1
|
Li X, Liu S, Qi D, Qi H, Wang Y, Zhao K, Tian F. Genome-wide identification and expression of the peroxisome proliferator-activated receptor gene family in the Tibetan highland fish Gymnocypris przewalskii. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1685-1699. [PMID: 36469183 DOI: 10.1007/s10695-022-01152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR) plays an important role in the regulation of lipid metabolism and has been widely identified in diverse species. Gymnocypris przewalskii is a native fish of the Qinghai Tibetan Plateau that survives in a chronically cold environment. In the current study, we conducted genome-wide identification of PPAR genes, revealing the existence of seven PPARs in the G. przewalskii genome. Collinearity was observed between two copies of PPARαb and PPARγ in G. przewalskii, suggesting that the additional copy might be gained through whole genome duplication. Both phylogenetic and multiple sequence alignment analyses indicated that PPARs in G. przewalskii were conserved with teleosts. The cold treatment (10 °C and 4 °C) led to the developmental delay of G. przewalskii embryos. Continuous expression of PPARs was observed during the embryonic development of G. przewalskii under normal and cold conditions, with significantly different transcriptional patterns. These results indicated that PPARs participated in the embryonic development of G. przewalskii, and were involved in the cold response during development. The current study proposed a potential role of PPARs in the cold response in the embryonic development of G. przewalskii, which shed light on understanding cold adaptation in Tibetan highland fish.
Collapse
Affiliation(s)
- Xiaohuan Li
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810001, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sijia Liu
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810001, Qinghai, China
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Hongfang Qi
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris Przewalskii, Xining, Qinghai, China
| | - Yang Wang
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris Przewalskii, Xining, Qinghai, China
| | - Kai Zhao
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810001, Qinghai, China.
| | - Fei Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810001, Qinghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Palomino J, Gómez C, Otarola MT, Dettleff P, Patiño-García D, Orellana R, Moreno RD. Embryo Buoyancy and Cell Death Gene Expression During Embryogenesis of Yellow-Tail Kingfish Seriola lalandi. Front Cell Dev Biol 2021; 9:630947. [PMID: 33816479 PMCID: PMC8012911 DOI: 10.3389/fcell.2021.630947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
In pelagic fish, embryo buoyancy is a noteworthy aspect of the reproductive strategy, and is associated with overall quality, survival, and further developmental success. In captivity, the loss of buoyancy of early embryos correlates with high mortality that might be related to massive cell death. Therefore, the aim of this study was to evaluate under captivity conditions the expression of genes related to the apoptosis process during the early embryonic development of the pelagic fish Seriola lalandi, and its relationship to the buoyancy of embryos. The relative expression of bcl2, bax-like, casp9, casp8, and casp3 was evaluated by RT-qPCR and FasL/Fas protein levels by western blot in five development stages of embryos sorted as floating or low-floating. All genes examined were expressed in both floating and low-floating embryos up to 24 h of development. Expression of the pro-apoptotic factors bax, casp9, casp8, and casp3 was higher in low-floating as compared with floating embryos in a developmental stage-specific manner. In contrast, there was no difference in expression of bcl2 between floating and low-floating embryos. Fas protein was detected as a single band in floating embryos without changes in expression throughout development; however, in low-floating embryos, three higher intensity reactive bands were detected in the 24-h embryos. Interestingly, FasL was only detected at 24-h in floating embryos, whereas in low-floating samples this ligand was present at all stages, with a sharp increase as development progressed. Cell death, as evaluated by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, was highly increased in low-floating embryos as compared to floating embryos throughout all developmental stages, with the highest levels observed during the gastrula stage and at 24 h. The results of this study suggest that an increase in cell death, probably associated with the intrinsic and extrinsic apoptosis pathways, is present in low-floating embryos that might explain their lower developmental potential under captivity conditions.
Collapse
Affiliation(s)
- Jaime Palomino
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratorio de Reproducción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Camila Gómez
- Laboratorio de Reproducción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - María Teresa Otarola
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratorio de Reproducción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Phillip Dettleff
- Laboratorio FAVET-INBIOGEN, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.,Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Sede La Florida, Santiago, Chile
| | - Daniel Patiño-García
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias Quiímicas y Biológicas, Facultad de Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Renan Orellana
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias Quiímicas y Biológicas, Facultad de Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Ricardo D Moreno
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
3
|
Myers JN, Dyce PW, Chatakondi NG, Gorman SA, Quiniou SM, Su B, Peatman E, Dunham RA, Butts IA. Analysis of specific mRNA gene expression profiles as markers of egg and embryo quality for hybrid catfish aquaculture. Comp Biochem Physiol A Mol Integr Physiol 2020; 243:110675. [DOI: 10.1016/j.cbpa.2020.110675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
|
4
|
Oogenesis and Egg Quality in Finfish: Yolk Formation and Other Factors Influencing Female Fertility. FISHES 2018. [DOI: 10.3390/fishes3040045] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Egg quality in fishes has been a topic of research in aquaculture and fisheries for decades as it represents an important life history trait and is critical for captive propagation and successful recruitment. A major factor influencing egg quality is proper yolk formation, as most fishes are oviparous and the developing offspring are entirely dependent on stored egg yolk for nutritional sustenance. These maternally derived nutrients consist of proteins, carbohydrates, lipids, vitamins, minerals, and ions that are transported from the liver to the ovary by lipoprotein particles including vitellogenins. The yolk composition may be influenced by broodstock diet, husbandry, and other intrinsic and extrinsic conditions. In addition, a number of other maternal factors that may influence egg quality also are stored in eggs, such as gene transcripts, that direct early embryonic development. Dysfunctional regulation of gene or protein expression may lead to poor quality eggs and failure to thrive within hours of fertilization. These gene transcripts may provide important markers as their expression levels may be used to screen broodstock for potential spawning success. In addition to such intrinsic factors, stress may lead to ovarian atresia or reproductive failure and can impact fish behavior, fecundity, and ovulation rate. Finally, postovulatory aging may occur when eggs become overripe and the fish fails to spawn in a timely fashion, leading to low fertility, often encountered during manual strip spawning of fish.
Collapse
|
5
|
Gwon SH, Kim HK, Baek HJ, Lee YD, Kwon JY. Cathepsin B & D and the Survival of Early Embryos in Red Spotted Grouper, Ephinephelus akaara. Dev Reprod 2017; 21:457-466. [PMID: 29354791 PMCID: PMC5769140 DOI: 10.12717/dr.2017.21.4.457] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 11/24/2017] [Accepted: 12/02/2017] [Indexed: 12/20/2022]
Abstract
Survival of embryos largely depends on yolk processing during early development. Proteolytic enzymes, cathepsin B & D (ctsb & ctsd) are known to have some important roles in yolk processing of various fish species. Mature female red spotted groupers were injected with human chorionic gonadotropin (HCG) to induce ovulation. The fertilized eggs and embryos were sampled at 0, 4 and 24 HPF (hours post fertilization). Survivals of each groups of embryos were checked at 24 and 48 HPH (hours post hatching). Transcripts of ctsb & ctsd showed the highest level at 0 HPF and relatively high at 4 HPF, but greatly decreased at 24 HPF. In bad egg quality group (BE, embryos survived until 24 HPH), transcript level of ctsb at 4 HPF were significantly lower than the transcript level at the same stage in good egg quality group (GE, embryos survived until 48 HPH) while no significant change of ctsb transcript level was observed at 0 or 24 HPF between BE and GE. Transcript level of ctsd was decreased at 24 HPF, but the difference was not as strong as the case of ctsb transcript. These results suggest that maternal ctsb transcript rather than ctsd transcript is likely to be involved in egg quality resulting in the difference of survival rate of embryos at early developmental period in this species.
Collapse
Affiliation(s)
- Seo-Hui Gwon
- Dept. of Aquatic Life Medical Science, Sunmoon University, Asan 31460, Korea
| | - Hyun Kyu Kim
- Dept. of Aquatic Life Medical Science, Sunmoon University, Asan 31460, Korea
| | - Hea Ja Baek
- Dept. of Marine Biology, Pukyong National University, Busan 48513, Korea
| | - Young-Don Lee
- Dept. of Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - Joon Yeong Kwon
- Dept. of Aquatic Life Medical Science, Sunmoon University, Asan 31460, Korea
| |
Collapse
|
6
|
Cocci P, Mozzicafreddo M, Angeletti M, Mosconi G, Palermo FA. Differential tissue regulation of peroxisome proliferator-activated receptor α (PPARα) and cannabinoid receptor 1 (CB1) gene transcription pathways by diethylene glycol dibenzoate (DEGB): preliminary observations in a seabream (Sparus aurata) in vivo model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:87-93. [PMID: 28843100 DOI: 10.1016/j.etap.2017.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
Today a variety of endocrine disrupting chemicals (EDCs) are recognized in the group of metabolic disruptors, a wide range of environmental contaminants that alter energy balance regulation by affecting the peroxisome proliferator-activated receptor (PPAR)/retinoid X receptor (RXR) pathway. Herein, we investigated the effect of diethylene glycol dibenzoate (DEGB), a dibenzoate-based plasticizer used as alternative to phthalates, on the expression of key genes involved in lipid metabolism and energy balance by using Sparus aurata juveniles as models. We also evaluated the correlation between cannabinoid receptor 1 (CB1) and PPARα transcriptional patterns in both liver and brain tissues. Exposure to the highest DEGB concentration differentially modulated PPARα/CB1 transcriptional pathways in liver/brain tissues of seabream. We hypothesize that, at peripheral level (i.e. liver), DEGB acts as PPARα agonist resulting in a potential stimulation of key lipolytic genes and a concomitant down-regulation of endocannabinoid metabolic enzyme genes.
Collapse
Affiliation(s)
- Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Matteo Mozzicafreddo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Mauro Angeletti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Francesco Alessandro Palermo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy.
| |
Collapse
|
7
|
Cunha V, Santos MM, Moradas-Ferreira P, Castro LFC, Ferreira M. Simvastatin modulates gene expression of key receptors in zebrafish embryos. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:465-476. [PMID: 28682217 DOI: 10.1080/15287394.2017.1335258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
Nuclear receptors (NR) are involved in the regulation of several metabolic processes and it is well known that these constituents may be modulated by different chemicals classes, including pharmaceuticals that may activate or antagonize NR. In mammals, some pharmaceuticals modulate the transcription of pregnane X receptor, Pxr, peroxisome proliferator activated receptor, Ppars, and aryl hydrocarbon receptor, Ahr, affecting mRNA expression of genes belonging to various regulatory pathways, including lipid metabolism and detoxification mechanisms. The aim of this study was to determine the effects of simvastatin (SIM), an anticholesterolemic drug, on selected NR and AhR mRNA transcription levels during zebrafish early development. Embryos were collected at different development stages (0, 2, 6, 14, 24, 48, and 72 hr post fertilization (hpf)) and mRNA of all target NR was detected at all time points. Embryos (1 and 24 hpf) were exposed to different concentrations of SIM (5 or 50 μg/L) in two differing assays with varying exposure times (2 or 80 hr). The transcription levels of ahr2, raraa, rarab, rarga, pparαa, pparβ1, pparγ, pxr, rxraa, rxrab, rxrbb, rxrga, rxrgb, as well as levels of cholesterol (Chol) were measured after exposure. SIM exerted no marked effect on Chol levels, and depending upon exposure duration mRNA levels of NR and AhR either increased or decreased. After 2 hr SIM treatment in 24 hpf embryos, transcription of ppars, pxr, and ahr was up-regulated, while after 80 hr mRNA levels of pxr and ahr were decreased with no marked changes in ppars. Data demonstrate that SIM produced alterations in gene expression of NR which are involved in varying physiological functions and that may disturb regulation of different physiological processes which might impair fish survival and ecosystems regeneration.
Collapse
Affiliation(s)
- V Cunha
- a CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n , Matosinhos , Portugal
- b ICBAS/UP-Institute of Biomedical Sciences Abel Salazar, University of Porto , Porto , Portugal
| | - M M Santos
- a CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n , Matosinhos , Portugal
- c FCUP-Department of Biology , Faculty of Sciences, University of Porto, Rua do Campo Alegre , Porto , Portugal
| | - P Moradas-Ferreira
- b ICBAS/UP-Institute of Biomedical Sciences Abel Salazar, University of Porto , Porto , Portugal
- d I3S-Institute for Research and Innovation in Health, University of Porto , Porto , Portugal
| | - L F C Castro
- a CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n , Matosinhos , Portugal
- c FCUP-Department of Biology , Faculty of Sciences, University of Porto, Rua do Campo Alegre , Porto , Portugal
| | - M Ferreira
- a CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n , Matosinhos , Portugal
- e School of Marine Studies, Faculty of Science , Technology and Environment, The University of the South Pacific, Private mail box, Laucala Bay Road , Suva , Fiji Islands
| |
Collapse
|
8
|
Palomino J, Herrera G, Torres-Fuentes J, Dettleff P, Patel A, Martínez V. Assessment of cathepsin mRNA expression and enzymatic activity during early embryonic development in the yellowtail kingfish Seriola lalandi. Anim Reprod Sci 2017; 180:23-29. [PMID: 28262464 DOI: 10.1016/j.anireprosci.2017.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/09/2017] [Accepted: 02/19/2017] [Indexed: 12/14/2022]
Abstract
In pelagic species such as Seriola lalandi, survival of both the eggs and embryos depends on yolk processing during oocyte maturation and embryo development. The main enzymes involved in these processes are the cathepsins, which are essential for the hydration process, acquiring buoyancy and nutrition of the embryo before hatching. This study aimed to investigate the mRNA expression profiles of cathepsins B, D and L (catb, catd and catl) and the activity of these enzymes during early development in S. lalandi. We included previtellogenic oocytes (PO). All three enzymes were highly expressed in PO, but the expression was reduced throughout development. Between PO and recently spawned eggs (E1) the transcript to catb and catd decreased, unlike catl. Cathepsin B activity, showed stable levels between PO until blastula stage (E4). High activities levels of cathepsins D and L were observed in E1 in comparison with later developmental stages. Cathepsin L activity remained constant until E1, consistent with observations in other pelagic spawners, where its participation in a second protolithic cleavage of the yolk proteins, has been proposed for this enzyme. Their profiles of both mRNA expression and enzymatic activity indicate the importance of these enzymes during early development and suggest different roles in egg yolk processing for the hydration process and nutrition in early embryos in this species.
Collapse
Affiliation(s)
- Jaime Palomino
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Avda. Santa Rosa 11735, Casilla 2 Correo 15, Santiago, Chile; Animal Reproduction Laboratory, Faculty of Veterinary Sciences, University of Chile, Avda. Santa Rosa 11735, Casilla 2 Correo 15, Santiago, Chile
| | - Giannina Herrera
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Avda. Santa Rosa 11735, Casilla 2 Correo 15, Santiago, Chile; Animal Reproduction Laboratory, Faculty of Veterinary Sciences, University of Chile, Avda. Santa Rosa 11735, Casilla 2 Correo 15, Santiago, Chile
| | - Jorge Torres-Fuentes
- Animal Reproduction Laboratory, Faculty of Veterinary Sciences, University of Chile, Avda. Santa Rosa 11735, Casilla 2 Correo 15, Santiago, Chile
| | - Phillip Dettleff
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Avda. Santa Rosa 11735, Casilla 2 Correo 15, Santiago, Chile
| | - Alok Patel
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Avda. Santa Rosa 11735, Casilla 2 Correo 15, Santiago, Chile
| | - Víctor Martínez
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Avda. Santa Rosa 11735, Casilla 2 Correo 15, Santiago, Chile.
| |
Collapse
|
9
|
Cocci P, Capriotti M, Mosconi G, Campanelli A, Frapiccini E, Marini M, Caprioli G, Sagratini G, Aretusi G, Palermo FA. Alterations of gene expression indicating effects on estrogen signaling and lipid homeostasis in seabream hepatocytes exposed to extracts of seawater sampled from a coastal area of the central Adriatic Sea (Italy). MARINE ENVIRONMENTAL RESEARCH 2017; 123:25-37. [PMID: 27855314 DOI: 10.1016/j.marenvres.2016.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/05/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
Recent evidences suggest that the toxicological effects of endocrine disrupting chemicals (EDCs) involve multiple nuclear receptor-mediated pathways, including estrogen receptor (ER) and peroxisome proliferator-activated receptor (PPAR) signaling systems. Thus, our objective in this study was to detect the summated endocrine effects of EDCs with metabolic activity in coastal waters of the central Adriatic Sea by means of a toxicogenomic approach using seabream hepatocytes. Gene expression patterns were also correlated with seawater levels of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). We found that seawater extracts taken at certain areas induced gene expression profiles of ERα/vitellogenin, PPARα/Stearoyl-CoA desaturase 1A, cytochrome P4501A (CYP1A) and metallothionein. These increased levels of biomarkers responses correlated with spatial distribution of PAHs/PCBs concentrations observed by chemical analysis in the different study areas. Collectively, our data give a snapshot of the presence of complex EDC mixtures that are able to perturb metabolic signaling in coastal marine waters.
Collapse
Affiliation(s)
- Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino MC, Italy
| | - Martina Capriotti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino MC, Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino MC, Italy
| | - Alessandra Campanelli
- National Research Council, Institute of Marine Science CNR-ISMAR, L.go Fiera della Pesca, 2, 60125 Ancona, Italy
| | - Emanuela Frapiccini
- National Research Council, Institute of Marine Science CNR-ISMAR, L.go Fiera della Pesca, 2, 60125 Ancona, Italy
| | - Mauro Marini
- National Research Council, Institute of Marine Science CNR-ISMAR, L.go Fiera della Pesca, 2, 60125 Ancona, Italy
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, I-62032 Camerino MC, Italy
| | - Gianni Sagratini
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, I-62032 Camerino MC, Italy
| | - Graziano Aretusi
- Controllo Statistico, Pescara, Italy(1); Marine Protected Area Torre del Cerrano, 64025 Pineto, TE, Italy
| | - Francesco Alessandro Palermo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino MC, Italy.
| |
Collapse
|
10
|
Palermo FA, Cocci P, Mozzicafreddo M, Arukwe A, Angeletti M, Aretusi G, Mosconi G. Tri- m-cresyl phosphate and PPAR/LXR interactions in seabream hepatocytes: revealed by computational modeling (docking) and transcriptional regulation of signaling pathways. Toxicol Res (Camb) 2016; 5:471-481. [PMID: 30090361 PMCID: PMC6061042 DOI: 10.1039/c5tx00314h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/07/2015] [Indexed: 11/21/2022] Open
Abstract
The interactions between tri-m-cresyl phosphate (TMCP; an organophosphate flame retardant) and peroxisome proliferator activated receptors (PPARs) or liver X receptor α (LXRα) were investigated in seabream hepatocytes. The study was designed to characterize the binding of TMCP to PPARα, PPARγ and LXRα by computational modeling (docking) and transcriptional regulation of signaling pathways. TMCP mainly established a non-polar interaction with each receptor. These findings reflect the hydrophobic nature of this binding site, with fish LXRα showing the highest binding efficiency. Further, we have investigated the ability of TMCP to activate PPAR and LXR controlled transcriptional processes involved in lipid/cholesterol metabolism. TMCP induced the expression of all the target genes measured. All target genes were up-regulated at all exposure doses, except for fatty acid binding protein 7 (FABP7) and carnitine palmitoyltransferase 1B. Collectively, our data indicate that TMCP can affect fatty acid synthesis/uptake and cholesterol metabolism through LXRα and PPARs, together with interactions between these transcription factors in seabream liver.
Collapse
Affiliation(s)
- Francesco Alessandro Palermo
- School of Biosciences and Veterinary Medicine , University of Camerino , Via Gentile III Da Varano , I-62032 Camerino , MC , Italy . ; ; Tel: +39 0737 404920
| | - Paolo Cocci
- School of Biosciences and Veterinary Medicine , University of Camerino , Via Gentile III Da Varano , I-62032 Camerino , MC , Italy . ; ; Tel: +39 0737 404920
| | - Matteo Mozzicafreddo
- School of Biosciences and Veterinary Medicine , University of Camerino , Via Gentile III Da Varano , I-62032 Camerino , MC , Italy . ; ; Tel: +39 0737 404920
| | - Augustine Arukwe
- Department of Biology , Norwegian University of Science and Technology (NTNU) , Høgskoleringen 5 , 7491 Trondheim , Norway
| | - Mauro Angeletti
- School of Biosciences and Veterinary Medicine , University of Camerino , Via Gentile III Da Varano , I-62032 Camerino , MC , Italy . ; ; Tel: +39 0737 404920
| | - Graziano Aretusi
- Controllo Statistico , Pescara , Italy . http://www.controllostatistico.com
- Marine Protected Area Torre del Cerrano , 64025 Pineto , TE , Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicine , University of Camerino , Via Gentile III Da Varano , I-62032 Camerino , MC , Italy . ; ; Tel: +39 0737 404920
| |
Collapse
|
11
|
Identification and structural characterization of two peroxisome proliferator activated receptors and their transcriptional changes at different developmental stages and after feeding with different fatty acids. Comp Biochem Physiol B Biochem Mol Biol 2016; 193:9-16. [DOI: 10.1016/j.cbpb.2015.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/20/2015] [Accepted: 12/02/2015] [Indexed: 01/06/2023]
|
12
|
Giannetto A, Maisano M, Cappello T, Oliva S, Parrino V, Natalotto A, De Marco G, Barberi C, Romeo O, Mauceri A, Fasulo S. Hypoxia-Inducible Factor α and Hif-prolyl Hydroxylase Characterization and Gene Expression in Short-Time Air-Exposed Mytilus galloprovincialis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:768-781. [PMID: 26277612 DOI: 10.1007/s10126-015-9655-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/02/2015] [Indexed: 06/04/2023]
Abstract
Aquatic organisms experience environmental hypoxia as a result of eutrophication and naturally occurring tidal cycles. Mytilus galloprovincialis, being an anoxic/hypoxic-tolerant bivalve, provides an excellent model to investigate the molecular mechanisms regulating oxygen sensing. Across the animal kingdom, inadequacy in oxygen supply is signalled predominantly by hypoxia-inducible factors (HIF) and Hif-prolyl hydroxylases (PHD). In this study, hif-α 5'-end and partial phd mRNA sequences from M. galloprovincialis were obtained. Phylogenetic and molecular characterization of both HIF-α and PHD putative proteins showed shared key features with the respective orthologues from animals strongly suggesting their crucial involvement in the highly conserved oxygen sensing pathway. Both transcripts displayed a tissue-specific distribution with prominent expression in gills. Quantitative gene expression analysis of hif-α and phd mRNAs from gills of M. galloprovincialis demonstrated that both these key sensors are transcriptionally modulated by oxygen availability during the short-time air exposure and subsequent re-oxygenation treatments proving that they are critical players of oxygen-sensing mechanisms in mussels. Remarkably, hif-α gene expression showed a prompt and transient response suggesting the precocious implication of this transcription factor in the early phase of the adaptive response to hypoxia in Mytilus. HIF-α and PHD proteins were modulated in a time-dependent manner with trends comparable to mRNA expression patterns, thus suggesting a central role of their transcriptional regulation in the hypoxia tolerance strategies in marine bivalves. These results provide molecular information about the effects of oxygen deficiency and identify hypoxia-responsive biomarker genes in mussels applicable in ecotoxicological studies of natural marine areas.
Collapse
Affiliation(s)
- Alessia Giannetto
- Department of Biological and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Maria Maisano
- Department of Biological and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Tiziana Cappello
- Department of Biological and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Sabrina Oliva
- Department of Biological and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Vincenzo Parrino
- Department of Biological and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Antonino Natalotto
- Department of Biological and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Giuseppe De Marco
- Department of Biological and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Chiara Barberi
- Department of Biological and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Orazio Romeo
- Department of Biological and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Angela Mauceri
- Department of Biological and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Salvatore Fasulo
- Department of Biological and Environmental Sciences, University of Messina, 98166, Messina, Italy
| |
Collapse
|
13
|
Cocci P, Mosconi G, Arukwe A, Mozzicafreddo M, Angeletti M, Aretusi G, Palermo FA. Effects of Diisodecyl Phthalate on PPAR:RXR-Dependent Gene Expression Pathways in Sea Bream Hepatocytes. Chem Res Toxicol 2015; 28:935-47. [PMID: 25825955 DOI: 10.1021/tx500529x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Evidence that endocrine-disrupting chemicals (EDCs) may target metabolic disturbances, beyond interference with the functions of the endocrine systems has recently accumulated. Among EDCs, phthalate plasticizers like the diisodecyl phthalate (DiDP) are commonly found contaminants of aquatic environments and have been suggested to function as obesogens by activating peroxisome proliferator activated receptors (PPARs), a subset of nuclear receptors (NRs) that act as metabolic sensors, playing pivotal roles in lipid homeostasis. However, little is known about the modulation of PPAR signaling pathways by DiDP in fish. In this study, we have first investigated the ligand binding efficiency of DiDP to the ligand binding domains of PPARs and retinoid-X-receptor-α (RXRα) proteins in fish using a molecular docking approach. Furthermore, in silico predictions were integrated by in vitro experiments to show possible dose-relationship effects of DiDP on PPAR:RXR-dependent gene expression pathways using sea bream hepatocytes. We observed that DiDP shows high binding efficiency with piscine PPARs demonstrating a greater preference for RXRα. Our studies also demonstrated the coordinate increased expression of PPARs and RXRα, as well as their downstream target genes in vitro. Principal component analysis (PCA) showed the strength of relationship between transcription of most genes involved in fatty acid metabolism and PPAR mRNA levels. In particular, fatty acid binding protein (FABP) was highly correlated to all PPARs. The results of this study suggest that DiDP can be considered an environmental stressor that activates PPAR:RXR signaling to promote long-term changes in lipid homeostasis leading to potential deleterious physiological consequences in teleost fish.
Collapse
Affiliation(s)
- Paolo Cocci
- †School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino (MC), Italy
| | - Gilberto Mosconi
- †School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino (MC), Italy
| | - Augustine Arukwe
- ‡Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Matteo Mozzicafreddo
- †School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino (MC), Italy
| | - Mauro Angeletti
- †School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino (MC), Italy
| | - Graziano Aretusi
- §Controllo Statistico, Pescara, Italy.,⊥Marine Protected Area Torre del Cerrano, 64025 Pineto (TE), Italy
| | - Francesco Alessandro Palermo
- †School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino (MC), Italy
| |
Collapse
|
14
|
Xiao Y, Zhou Y, Xiong Z, Zou L, Jiang M, Luo Z, Wen S, Liu W, Liu S, Li W. Involvement of JNK in the embryonic development and organogenesis in zebrafish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:716-725. [PMID: 23884438 DOI: 10.1007/s10126-013-9520-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
c-Jun N-terminal kinase (JNK) is one of the mitogen-activated protein kinases. Previous studies showed that the JNK is involved in signaling pathways initiating cell cycle, and eventually, causing apoptosis through persistent activation in mammals. In this article, it is further revealed that the jnk1 gene is closely related with the embryonic development and organogenesis in zebrafish. RT-PCR and Western blot analysis show that there were distinct expression patterns of JNK at the different developmental stages as well as in the various tissues in zebrafish. Knockdown of jnk1 by RNA interference (RNAi) resulted in high lethal, serious retardation and malformations of embryos in zebrafish. SP600125, a JNK-specific inhibitor, gives rise to high mortality in zebrafish, similar to that caused by the jnk1 RNA interference. SP600125 is also responsible for the severe abnormality of organs, especially the skeletal system, such as skull, mandible deficiency, and cyrtosis heterauxesis. The results also indicate that the inhibition of JNK by SP600125 suppresses the ovarian differentiation during the embryo development in zebrafish. Overall, our study demonstrates that the jnk1 gene is required for ovary differentiation and development in the zebrafish, and down-regulated JNK directly inhibits ovary differentiation during early ontogenetic stages.
Collapse
Affiliation(s)
- Yamei Xiao
- Key Lab of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|