1
|
Okamura Y, Suemitsu M, Ishikawa T, Takahashi H. Nonribosomal Peptide Synthetase Specific Genome Amplification Using Rolling Circle Amplification for Targeted Gene Sequencing. Int J Mol Sci 2024; 25:5089. [PMID: 38791129 PMCID: PMC11121399 DOI: 10.3390/ijms25105089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Next-generation sequencing has transformed the acquisition of vast amounts of genomic information, including the rapid identification of target gene sequences in metagenomic databases. However, dominant species can sometimes hinder the detection of rare bacterial species. Therefore, a highly sensitive amplification technique that can selectively amplify bacterial genomes containing target genes of interest was developed in this study. The rolling circle amplification (RCA) method can initiate amplification from a single locus using a specific single primer to amplify a specific whole genome. A mixed cell suspension was prepared using Pseudomonas fluorescens ATCC17400 (targeting nonribosomal peptide synthetase [NRPS]) and Escherichia coli (non-target), and a specific primer designed for the NRPS was used for the RCA reaction. The resulting RCA product (RCP) amplified only the Pseudomonas genome. The NRPS was successfully amplified using RCP as a template from even five cells, indicating that the single-priming RCA technique can specifically enrich the target genome using gene-specific primers. Ultimately, this specific genome RCA technique was applied to metagenomes extracted from sponge-associated bacteria, and NRPS sequences were successfully obtained from an unknown sponge-associated bacterium. Therefore, this method could be effective for accessing species-specific sequences of NRPS in unknown bacteria, including viable but non-culturable bacteria.
Collapse
Affiliation(s)
- Yoshiko Okamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8530, Japan; (T.I.); (H.T.)
- Graduate School of Advanced Science of Matter, Hiroshima University, Hiroshima 739-8530, Japan;
| | - Masahiro Suemitsu
- Graduate School of Advanced Science of Matter, Hiroshima University, Hiroshima 739-8530, Japan;
| | - Takato Ishikawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8530, Japan; (T.I.); (H.T.)
| | - Hirokazu Takahashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8530, Japan; (T.I.); (H.T.)
| |
Collapse
|
2
|
Rafeeq H, Hussain A, Shabbir S, Ali S, Bilal M, Sher F, Iqbal HMN. Esterases as emerging biocatalysts: Mechanistic insights, genomic and metagenomic, immobilization, and biotechnological applications. Biotechnol Appl Biochem 2022; 69:2176-2194. [PMID: 34699092 DOI: 10.1002/bab.2277] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/20/2021] [Indexed: 02/05/2023]
Abstract
Esterase enzymes are a family of hydrolases that catalyze the breakdown and formation of ester bonds. Esterases have gained a prominent position in today's world's industrial enzymes market. Due to their unique biocatalytic attributes, esterases contribute to environmentally sustainable design approaches, including biomass degradation, food and feed industry, dairy, clothing, agrochemical (herbicides, insecticides), bioremediation, biosensor development, anticancer, antitumor, gene therapy, and diagnostic purposes. Esterases can be isolated by a diverse range of mammalian tissues, animals, and microorganisms. The isolation of extremophilic esterases increases the interest of researchers in the extraction and utilization of these enzymes at the industrial level. Genomic, metagenomic, and immobilization techniques have opened innovative ways to extract esterases and utilize them for a longer time to take advantage of their beneficial activities. The current study discusses the types of esterases, metagenomic studies for exploring new esterases, and their biomedical applications in different industrial sectors.
Collapse
Affiliation(s)
- Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Asim Hussain
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Sumaira Shabbir
- Department of Zoology, Wildlife, and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Sabir Ali
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| |
Collapse
|
3
|
Chen C, Yu G, Guo Z, Yang Q, Su W, Xie Q, Yang G, Ren Y, Li H. Expression, Characterization, Fermentation, Immobilization, and Application of a Novel Esterase Est804 From Metagenomic Library in Pesticide Degradation. Front Microbiol 2022; 13:922506. [PMID: 35875571 PMCID: PMC9301488 DOI: 10.3389/fmicb.2022.922506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022] Open
Abstract
Esterase, as a type of powerful catabolic enzyme for the degradation of pyrethroid pesticides (PYRs), appears promising in improving the quality of crops and the environment contaminated by pesticide residues. The purpose of this research is to provide a detailed introduction to the enzymatic properties, optimal production and immobilization conditions, and the degradation ability of Est804 for PYRs. The study on enzymatic properties indicated that Est804 was an alkaline esterase with an optimal pH of 8.0 and a broad optimal temperature in the range of 35-50°C. The optimal activity of free Est804 was calculated to be 112.812 U, and the specific enzyme activity was 48.97 U/mg. The kinetic parameters of Est804 were K m = 0.613 mM, k cat = 12,371 s-1, and V m = 0.095 mM/min. The results of the fermentative optimization demonstrated that the optimal conditions included 1.5% of inoculation amount, 30 mL of liquid volume, 28°C of the fermentation temperature, and 18 h of the fermentation time. The optimal medium consists of 15.87 g of yeast powder, 8.00 g of glycerol, and 9.57 g of tryptone in 1 L of liquid. The optimized enzyme activity was 1.68-fold higher than that before optimization. Immobilized Est804 exhibited the highest activity under the optimum preparation conditions, including 0.35 g of chitosan dosage, 0.4 mL of an enzyme, and 4 h at 40°C for adsorption. The degradation rates of Cypermethrin (CYP), fenpropathrin (FE), and lambda-cyhalothrin (LCT) by Est804 within 30 min were 77.35%, 84.73%, and 74.16%, respectively. The present study indicated that Est804 possesses great potential for the treatment of pesticide residues on crops and environmental remediation, conducive to the development of SGNH family esterase against pyrethroid accumulation.
Collapse
Affiliation(s)
- Cuihua Chen
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Gen Yu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenyu Guo
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qihao Yang
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenfeng Su
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qingfen Xie
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guandong Yang
- CAS Testing Technical Services (Guangzhou) Co., Ltd., Guangzhou, China
| | - Yifei Ren
- Guangzhou Hua shuo Biotechnology Co., Ltd., Guangzhou, China
| | - He Li
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: He Li,
| |
Collapse
|
4
|
Screening of Neutrophil Activating Factors from a Metagenome Library of Sponge-Associated Bacteria. Mar Drugs 2021; 19:md19080427. [PMID: 34436266 PMCID: PMC8402132 DOI: 10.3390/md19080427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
Marine sponge-associated bacteria are known as bio-active compound produce. We have constructed metagenome libraries of the bacteria and developed a metagenomic screening approach. Activity-based screening successfully identified novel genes and novel enzymes; however, the efficiency was only in 1 out of 104 clones. Therefore, in this study, we thought that bioinformatics could help to reduce screening efforts, and combined activity-based screening with database search. Neutrophils play an important role for the immune system to recognize excreted bacterial by-products as chemotactic factors and are recruited to infection sites to kill pathogens via phagocytosis. These excreted by-products are considered critical triggers that engage the immune system to mount a defense against infection, and identifying these factors may guide developments in medicine and diagnostics. We focused on genes encoding amino acid ligase and peptide synthetase and selected from an in-house sponge metagenome database. Cell-free culture medium of each was used in a neutrophil chemiluminescence assay in luminol reaction. The clone showing maximum activity had a genomic sequence expected to produce a molecule like a phospho-N-acetylmuramyl pentapeptide by the metagenome fragment analysis.
Collapse
|
5
|
de Oliveira BFR, Carr CM, Dobson ADW, Laport MS. Harnessing the sponge microbiome for industrial biocatalysts. Appl Microbiol Biotechnol 2020; 104:8131-8154. [PMID: 32827049 DOI: 10.1007/s00253-020-10817-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022]
Abstract
Within the marine sphere, host-associated microbiomes are receiving growing attention as prolific sources of novel biocatalysts. Given the known biocatalytic potential of poriferan microbial inhabitants, this review focuses on enzymes from the sponge microbiome, with special attention on their relevant properties and the wide range of their potential biotechnological applications within various industries. Cultivable bacterial and filamentous fungal isolates account for the majority of the enzymatic sources. Hydrolases, mainly glycoside hydrolases and carboxylesterases, are the predominant reported group of enzymes, with varying degrees of tolerance to alkaline pH and growing salt concentrations being common. Prospective areas for the application of these microbial enzymes include biorefinery, detergent, food and effluent treatment industries. Finally, alternative strategies to identify novel biocatalysts from the sponge microbiome are addressed, with an emphasis on modern -omics-based approaches that are currently available in the enzyme research arena. By providing this current overview of the field, we hope to not only increase the appetite of researchers to instigate forthcoming studies but also to stress how basic and applied research can pave the way for new biocatalysts from these symbiotic microbial communities in a productive fashion. KEY POINTS: • The sponge microbiome is a burgeoning source of industrial biocatalysts. • Sponge microbial enzymes have useful habitat-related traits for several industries. • Strategies are provided for the future discovery of microbial enzymes from sponges.
Collapse
Affiliation(s)
- Bruno Francesco Rodrigues de Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,School of Microbiology, University College Cork, Cork, Ireland.
| | - Clodagh M Carr
- School of Microbiology, University College Cork, Cork, Ireland
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Manasian P, Bustos AS, Pålsson B, Håkansson A, Peñarrieta JM, Nilsson L, Linares-Pastén JA. First Evidence of Acyl-Hydrolase/Lipase Activity From Human Probiotic Bacteria: Lactobacillus rhamnosus GG and Bifidobacterium longum NCC 2705. Front Microbiol 2020; 11:1534. [PMID: 32793131 PMCID: PMC7393678 DOI: 10.3389/fmicb.2020.01534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/12/2020] [Indexed: 01/23/2023] Open
Abstract
Lactobacillus rhamnosus GG (ATCC 53103) and Bifidobacterium longum NCC 2705 are among the most studied probiotics. However, the first evidence of acyl hydrolase/lipase of two annotated proteins, one in each genome of these strains, is reported in this work. Signal peptide analysis has predicted that these proteins are exported to the extracellular medium. Both proteins were produced in Escherichia coli, purified and characterized. Molecular masses (without signal peptides) were 27 and 52.3 kDa for the proteins of L. rhamnosus and B. longum, respectively. Asymmetrical flow field-flow fractionation analysis has shown that both proteins are present as monomers in their native forms at pH 7. Both have shown enzymatic activity on pNP-laurate at pH 7 and 37°C. The enzyme from L. rhamnosus was characterized deeper, showing preference on pNP-esters with short chain fatty acids. In addition, a computational model of the 3D structure has allowed the prediction of the catalytic amino acids. The enzymatic activities using synthetic substrates were very low for both enzymes. The investigation of natural substrates and biological functions of these enzymes is still open.
Collapse
Affiliation(s)
- Panagiotis Manasian
- Biotechnology, Faculty of Engineering, Lunds Tekniska Högskola (LTH), Lund University, Lund, Sweden.,Food Technology, Faculty of Engineering, Lunds Tekniska Högskola (LTH), Lund University, Lund, Sweden
| | - Atma-Sol Bustos
- Food Technology, Faculty of Engineering, Lunds Tekniska Högskola (LTH), Lund University, Lund, Sweden.,Faculty of Pure and Natural Sciences, School of Chemistry, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Björn Pålsson
- Biotechnology, Faculty of Engineering, Lunds Tekniska Högskola (LTH), Lund University, Lund, Sweden
| | - Andreas Håkansson
- Food Technology, Faculty of Engineering, Lunds Tekniska Högskola (LTH), Lund University, Lund, Sweden
| | - J Mauricio Peñarrieta
- Faculty of Pure and Natural Sciences, School of Chemistry, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Lars Nilsson
- Food Technology, Faculty of Engineering, Lunds Tekniska Högskola (LTH), Lund University, Lund, Sweden
| | - Javier A Linares-Pastén
- Biotechnology, Faculty of Engineering, Lunds Tekniska Högskola (LTH), Lund University, Lund, Sweden
| |
Collapse
|
7
|
Munar MP, Takahashi H, Okamura Y. Discovery of a Novel Gene Conferring Tellurite Tolerance Through Tellurite Reduction to Escherichia coli Transformant in Marine Sediment Metagenomic Library. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:762-772. [PMID: 31637558 DOI: 10.1007/s10126-019-09922-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Metagenomic library construction using a marine sediment-enrichment was employed in order to recover tellurium from tellurite, a tellurium oxyanion, dissolved in water and then functional screening was performed to discover a novel gene related to tellurite reduction. Transmission electron microscopy (TEM) revealed the formation of intracellular Te crystals in Escherichia coli cells transformed with a specific DNA fragment from the marine sediment metagenome. The metagenome fragment was composed of 691 bp and showed low homology to known proteins. Phylogenetic analysis suggested that the metagenome fragment was related to Pseudomonas stutzeri. Cloning and expression of an open reading frame (ORF) on the metagenome fragment validated the role of the fragment in conferring tellurite resistance and tellurite-reducing activity to E. coli host cells. E. coli transformant containing the ORF1 showed resistance to 1 mM Na2TeO3. The optimal tellurite-reducing activity of cells containing the ORF1 was recorded at 37 °C and pH 7.0.
Collapse
Affiliation(s)
- Madison Pascual Munar
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan
| | - Hirokazu Takahashi
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Yoshiko Okamura
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan.
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
8
|
Affiliation(s)
- Tomohiko Matsuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
9
|
Agarose-based microwell array chip for high-throughput screening of functional microorganisms. Talanta 2019; 191:342-349. [DOI: 10.1016/j.talanta.2018.08.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 11/23/2022]
|
10
|
Matsuzawa T, Kaneko S, Kishine N, Fujimoto Z, Yaoi K. Crystal structure of metagenomic β-xylosidase/ α-l-arabinofuranosidase activated by calcium. J Biochem 2017; 162:173-181. [PMID: 28204531 DOI: 10.1093/jb/mvx012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/26/2017] [Indexed: 11/13/2022] Open
Abstract
The crystal structure of metagenomic β-xylosidase/α-l-arabinofuranosidase CoXyl43, activated by calcium ions, was determined in its apo and complexed forms with xylotriose or l-arabinose in the presence and absence of calcium. The presence of calcium ions dramatically increases the kcat of CoXyl43 for p-nitrophenyl β-d-xylopyranoside and reduces the Michaelis constant for p-nitrophenyl α-l-arabinofuranoside. CoXyl43 consists of a single catalytic domain comprised of a five-bladed β-propeller. In the presence of calcium, a single calcium ion was observed at the centre of this catalytic domain, behind the catalytic pocket. In the absence of calcium, the calcium ion was replaced with one sodium ion and one water molecule, and the positions of these cations were shifted by 1.3 Å. The histidine-319 side chain, which coordinates to the 2-hydroxyl oxygen atom of the bound xylose molecule in the catalytic pocket, also coordinates to the calcium ion, but not to the sodium ion. The calcium-dependent increase in activity appears to be caused by the structural change in the catalytic pocket induced by the tightly bound calcium ion and coordinating water molecules, and by the protonation state of glutamic acid-268, the catalytic acid of the enzyme. Our findings further elucidate the complex relationship between metal ions and glycosidases.
Collapse
Affiliation(s)
- Tomohiko Matsuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Satoshi Kaneko
- Department of Subtropical Biochemistry and Biotechnology Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Naomi Kishine
- Advanced Analysis Center, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Zui Fujimoto
- Advanced Analysis Center, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Katsuro Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
11
|
Deng D, Zhang Y, Sun A, Hu Y. Enantio-selective preparation of (S)-1-phenylethanol by a novel marine GDSL lipase MT6 with reverse stereo-selectivity. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(16)62505-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
12
|
Suriya J, Bharathiraja S, Krishnan M, Manivasagan P, Kim SK. Extremozymes from Marine Actinobacteria. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 79:43-66. [PMID: 27770863 DOI: 10.1016/bs.afnr.2016.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Marine microorganisms that have the possibility to survive in diverse conditions such as extreme temperature, pH, pressure, and salinity are known as extremophiles. They produce biocatalysts so named as extremozymes that are active and stable at extreme conditions. These enzymes have numerous industrial applications due to its distinct properties. Till now, only a fraction of microorganisms on Earth have been exploited for screening of extremozymes. Novel techniques used for the cultivation and production of extremophiles, as well as cloning and overexpression of their genes in various expression systems, will pave the way to use these enzymes for chemical, food, pharmaceutical, and other industrial applications.
Collapse
Affiliation(s)
- J Suriya
- School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - S Bharathiraja
- CAS in Marine Biology, Annamalai University, Porto Novo, Tamil Nadu, India
| | - M Krishnan
- School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - P Manivasagan
- Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea
| | - S-K Kim
- Marine Bioprocess Research Center; Specialized Graduate School Science & Technology Convergence, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
13
|
Matsuzawa T, Yaoi K. Screening, identification, and characterization of a novel saccharide-stimulated β-glycosidase from a soil metagenomic library. Appl Microbiol Biotechnol 2016; 101:633-646. [DOI: 10.1007/s00253-016-7803-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/20/2016] [Accepted: 08/09/2016] [Indexed: 01/27/2023]
|
14
|
Parages ML, Gutiérrez-Barranquero JA, Reen FJ, Dobson ADW, O'Gara F. Integrated (Meta) Genomic and Synthetic Biology Approaches to Develop New Biocatalysts. Mar Drugs 2016; 14:E62. [PMID: 27007381 PMCID: PMC4810074 DOI: 10.3390/md14030062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 02/18/2016] [Accepted: 03/11/2016] [Indexed: 12/21/2022] Open
Abstract
In recent years, the marine environment has been the subject of increasing attention from biotechnological and pharmaceutical industries as a valuable and promising source of novel bioactive compounds. Marine biodiscovery programmes have begun to reveal the extent of novel compounds encoded within the enormous bacterial richness and diversity of the marine ecosystem. A combination of unique physicochemical properties and spatial niche-specific substrates, in wide-ranging and extreme habitats, underscores the potential of the marine environment to deliver on functionally novel biocatalytic activities. With the growing need for green alternatives to industrial processes, and the unique transformations which nature is capable of performing, marine biocatalysts have the potential to markedly improve current industrial pipelines. Furthermore, biocatalysts are known to possess chiral selectivity and specificity, a key focus of pharmaceutical drug design. In this review, we discuss how the explosion in genomics based sequence analysis, allied with parallel developments in synthetic and molecular biology, have the potential to fast-track the discovery and subsequent improvement of a new generation of marine biocatalysts.
Collapse
Affiliation(s)
- María L Parages
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - José A Gutiérrez-Barranquero
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - F Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland.
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6845, Australia.
| |
Collapse
|
15
|
Lee YS. Isolation and Characterization of a Novel Cold-Adapted Esterase, MtEst45, from Microbulbifer thermotolerans DAU221. Front Microbiol 2016; 7:218. [PMID: 26973604 PMCID: PMC4773448 DOI: 10.3389/fmicb.2016.00218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/10/2016] [Indexed: 11/30/2022] Open
Abstract
A novel esterase, MtEst45, was isolated from a fosmid genomic library of Microbulbifer thermotolerans DAU221. The encoding gene is predicted to have a mass of 45,564 Da and encodes 495 amino acids, excluding a 21 amino acid signal peptide. MtEst45 showed a low amino acid identity (approximately 23–24%) compared with other lipolytic enzymes belonging to Family III, a closely related bacterial lipolytic enzyme family. MtEst45 also showed a conserved GXSXG motif, G131IS133YG135, which was reported as active site of known lipolytic enzymes, and the putative catalytic triad composed of D237 and H265. Because these mutants of MtEst45, which was S133A, D237N, and H265L, had no activity, these catalytic triad is deemed essential for the enzyme catalysis. MtEst45 was overexpressed in Escherichia coli BL21 (DE3) and purified via His-tag affinity chromatography. The optimal pH and temperature of MtEst45 were estimated to be 8.17 and 46.27°C by response surface methodology, respectively. Additionally, MtEst45 was also active between 1 and 15°C. The optimal hydrolysis substrate for MtEst45 among p-nitrophenyl esters (C2–C18) was p-nitrophenyl butyrate, and the Km and Vmax values were 0.0998 mM and 550 μmol/min/mg of protein, respectively. MtEst45 was strongly inhibited by Hg2+, Zn2+, and Cu2+ ions; by phenylmethanesulfonyl fluoride; and by β-mercaptoethanol. Ca2+ did not affect the enzyme's activity. These biochemical properties, sequence identity, and phylogenetic analysis suggest that MtEst45 represents a novel and valuable bacterial lipolytic enzyme family and is useful for biotechnological applications.
Collapse
Affiliation(s)
- Yong-Suk Lee
- Department of Biotechnology, Dong-A University Busan, South Korea
| |
Collapse
|
16
|
Mori T, Iwamoto K, Wakaoji S, Araie H, Kohara Y, Okamura Y, Shiraiwa Y, Takeyama H. Characterization of a novel gene involved in cadmium accumulation screened from sponge-associated bacterial metagenome. Gene 2016; 576:618-25. [DOI: 10.1016/j.gene.2015.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Deng D, Zhang Y, Sun A, Liang J, Hu Y. Functional Characterization of a Novel Marine Microbial GDSL Lipase and Its Utilization in the Resolution of (±)-1-Phenylethanol. Appl Biochem Biotechnol 2016; 179:75-93. [DOI: 10.1007/s12010-016-1980-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/04/2016] [Indexed: 12/26/2022]
|
18
|
Ferrer M, Martínez-Martínez M, Bargiela R, Streit WR, Golyshina OV, Golyshin PN. Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microb Biotechnol 2016; 9:22-34. [PMID: 26275154 PMCID: PMC4720405 DOI: 10.1111/1751-7915.12309] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/26/2015] [Accepted: 07/02/2015] [Indexed: 12/01/2022] Open
Abstract
Recent reports have suggested that the establishment of industrially relevant enzyme collections from environmental genomes has become a routine procedure. Across the studies assessed, a mean number of approximately 44 active clones were obtained in an average size of approximately 53,000 clones tested using naïve screening protocols. This number could be significantly increased in shorter times when novel metagenome enzyme sequences obtained by direct sequencing are selected and subjected to high-throughput expression for subsequent production and characterization. The pre-screening of clone libraries by naïve screens followed by the pyrosequencing of the inserts allowed for a 106-fold increase in the success rate of identifying genes encoding enzymes of interest. However, a much longer time, usually on the order of years, is needed from the time of enzyme identification to the establishment of an industrial process. If the hit frequency for the identification of enzymes performing at high turnover rates under real application conditions could be increased while still covering a high natural diversity, the very expensive and time-consuming enzyme optimization phase would likely be significantly shortened. At this point, it is important to review the current knowledge about the success of fine-tuned naïve- and sequence-based screening protocols for enzyme selection and to describe the environments worldwide that have already been subjected to enzyme screen programmes through metagenomic tools. Here, we provide such estimations and suggest the current challenges and future actions needed before environmental enzymes can be successfully introduced into the market.
Collapse
Affiliation(s)
- Manuel Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Marie Curie 2, 28049, Madrid, Spain
| | - Mónica Martínez-Martínez
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Marie Curie 2, 28049, Madrid, Spain
| | - Rafael Bargiela
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Marie Curie 2, 28049, Madrid, Spain
| | - Wolfgang R Streit
- Biozentrum Klein Flottbek, Universität Hamburg, Ohnhorststraße 18, D-22609, Hamburg, Germany
| | - Olga V Golyshina
- School of Biological Sciences, Bangor University, LL57 2UW, Gwynedd, UK
| | - Peter N Golyshin
- School of Biological Sciences, Bangor University, LL57 2UW, Gwynedd, UK
| |
Collapse
|
19
|
López-López O, Cerdán ME, González Siso MI. New extremophilic lipases and esterases from metagenomics. Curr Protein Pept Sci 2015; 15:445-55. [PMID: 24588890 PMCID: PMC4093774 DOI: 10.2174/1389203715666140228153801] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 01/21/2014] [Accepted: 02/25/2014] [Indexed: 11/22/2022]
Abstract
Lipolytic enzymes catalyze the hydrolysis of ester bonds in the presence of water. In media with low water content or in organic solvents, they can catalyze synthetic reactions such as esterification and transesterification. Lipases and esterases, in particular those from extremophilic origin, are robust enzymes, functional under the harsh conditions of industrial processes owing to their inherent thermostability and resistance towards organic solvents, which combined with their high chemo-, regio- and enantioselectivity make them very attractive biocatalysts for a variety of industrial applications. Likewise, enzymes from extremophile sources can provide additional features such as activity at extreme temperatures, extreme pH values or high salinity levels, which could be interesting for certain purposes. New lipases and esterases have traditionally been discovered by the isolation of microbial strains producing lipolytic activity. The Genome Projects Era allowed genome mining, exploiting homology with known lipases and esterases, to be used in the search for new enzymes. The Metagenomic Era meant a step forward in this field with the study of the metagenome, the pool of genomes in an environmental microbial community. Current molecular biology techniques make it possible to construct total environmental DNA libraries, including the genomes of unculturable organisms, opening a new window to a vast field of unknown enzymes with new and unique properties. Here, we review the latest advances and findings from research into new extremophilic lipases and esterases, using metagenomic approaches, and their potential industrial and biotechnological applications.
Collapse
Affiliation(s)
| | | | - Maria I González Siso
- University of A Coruna, Faculty of Sciences, Department of Cellular and Molecular Biology, Biochemistry and Molecular Biology Area. Campus A Zapateira s/n, 15071, A Coruna, Spain.
| |
Collapse
|
20
|
De Santi C, Ambrosino L, Tedesco P, Zhai L, Zhou C, Xue Y, Ma Y, de Pascale D. Identification and characterization of a novel salt-tolerant esterase from a Tibetan glacier metagenomic library. Biotechnol Prog 2015; 31:890-9. [PMID: 25920073 DOI: 10.1002/btpr.2096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/23/2015] [Indexed: 12/12/2022]
Abstract
A salt-tolerant esterase, designated H9Est, was identified from a metagenomic library of the Karuola glacier. H9Est gene comprised 1071 bp and encoded a polypeptide of 357 amino acids with a molecular mass of 40 kDa. Sequence analysis revealed that H9Est belonged to the family IV of bacterial lypolitic enzyme. H9Est was overexpressed in Escherichia coli and the purified enzyme showed hydrolytic activity towards p-nitrophenyl esters with carbon chain from 2 to 8. The optimal esterase activity was at 40°C and pH 8.0 and the enzyme retained its activity towards some miscible organic solvents such as polyethylene glycol. A three-dimensional model of H9Est revealed that S200, D294, and H324 formed the H9Est catalytic triad. Circular Dichroism spectra and molecular dynamic simulation indicated that the esterase had a wide denaturation temperature range and flexible loops that would be beneficial for H9Est performance at low temperatures while retaining heat-resistant features.
Collapse
Affiliation(s)
- Concetta De Santi
- Inst. of Protein Biochemistry, National Research Council, Naples, I-80131, Italy
| | - Luca Ambrosino
- Inst. of Protein Biochemistry, National Research Council, Naples, I-80131, Italy
| | - Pietro Tedesco
- Inst. of Protein Biochemistry, National Research Council, Naples, I-80131, Italy
| | | | | | | | - Yanhe Ma
- State Key Laboratory of Microbial Resources and National Engineering Laboratory for Industrial Enzymes, Inst. of Microbiology, CAS, Beijing, 100101, China
| | | |
Collapse
|
21
|
Matsuzawa T, Kaneko S, Yaoi K. Screening, identification, and characterization of a GH43 family β-xylosidase/α-arabinofuranosidase from a compost microbial metagenome. Appl Microbiol Biotechnol 2015; 99:8943-54. [DOI: 10.1007/s00253-015-6647-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/09/2015] [Accepted: 04/19/2015] [Indexed: 01/09/2023]
|
22
|
Su J, Zhang F, Sun W, Karuppiah V, Zhang G, Li Z, Jiang Q. A new alkaline lipase obtained from the metagenome of marine sponge Ircinia sp. World J Microbiol Biotechnol 2015; 31:1093-102. [PMID: 25921581 DOI: 10.1007/s11274-015-1859-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/23/2015] [Indexed: 11/24/2022]
Abstract
Microorganisms associated with marine sponges are potential resources for marine enzymes. In this study, culture-independent metagenomic approach was used to isolate lipases from the complex microbiome of the sponge Ircinia sp. obtained from the South China Sea. A metagenomic library was constructed, containing 6568 clones, and functional screening on 1 % tributyrin agar resulted in the identification of a positive lipase clone (35F4). Following sequence analysis 35F4 clone was found to contain a putative lipase gene lipA. Sequence analysis of the predicted amino acid sequence of LipA revealed that it is a member of subfamily I.1 of lipases, with 63 % amino acid similarity to the lactonizing lipase from Aeromonas veronii (WP_021231793). Based on the predicted secondary structure, LipA was predicted to be an alkaline enzyme by sequence/structure analysis. Heterologous expression of lipA in E. coli BL21 (DE3) was performed and the characterization of the recombinant enzyme LipA showed that it is an alkaline enzyme with high tolerance to organic solvents. The isolated lipase LipA was active in the broad alkaline range, with the highest activity at pH 9.0, and had a high level of stability over a pH range of 7.0-12.0. The activity of LipA was increased in the presence of 5 mM Ca(2+) and some organic solvents, e.g. methanol, acetone and isopropanol. The optimum temperature for the activity of LipA is 40 °C and the molecular weight of LipA was determined to be ~30 kDa by SDS-PAGE. LipA is an alkaline lipase and shows good tolerance to some organic solvents, which make it of potential utility in the detergent industry and enzyme mediated organic synthesis. The result of this study has broadened the diversity of known lipolytic genes and demonstrated that marine sponges are an important source for new enzymes.
Collapse
Affiliation(s)
- Jing Su
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic China
| | | | | | | | | | | | | |
Collapse
|
23
|
Alcaide M, Tchigvintsev A, Martínez-Martínez M, Popovic A, Reva ON, Lafraya Á, Bargiela R, Nechitaylo TY, Matesanz R, Cambon-Bonavita MA, Jebbar M, Yakimov MM, Savchenko A, Golyshina OV, Yakunin AF, Golyshin PN, Ferrer M. Identification and characterization of carboxyl esterases of gill chamber-associated microbiota in the deep-sea shrimp Rimicaris exoculata by using functional metagenomics. Appl Environ Microbiol 2015; 81:2125-36. [PMID: 25595762 PMCID: PMC4345394 DOI: 10.1128/aem.03387-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/05/2015] [Indexed: 01/03/2023] Open
Abstract
The shrimp Rimicaris exoculata dominates the fauna in deep-sea hydrothermal vent sites along the Mid-Atlantic Ridge (depth, 2,320 m). Here, we identified and biochemically characterized three carboxyl esterases from microbial communities inhabiting the R. exoculata gill that were isolated by naive screens of a gill chamber metagenomic library. These proteins exhibit low to moderate identity to known esterase sequences (≤52%) and to each other (11.9 to 63.7%) and appear to have originated from unknown species or from genera of Proteobacteria related to Thiothrix/Leucothrix (MGS-RG1/RG2) and to the Rhodobacteraceae group (MGS-RG3). A library of 131 esters and 31 additional esterase/lipase preparations was used to evaluate the activity profiles of these enzymes. All 3 of these enzymes had greater esterase than lipase activity and exhibited specific activities with ester substrates (≤356 U mg(-1)) in the range of similar enzymes. MGS-RG3 was inhibited by salts and pressure and had a low optimal temperature (30°C), and its substrate profile clustered within a group of low-activity and substrate-restricted marine enzymes. In contrast, MGS-RG1 and MGS-RG2 were most active at 45 to 50°C and were salt activated and barotolerant. They also exhibited wider substrate profiles that were close to those of highly active promiscuous enzymes from a marine hydrothermal vent (MGS-RG2) and from a cold brackish lake (MGS-RG1). The data presented are discussed in the context of promoting the examination of enzyme activities of taxa found in habitats that have been neglected for enzyme prospecting; the enzymes found in these taxa may reflect distinct habitat-specific adaptations and may constitute new sources of rare reaction specificities.
Collapse
Affiliation(s)
- María Alcaide
- Consejo Superior de Investigaciones Científicas (CSIC), Institute of Catalysis, Madrid, Spain
| | - Anatoli Tchigvintsev
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Ana Popovic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Oleg N Reva
- Department of Biochemistry, University of Pretoria, Pretoria, South Africa
| | - Álvaro Lafraya
- Consejo Superior de Investigaciones Científicas (CSIC), Institute of Catalysis, Madrid, Spain
| | - Rafael Bargiela
- Consejo Superior de Investigaciones Científicas (CSIC), Institute of Catalysis, Madrid, Spain
| | - Taras Y Nechitaylo
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ruth Matesanz
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Marie-Anne Cambon-Bonavita
- Ifremer, Centre de Brest, Laboratoire de Microbiologie des Environnements Extrêmes, REM/DEEP/LM2E, UMR 6197 (Ifremer-CNRS-UBO), ZI de la Pointe du Diable, Plouzané, France
| | - Mohamed Jebbar
- Université de Bretagne Occidentale, Laboratoire de Microbiologie des Environnements Extrêmes-UMR 6197 (CNRS-Ifremer-UBO), Plouzané, France
| | | | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Olga V Golyshina
- School of Biological Sciences, Bangor University, Gwynedd, United Kingdom
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Peter N Golyshin
- School of Biological Sciences, Bangor University, Gwynedd, United Kingdom
| | - Manuel Ferrer
- Consejo Superior de Investigaciones Científicas (CSIC), Institute of Catalysis, Madrid, Spain
| |
Collapse
|
24
|
Hosokawa M, Hoshino Y, Nishikawa Y, Hirose T, Yoon DH, Mori T, Sekiguchi T, Shoji S, Takeyama H. Droplet-based microfluidics for high-throughput screening of a metagenomic library for isolation of microbial enzymes. Biosens Bioelectron 2014; 67:379-85. [PMID: 25194237 DOI: 10.1016/j.bios.2014.08.059] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/15/2014] [Accepted: 08/22/2014] [Indexed: 10/24/2022]
Abstract
This paper proposes a high-throughput, function-based screening approach of a metagenomic library for isolating novel microbial enzymes by droplet-based microfluidics. We used gel microdroplets (GMDs) dispersed in oil as picoliter-volume reaction vessels for lipolytic enzyme by encapsulating cells in individual GMDs. Using this approach, we monitored the growth of individual cells encapsulated in GMDs and assessed the enzyme reaction activities at the level of an individual GMD. We then applied this method to screen lipolytic enzyme genes from the metagenomic library constructed from soil collected from a quercus serrate forest of Mount Tsukuba, Ibaraki, Japan. In the workflow presented in this study, metagenomic library clones were encapsulated in 100-pL GMDs with a fluorogenic reporter substrate. A total of 67,000 metagenomic library clones can be screened in only 24 h with reduced consumption of reagents (i.e., <10 μL). As a result, we identified a novel lipolytic enzyme, EstT1, belonging to the EstD2 family of esterases and containing a putative signal peptide, which facilitates enzyme export and catalyzation of substrates in the periplasm. Our study demonstrates the potential of microfluidic GMDs as an efficient tool for metagenomic library screening of industrially relevant enzymes with the potential of significantly reducing the cost and time factors involved in successful practical application of microbial enzymes.
Collapse
Affiliation(s)
- Masahito Hosokawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Institute for Nanoscience and Nanotechnology, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency (JST), 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yuri Hoshino
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yohei Nishikawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Tomotada Hirose
- Faculty of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Dong Hyun Yoon
- Faculty of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Tetsushi Mori
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Institute for Nanoscience and Nanotechnology, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency (JST), 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Tetsushi Sekiguchi
- Institute for Nanoscience and Nanotechnology, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Shuichi Shoji
- Institute for Nanoscience and Nanotechnology, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Faculty of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Institute for Nanoscience and Nanotechnology, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency (JST), 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan.
| |
Collapse
|
25
|
Martin M, Biver S, Steels S, Barbeyron T, Jam M, Portetelle D, Michel G, Vandenbol M. Identification and characterization of a halotolerant, cold-active marine endo-β-1,4-glucanase by using functional metagenomics of seaweed-associated microbiota. Appl Environ Microbiol 2014; 80:4958-67. [PMID: 24907332 PMCID: PMC4135742 DOI: 10.1128/aem.01194-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/29/2014] [Indexed: 11/20/2022] Open
Abstract
A metagenomic library was constructed from microorganisms associated with the brown alga Ascophyllum nodosum. Functional screening of this library revealed 13 novel putative esterase loci and two glycoside hydrolase loci. Sequence and gene cluster analysis showed the wide diversity of the identified enzymes and gave an idea of the microbial populations present during the sample collection period. Lastly, an endo-β-1,4-glucanase having less than 50% identity to sequences of known cellulases was purified and partially characterized, showing activity at low temperature and after prolonged incubation in concentrated salt solutions.
Collapse
Affiliation(s)
- Marjolaine Martin
- Microbiology and Genomics Unit, Gembloux Agro-Bio Tech, University of Liège, Liège, Belgium
| | - Sophie Biver
- Microbiology and Genomics Unit, Gembloux Agro-Bio Tech, University of Liège, Liège, Belgium
| | - Sébastien Steels
- Microbiology and Genomics Unit, Gembloux Agro-Bio Tech, University of Liège, Liège, Belgium
| | - Tristan Barbeyron
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, Bretagne, France CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, Bretagne, France
| | - Murielle Jam
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, Bretagne, France CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, Bretagne, France
| | - Daniel Portetelle
- Microbiology and Genomics Unit, Gembloux Agro-Bio Tech, University of Liège, Liège, Belgium
| | - Gurvan Michel
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, Bretagne, France CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, Bretagne, France
| | - Micheline Vandenbol
- Microbiology and Genomics Unit, Gembloux Agro-Bio Tech, University of Liège, Liège, Belgium
| |
Collapse
|
26
|
In situ detection of antibiotic amphotericin B produced in Streptomyces nodosus using Raman microspectroscopy. Mar Drugs 2014; 12:2827-39. [PMID: 24828290 PMCID: PMC4052319 DOI: 10.3390/md12052827] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/17/2014] [Accepted: 04/24/2014] [Indexed: 11/19/2022] Open
Abstract
The study of spatial distribution of secondary metabolites within microbial cells facilitates the screening of candidate strains from marine environments for functional metabolites and allows for the subsequent assessment of the production of metabolites, such as antibiotics. This paper demonstrates the first application of Raman microspectroscopy for in situ detection of the antifungal antibiotic amphotericin B (AmB) produced by actinomycetes—Streptomyces nodosus. Raman spectra measured from hyphae of S. nodosus show the specific Raman bands, caused by resonance enhancement, corresponding to the polyene chain of AmB. In addition, Raman microspectroscopy enabled us to monitor the time-dependent change of AmB production corresponding to the growth of mycelia. The Raman images of S. nodosus reveal the heterogeneous distribution of AmB within the mycelia and individual hyphae. Moreover, the molecular association state of AmB in the mycelia was directly identified by observed Raman spectral shifts. These findings suggest that Raman microspectroscopy could be used for in situ monitoring of antibiotic production directly in marine microorganisms with a method that is non-destructive and does not require labeling.
Collapse
|
27
|
Xing MN, Zhang XZ, Huang H. Application of metagenomic techniques in mining enzymes from microbial communities for biofuel synthesis. Biotechnol Adv 2012; 30:920-9. [DOI: 10.1016/j.biotechadv.2012.01.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
He R, Wakimoto T, Takeshige Y, Egami Y, Kenmoku H, Ito T, Wang B, Asakawa Y, Abe I. Porphyrins from a metagenomic library of the marine sponge Discodermia calyx. MOLECULAR BIOSYSTEMS 2012; 8:2334-8. [PMID: 22735778 DOI: 10.1039/c2mb25169h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Marine sponges harbouring uncultured symbiotic bacteria are important sources of biologically active compounds. Since they would be interesting resources to explore unknown functional genes by means of a metagenomic approach, we constructed a metagenomic library of the Japanese marine sponge Discodermia calyx. The functional screening afforded the two clones producing porphyrins as red pigments. The isolation and structural elucidation of the red pigments revealed that the major red pigment was Zn-coproporphyrin III. The sequence data of the clones identified genes encoding glutamyl-tRNA reductase along with other ORFs related to porphyrin biosynthesis.
Collapse
Affiliation(s)
- Rui He
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Selvin J, Kennedy J, Lejon DPH, Kiran GS, Dobson ADW. Isolation identification and biochemical characterization of a novel halo-tolerant lipase from the metagenome of the marine sponge Haliclona simulans. Microb Cell Fact 2012; 11:72. [PMID: 22657530 PMCID: PMC3544137 DOI: 10.1186/1475-2859-11-72] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/04/2012] [Indexed: 11/10/2022] Open
Abstract
Background Lipases (EC 3.1.1.3) catalyze the hydrolysis of triacyl glycerol to glycerol and are involved in the synthesis of both short chain and long chain acylglycerols. They are widely used industrially in various applications, such as baking, laundry detergents and as biocatalysts in alternative energy strategies. Marine ecosystems are known to represent a large reservoir of biodiversity with respect to industrially useful enzymes. However the vast majority of microorganisms within these ecosystems are not readily culturable. Functional metagenomic based approaches provide a solution to this problem by facilitating the identification of novel enzymes such as the halo-tolerant lipase identified in this study from a marine sponge metagenome. Results A metagenomic library was constructed from the marine sponge Haliclona simulans in the pCC1fos vector, containing approximately 48,000 fosmid clones. High throughput plate screening on 1% tributyrin agar resulted in the identification of 58 positive lipase clones. Following sequence analysis of the 10 most highly active fosmid clones the pCC1fos53E1 clone was found to contain a putative lipase gene lpc53E1, encoded by 387 amino acids and with a predicted molecular mass of 41.87 kDa. Sequence analysis of the predicted amino acid sequence of Lpc53E1 revealed that it is a member of the group VIII family of lipases possessing the SXTK motif, related to type C β-lactamases. Heterologous expression of lpc53E1 in E. coli and the subsequent biochemical characterization of the recombinant protein, showed an enzyme with the highest substrate specificity for long chain fatty acyl esters. Optimal activity was observed with p- nitrophenyl palmitate (C16) at 40°C, in the presence of 5 M NaCl at pH 7; while in addition the recombinant enzyme displayed activity across broad pH (3–12) and temperature (4 -60°C) ranges and high levels of stability in the presence of various solvents at NaCl concentrations as high as 5 M and at temperatures ranging from 10 to 80°C. A maximum lipase activity of 2,700 U/mg was observed with 10 mM p-nitrophenyl palmitate as substrate, in the presence of 5 mM Ca2+ and 5 M NaCl, and a reaction time of 15 min at pH 7 and 40°C; while KM and Vmax values were calculated to be 1.093 mM-1 and 50 μmol/min, respectively. Conclusion We have isolated a novel halo tolerant lipase following a functional screen of a marine sponge fosmid metagenomic library. The activity and stability profile of the recombinant enzyme over a wide range of salinity, pH and temperature; and in the presence of organic solvent and metal ions suggests a utility for this enzyme in a variety of industrial applications.
Collapse
Affiliation(s)
- Joseph Selvin
- Microbial Genomics Research Unit, Department of Bioinformatics,Bharathidasan University, Tiruchirapalli, India
| | | | | | | | | |
Collapse
|
30
|
Bae SY, Ryu BH, Jang E, Kim S, Kim TD. Characterization and immobilization of a novel SGNH hydrolase (Est24) from Sinorhizobium meliloti. Appl Microbiol Biotechnol 2012; 97:1637-47. [PMID: 22526795 DOI: 10.1007/s00253-012-4038-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/11/2012] [Accepted: 03/16/2012] [Indexed: 12/13/2022]
Abstract
A novel oligomeric SGNH hydrolase (Est24) from Sinorhizobium meliloti was identified, actively expressed in Escherichia coli, characterized, and immobilized for industrial application. Sequence analysis of Est24 revealed a putative catalytic triad (Ser¹³-Asp¹⁶³-His¹⁶⁹), with moderate homology to other SGNH hydrolases. Est24 was more active toward short-chain esters, such as p-nitrophenyl acetate, butyrate, and valerate, while the S13A mutant completely lost its activity. Moreover, the activity of Est24 toward α- and β-naphthyl acetate, and enantioselectivity on (R)- and (S)-methyl-3-hydroxy-2-methylpropionate were tested. Est24 exhibited optimum activity at mesophilic temperature ranges (45-55 °C), and slightly alkaline pH (8.0). Structural and mutagenesis studies revealed critical residues involved in the formation of a catalytic triad and substrate-binding pocket. Cross-linked enzyme aggregates (CLEAs) of Est24 with and without amyloid fibrils were prepared, and amyloid fibril-linked Est24 with amyloid fibrils retained 83 % of its initial activity after 1 h of incubation at 60 °C. The high thermal stability of immobilized Est24 highlights its potential in the pharmaceutical and chemical industries.
Collapse
Affiliation(s)
- Song Yi Bae
- Department of Molecular Science and Technology, Graduate School of Interdisciplinary Programs, Ajou University, Suwon 443-749, South Korea
| | | | | | | | | |
Collapse
|
31
|
Behrens GA, Hummel A, Padhi SK, Schätzle S, Bornscheuer UT. Discovery and Protein Engineering of Biocatalysts for Organic Synthesis. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100446] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Kennedy J, O'Leary ND, Kiran GS, Morrissey JP, O'Gara F, Selvin J, Dobson ADW. Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. J Appl Microbiol 2011; 111:787-99. [PMID: 21777355 DOI: 10.1111/j.1365-2672.2011.05106.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Marine ecosystems are home to bacteria which are exposed to a wide variety of environmental conditions, such as extremes in temperature, salinity, nutrient availability and pressure. Survival under these conditions must have necessitated the adaptation and the development of unique cellular biochemistry and metabolism by these microbes. Thus, enzymes isolated from these microbes have the potential to possess quite unique physiological and biochemical properties. This review outlines a number of function-based metagenomic approaches which are available to screen metagenomic libraries constructed from marine ecosystems to facilitate the exploitation of some of these potentially novel biocatalysts. Functional screens to isolate novel cellulases, lipases and esterases, proteases, laccases, oxidoreductases and biosurfactants are described, together with approaches which can be employed to help overcome some of the typical problems encountered with functional metagenomic-based screens.
Collapse
Affiliation(s)
- J Kennedy
- Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
33
|
Morohoshi T, Oikawa M, Sato S, Kikuchi N, Kato N, Ikeda T. Isolation and characterization of novel lipases from a metagenomic library of the microbial community in the pitcher fluid of the carnivorous plant Nepenthes hybrida. J Biosci Bioeng 2011; 112:315-20. [PMID: 21778111 DOI: 10.1016/j.jbiosc.2011.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 10/18/2022]
Abstract
Members of the genus Nepenthes are carnivorous plants that use the pitfall method of insect capture as a supplementary nutritional source. We extracted metagenomic DNA from the microbial community found in the pitcher fluid of Nepenthes and constructed a plasmid-based metagenomic library. An activity-based screening method enabled the isolation of two lipase genes, lip1 and lip2. Both Lip1 and Lip2 belong to a novel family or subfamily of lipases and show lipase activities in acidic conditions, such as those found in pitcher fluid. This study was conducted under the assumption that the secreted Lip1 and Lip2 were capable of enzymatic activity in the acidic pitcher fluid.
Collapse
Affiliation(s)
- Tomohiro Morohoshi
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Novel antibacterial proteins from the microbial communities associated with the sponge Cymbastela concentrica and the green alga Ulva australis. Appl Environ Microbiol 2010; 77:1512-5. [PMID: 21183639 DOI: 10.1128/aem.02038-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The functional metagenomic screening of the microbial communities associated with a temperate marine sponge and a green alga identified three novel hydrolytic enzymes with antibacterial activities. The results suggest that uncultured alpha- and gammaproteobacteria contain new classes of proteins that may be a source of antibacterial agents.
Collapse
|