of the presence of metal(loid)s in piggery wastewater that compromises the overall performance of PBRs, and so, the environmental and health impact of treated effluents.
Collapse
Affiliation(s)
- Javiera Collao
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Pedro Antonio García-Encina
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Saúl Blanco
- Department of Biodiversity and Environmental Management, University of León, 24071 León, Spain
| | - Silvia Bolado-Rodríguez
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Correspondence: ; Tel.: +34-983423958
| | - Nuria Fernandez-Gonzalez
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Systems Biology, Spanish Center for Biotechnology, CSIC, C/Darwin n°3, 28049 Madrid, Spain
| |
Collapse
|
6
|
Mirza SS, Al-Ansari MM, Ali M, Aslam S, Akmal M, Al-Humaid L, Hussain A. Towards sustainable wastewater treatment: Influence of iron, zinc and aluminum as anode in combination with salt bridge on microbial fuel cell performance. ENVIRONMENTAL RESEARCH 2022; 209:112781. [PMID: 35085564 DOI: 10.1016/j.envres.2022.112781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Microbial fuel cell (MFC) is a green technology and does not harm the environment. It can be used for wastewater treatment, hydrogen production and power generation. There are lot of avenues need to be investigated to increase the efficiency of MFC and in order to make it acceptable publicly. Efficiency of MFC depends on many factors. In this study, the influence of anode materials (Fe, Al and Zn), their sizes (12, 16 and 20 cm2) and shapes (square, rectangular and circular) were investigated on MFC efficiency. Dual chamber MFC setup was prepared in which Rhodobacter capsulatus was used as biocatalytic agent. Results revealed that Zn anode gave the highest voltage of 1.57 V with corresponding 0.23 A of current. Size of 20 cm2 of anode gave maximum voltage of 1.66 V with corresponding value of 0.08 A current, while anode size of 16 cm2 gave maximum current of 0.75 A with corresponding voltage of 1.65 V. Regarding their studied shapes, circular shape of anode gave the highest voltages of 1.70 V. Salt bridge played an important role in internal resistance of the fuel cell. The results were checked by changing the diameter and length of the salt bridge. The best results were noticed with 16 cm2 circular Zn anode and Fe as cathode. Salt bridge with 7.5 cm length gave the highest voltage of 1.65 V, while 4 gauge diameter salt bridge gave the highest current of 0.85 A.
Collapse
Affiliation(s)
- Saima Shahzad Mirza
- Microbiology Laboratory, Department of Zoology, University of Education, Lahore, Pakistan
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mudassar Ali
- Microbiology Laboratory, Department of Zoology, University of Education, Lahore, Pakistan
| | - Sumaira Aslam
- Department of Zoology, Government College Women University, Faisalabad, Pakistan
| | - Muhammad Akmal
- Department of Applied Biological Science, Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Japan
| | - Latifah Al-Humaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ali Hussain
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| |
Collapse
|
7
|
Sirohi R, Joun J, Lee JY, Yu BS, Sim SJ. Waste mitigation and resource recovery from food industry wastewater employing microalgae-bacterial consortium. BIORESOURCE TECHNOLOGY 2022; 352:127129. [PMID: 35398537 DOI: 10.1016/j.biortech.2022.127129] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Wastewater generated by the food industry is rich in nitrogen and phosphorus with possible presence of heavy metals. Physical and chemical methods of treatment, although effective, are expensive and may cause secondary environmental pollution damaging aquatic and human life. Traditional biological methods are eco-friendly and cost-effective but involve standalone microorganisms that pose risk of contamination and are not as effective. This review discusses the application of novel microalgal-bacterial consortium as a solution for the resource recovery and treatment of dairy, starch and aquaculture wastewater. Use of biofilm reactors containing anaerobic and aerobic sludge has shown 80-90% and > 90% COD and nutrient removal efficiency in treatment of dairy and starch processing wastewater, respectively. The treatment of aquaculture processing wastewater can be challenging due to high sality and requires salt-tolerant bacteria-microalgae consortium. In this regard, the identification of dominant microalgae and bacteria using 16S rRNA and 18S rRNA genes is recommended.
Collapse
Affiliation(s)
- Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jaemin Joun
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ji Young Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Byung Sun Yu
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
8
|
Ghaffar I, Javid A, Mehmood S, Hussain A. Uptake of Cu 2+ by unicellular microalga Chlorella vulgaris from synthetic wastewaters is attenuated by polystyrene microspheres. CHEMOSPHERE 2022; 290:133333. [PMID: 34922953 DOI: 10.1016/j.chemosphere.2021.133333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Aquatic and terrestrial ecosystems are receiving micro- and macro-plastic pollutants alarmingly from various anthropogenic activities. The complications caused by microplastics are largely unexplored and need substantial studies. In the current study, we investigated the repressive effects of negatively and positively charged polystyrene microspheres of two variable sizes (0.05 and 0.5 μm) on functioning of unicellular green microalgae. For the purpose, a pollution-resistant microalgal species was isolated and identified by 18 S rRNA gene sequencing as Chlorella vulgaris. The functioning of the pure-cultured microalgal cells was then assessed in terms of their better metal (Cu2+) uptake potential with and without the provision of PS microspheres. The algal cells up took Cu2+ significantly (90% at 75 mg/L) after 15 days of aerobic incubation. However, positively charged polystyrene microspheres remarkably affected the uptake of Cu2+ and it was comparatively reduced to almost 50%, while negatively charged microspheres couldn't influence the Cu2+ uptake potential of C. vulgaris. In addition, size of the microspheres insignificantly affected the metal uptake potential of the microalgae. Unveiled facts of this investigation will be helpful for designing economical and efficient remedial systems based on the in-situ implication of microalgae.
Collapse
Affiliation(s)
- Imania Ghaffar
- Applied and Environmental Microbiology Laboratory, Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Arshad Javid
- Applied and Environmental Microbiology Laboratory, Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Shahid Mehmood
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ali Hussain
- Applied and Environmental Microbiology Laboratory, Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| |
Collapse
|
9
|
Yu Q, Li P, Li B, Zhang C, Zhang C, Ge Y. Effects of algal-bacterial ratio on the growth and cadmium accumulation of Chlorella salina-Bacillus subtilis consortia. J Basic Microbiol 2021; 62:518-529. [PMID: 34486742 DOI: 10.1002/jobm.202100314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/21/2021] [Indexed: 01/23/2023]
Abstract
Algae-bacteria consortia have been proven effective in the removal of metal pollutants, but the effects of algal-bacterial ratio in the metal accumulation and resistance by this symbiotic system have not been systematically investigated. In this study, we set up consortia with various ratios of Chlorella salina-Bacillus subtilis, determined their growth, Cd accumulation, levels of intracellular glutathione (GSH), extracellular polysaccharide, phosphorus (P) in the culture medium, and functional groups of consortia after Cd treatments (0.1, 0.5, 1 mg L-1 ) for 7 days. With the addition of B. subtilis in the C. salina culture, the dry weight and specific growth rate of the consortia significantly increased compared with C. salina alone, reaching 68.33 mg and 0.382 (mg L-1 ) d-1 respectively at the 1:4 algal-bacterial ratio with 1 mg L-1 Cd treatment. Maximum Cd removal (51.66%) was also observed upon the same Cd exposure and algal-bacterial ratio. Cadmium was mostly taken up into cells at 1 mg L-1 Cd whereas its adsorption dominated the accumulation when Cd was 0.1 and 0.5 mg L-1 . The amounts of extracellular polysaccharides, GSH, and P of the symbiotic system were also increased by the bacterial addition. Besides, Fouriertransform infrared (FTIR) spectroscopy analysis showed that functional groups like N-H, O-H, and P-O-C were involved in the Cd complexation. Taken together, a higher bacterial ratio promoted the Cd accumulation and detoxification by the C. salina-B. subtilis consortia through intra- and extracellular processes.
Collapse
Affiliation(s)
- Qingnan Yu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Peihuan Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Benwei Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Chen Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Chunhua Zhang
- Demonstration Laboratory of Element and Life Science Research, Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Ying Ge
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Yong JJJY, Chew KW, Khoo KS, Show PL, Chang JS. Prospects and development of algal-bacterial biotechnology in environmental management and protection. Biotechnol Adv 2020; 47:107684. [PMID: 33387639 DOI: 10.1016/j.biotechadv.2020.107684] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/24/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022]
Abstract
The coexistence of algae and bacteria in nature dates back to the very early stages when life came into existence. The interaction between algae and bacteria plays an important role in the planet ecology, cycling nutrients, and feeding higher trophic levels, and have been evolving ever since. The emerging concept of algal-bacterial consortia is gaining attention, much towards environmental management and protection. Studies have shown that algal-bacterial synergy does not only promote carbon capture in wastewater bioremediation but also consequently produces biofuels from algal-bacterial biomass. This review has evaluated the optimistic prospects of algal-bacterial consortia in environmental remediation, biorefinery, carbon sequestration as well as its contribution to the production of high-value compounds. In addition, algal-bacterial consortia offer great potential in bloom control, dye removal, agricultural biofertilizers, and bioplastics production. This work also emphasizes the advancement of algal-bacterial biotechnology in environmental management through the incorporation of Industry Revolution 4.0 technologies. The challenges include its pathway to greener industry, competition with other food additive sources, societal acceptance, cost feasibility, environmental trade-off, safety and compatibility. Thus, there is a need for further in-depth research to ensure the environmental sustainability and feasibility of algal-bacterial consortia to meet numerous current and future needs of society in the long run.
Collapse
Affiliation(s)
- Jasmine Jill Jia Yi Yong
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
11
|
Orizola J, Ríos-Silva M, Muñoz-Villagrán C, Vargas E, Vásquez C, Arenas F. In vitro biosynthesis of Ag, Au and Te-containing nanostructures by Exiguobacterium cell-free extracts. BMC Biotechnol 2020; 20:29. [PMID: 32471409 PMCID: PMC7260758 DOI: 10.1186/s12896-020-00625-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/21/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The bacterial genus Exiguobacterium includes several species that inhabit environments with a wide range of temperature, salinity, and pH. This is why the microorganisms from this genus are known generically as polyextremophiles. Several environmental isolates have been explored and characterized for enzyme production as well as for bioremediation purposes. In this line, toxic metal(loid) reduction by these microorganisms represents an approach to decontaminate soluble metal ions via their transformation into less toxic, insoluble derivatives. Microbial-mediated metal(loid) reduction frequently results in the synthesis of nanoscale structures-nanostructures (NS) -. Thus, microorganisms could be used as an ecofriendly way to get NS. RESULTS We analyzed the tolerance of Exiguobacterium acetylicum MF03, E. aurantiacum MF06, and E. profundum MF08 to Silver (I), gold (III), and tellurium (IV) compounds. Specifically, we explored the ability of cell-free extracts from these bacteria to reduce these toxicants and synthesize NS in vitro, both in the presence or absence of oxygen. All isolates exhibited higher tolerance to these toxicants in anaerobiosis. While in the absence of oxygen they showed high tellurite- and silver-reducing activity at pH 9.0, whereas AuCl4- which was reduced at pH 7.0 in both conditions. Given these results, cell-free extracts were used to synthesize NS containing silver, gold or tellurium, characterizing their size, morphology and chemical composition. Silver and tellurium NS exhibited smaller size under anaerobiosis and their morphology was circular (silver NS), starred (tellurium NS) or amorphous (gold NS). CONCLUSIONS This nanostructure-synthesizing ability makes these isolates interesting candidates to get NS with biotechnological potential.
Collapse
Affiliation(s)
- Javier Orizola
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Mirtha Ríos-Silva
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Departamento de Ciencias Nucleares, Comisión Chilena de Energía Nuclear, Santiago, Chile
| | - Claudia Muñoz-Villagrán
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Esteban Vargas
- Center for the Development of Nanoscience and Nanotechnology, Santiago, Chile
| | - Claudio Vásquez
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Arenas
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
12
|
Shahid A, Malik S, Zhu H, Xu J, Nawaz MZ, Nawaz S, Asraful Alam M, Mehmood MA. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135303. [PMID: 31818584 DOI: 10.1016/j.scitotenv.2019.135303] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Water shortage is one of the leading global problems along with the depletion of energy resources and environmental deterioration. Recent industrialization, global mobility, and increasing population have adversely affected the freshwater resources. The wastewater sources are categorized as domestic, agricultural and industrial effluents and their disposal into water bodies poses a harmful impact on human and animal health due to the presence of higher amounts of nitrogen, phosphorus, sulfur, heavy metals and other organic/inorganic pollutants. Several conventional treatment methods have been employed, but none of those can be termed as a universal method due to their high cost, less efficiency, and non-environment friendly nature. Alternatively, wastewater treatment using microalgae (phycoremediation) offers several advantages over chemical-based treatment methods. Microalgae cultivation using wastewater offers the highest atmospheric carbon fixation rate (1.83 kg CO2/kg of biomass) and fastest biomass productivity (40-50% higher than terrestrial crops) among all terrestrial bio-remediators with concomitant pollutant removal (80-100%). Moreover, the algal biomass may contain high-value metabolites including omega-3-fatty acids, pigments, amino acids, and high sugar content. Hence, after extraction of high-value compounds, residual biomass can be either directly converted to energy through thermochemical transformation or can be used to produce biofuels through biological fermentation or transesterification. This review highlights the recent advances in microalgal biotechnology to establish a biorefinery approach to treat wastewater. The articulation of wastewater treatment facilities with microalgal biorefinery, the use of microalgal consortia, the possible merits, and demerits of phycoremediation are also discussed. The impact of wastewater-derived nutrient stress and its exploitation to modify the algal metabolite content in view of future concerns of cost-benefit ratios of algal biorefineries is also highlighted.
Collapse
Affiliation(s)
- Ayesha Shahid
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sana Malik
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Hui Zhu
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, People's Republic of China
| | - Jianren Xu
- College of Bioscience and Engineering, North Minzu University, Yinchuan 750021, Ningxia, China
| | - Muhammad Zohaib Nawaz
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Department of Computer Science, The University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Muhammad Aamer Mehmood
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, People's Republic of China; Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| |
Collapse
|