1
|
Cao X, Fang W, Li J, Zheng J, Wang X, Mai K, Ai Q. Long noncoding RNA lincsc5d regulates hepatic cholesterol synthesis by modulating sterol C5 desaturase in large yellow croaker. Comp Biochem Physiol B Biochem Mol Biol 2023; 263:110800. [PMID: 36167286 DOI: 10.1016/j.cbpb.2022.110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/28/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
Although long noncoding RNA (lncRNA) plays a vital role in cholesterol metabolism, very little information is available in fish. Thus, a 10-week feeding experiment was performed to estimate the effects of lncRNA on cholesterol metabolism in large yellow croaker fed with fish oil (FO), soybean oil (SO), olive oil (OO), and palm oil (PO) diets. Results showed that fish fed with OO and PO diets had higher liver total cholesterol (TC) and cholesterol ester (CE) contents compared with fish fed with FO diets. Analysis of the KEGG pathway showed that the steroid biosynthesis pathway was enriched in comparisons FO vs SO, FO vs OO, and FO vs PO. Meanwhile, sterol C5 desaturase (SC5D), a cholesterol synthase, was up-regulated in the steroid biosynthesis pathway. SC5D was widely expressed in all tissues examined, and the highest expression of SC5D was detected in brain. More importantly, a novel lncRNA associated with sc5d gene was identified by RNA sequencing and named as lincsc5d. The tissue distribution of lincsc5d was similar to that of sc5d. A nuclear/cytoplasmic RNA separation assay showed that lincsc5d was a nucleus-enriched lncRNA. qRT-PCR results demonstrated that lincsc5d was markedly up-regulated in the SO, OO, and PO groups. Furthermore, the results of TC content and the lincsc5d and sc5d expression in hepatocytes agreed with in vivo results. In conclusion, this study indicated that vegetable oils, especially OO and PO, increased hepatic cholesterol levels by promoting cholesterol synthesis, and lncRNA lincsc5d and sc5d might be involved in cholesterol synthesis.
Collapse
Affiliation(s)
- Xiufei Cao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Wei Fang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - JiaMin Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Jichang Zheng
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Xiuneng Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, People's Republic of China.
| |
Collapse
|
2
|
Effect of Lemna minor supplemented diets on growth, digestive physiology and expression of fatty acids biosynthesis genes of Cyprinus carpio. Sci Rep 2022; 12:3711. [PMID: 35260667 PMCID: PMC8904519 DOI: 10.1038/s41598-022-07743-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/21/2022] [Indexed: 11/30/2022] Open
Abstract
The potential nutritional value of duckweed Lemna minor (Lemnaceae) was evaluated for common carp Cyprinus carpio fry. Fish were fed diets containing five graded levels of duckweed: 0% (LM0, control), 5% (LM5), 10% (LM10), 15% (LM15) and 20% (LM20). The final weight and specific growth rate were significantly higher in LM15 and LM20 diets fed fish compared to others. Feed conversion ratio was minimum in fish fed diet LM20. Amylase activity was significantly higher in LM0 treatment. Total protease, trypsin and chymotrypsin activities showed linear relationships with the increased level of duckweed in the diet. Protein and essential amino acids contents were significantly higher in carp fed diets LM15 and LM20 compared to others. Lipid content was significantly higher in fish fed duckweed-based diets compared to control. A direct relationship was found between the inclusion level of duckweed in the diet and n-3 long-chain polyunsaturated fatty acid (LC-PUFA) content of carp. Contents of desaturated and elongated products of dietary linolenic acid (18:3n-3) including 20:4n-3, 20:5n-3, 22:5n-3 and 22:6n-3 increased in a graded manner with increasing dietary duckweed. The monounsaturated fatty acids and n-6 PUFA contents reduced significantly in fish fed duckweed. Expression of fads2d6, elovl2, elovl5 and fas were higher in carp fed diets LM10, LM15 and LM20 compared to control fish. The inclusion of L. minor in diet enhanced the nutritional value of carp by increasing protein, lipid, amino acids and n-3 PUFA contents.
Collapse
|
3
|
Liang Y, Guo H, Liu B, Zhu K, Jiang S, Zhang D. Genomic structure and characterization of growth hormone receptors from golden pompano Trachinotus ovatus and their expression regulation by feed types. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1845-1865. [PMID: 31321605 DOI: 10.1007/s10695-019-00682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
In this study, sequence analysis showed that ToGHR1 and ToGHR2 encoded polypeptides of 577 and 588 amino acids, respectively. Bioinformatics analysis showed that both ToGHR1 and ToGHR2 contain FN3 domains and transmembrane domains, which have glycosylation and phosphorylation sites. The exons of ToGHR1 and exons 4-10 of ToGHR2 are homologous to exons 2 and 4-9 in Homo sapiens genes, respectively. Only 3 SSR sites in ToGHR1 have SSR polymorphisms, and ToGHR2 has no SSR polymorphisms. ToGHR1 and ToGHR2 have high homology with GHR1 and GHR2 of many fish by BLAST. qRT-PCR was used to examine the expression profile of ToGHR mRNA in 12 normal liver and intestine tissue samples from 3 feed-type groups. The results showed that ToGHR is expressed in all 12 tissues, especially liver and muscle tissues, which showed higher ToGHR expression than that in other tissues (p < 0.05). Experiments on feed-type groups may indicate that high levels of LC-PUFA in squid bait can promote ToGHR1 expression and simultaneously inhibit ToGHR2 expression in the liver tissue. In addition, the high levels of LC-PUFA in food could inhibit intestinal ToGHR1 expression, and the intermediate levels may promote intestinal ToGHR1 expression. However, the unsaturated fatty acid content in the food does not affect the expression of intestinal ToGHR2.
Collapse
Affiliation(s)
- Yinyin Liang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Huayang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Bo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Kecheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Shigui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Dianchang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China.
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China.
| |
Collapse
|
4
|
Betancor MB, Ortega A, de la Gándara F, Tocher DR, Mourente G. Performance, feed utilization, and hepatic metabolic response of weaned juvenile Atlantic bluefin tuna (Thunnus thynnus L.): effects of dietary lipid level and source. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:697-718. [PMID: 30470945 PMCID: PMC6500510 DOI: 10.1007/s10695-018-0587-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/05/2018] [Indexed: 05/11/2023]
Abstract
Two trials were performed using extruded diets as on-growing feeds for weaned Atlantic bluefin tuna (Thunnus thynnus; ABT) to establish adequate dietary levels of both lipid and omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs), and impacts on lipid metabolism via liver gene expression. In trial A, ABT were fed with either a commercial feed (Magokoro®; MGK) as a reference diet or two experimental feeds differing in lipid levels (15 or 20%) using krill oil (KO) as the single lipid source in order to estimate suitable lipid content. Fish fed MGK displayed the highest growth, followed by 15KO, and therefore a dietary lipid content of 15% was considered preferable to 20% at this stage. In trial B, fish were fed MGK, 15KO, or a feed containing 15% lipid with a blend of KO and rapeseed oil (RO) (1:1, v/v; 15KORO). Fish fed 15KO and 15KORO showed no difference in weight gain, specific growth rate, and fork length. Increasing dietary lipid level or including vegetable oil, RO, in the feeds did not increase liver lipid content. Liver fatty acid compositions largely reflected dietary profiles confirming very limited endogenous LC-PUFA biosynthesis. Liver of ABT fed 15KO and 20KO displayed the highest contents of docosahexaenoic acid (DHA). The hepatic expression of genes encoding enzymes and transcription factors involved in lipid and fatty acid metabolism, as well as genes encoding antioxidant enzymes, showed that many of these genes were regulated by dietary lipid and LC-PUFA content. Results suggested that ABT juveniles can be on-grown on inert dry feeds that support good fish growth and the accumulation of DHA.
Collapse
Affiliation(s)
- Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK.
| | - Aurelio Ortega
- Planta Experimental de Cultivos Marinos, Instituto Español de Oceanografía (IEO), 30860 Puerto de Mazarrón, Murcia, Spain
| | - Fernando de la Gándara
- Planta Experimental de Cultivos Marinos, Instituto Español de Oceanografía (IEO), 30860 Puerto de Mazarrón, Murcia, Spain
| | - Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK
| | - Gabriel Mourente
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
5
|
Tan P, Li X, Xiang X, Dong X, Li S, Mai K, Ai Q. Adipose tissue contributes to hepatic pro-inflammatory response when dietary fish oil is replaced by vegetable oil in large yellow croaker (Larimichthys crocea): An ex vivo study. FISH & SHELLFISH IMMUNOLOGY 2019; 84:955-961. [PMID: 30391531 DOI: 10.1016/j.fsi.2018.10.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 05/28/2023]
Abstract
The shortage of fish oil (FO) leads to the extensive use of vegetable oil (VO) in marine fish diets. High replacement percentage of dietary FO by VO induced pro-inflammatory response of adipose tissue (AT) and liver tissue (LT) in large yellow croaker (Larimichthys crocea). Mammalian studies showed that the secretion of cytokines by AT affected the immune response of LT. To investigate whether or not the inflammation response of LT is related to AT in large yellow croaker, LT and AT cells from fish fed FO diet (FOL and FOA) and VO diet (VOL and VOA) were co-cultured in a trans-well system, which resulted in an assembly of the two cells types sharing the culture medium but being separated by the membrane of the insert. Co-culture of FOL and FOA was selected as the control group (FOL-FOA). Results indicated that, when compared with the control group, the expression of pro-inflammatory genes (toll like receptors [TLRs], tumour necrosis factor α [TNFα], interleukin 1β [IL1β], suppressor of cytokine signalling 3 [SOCS3] and cyclooxygenase 2 [COX2]) in FOL was significantly increased in the co-culture group of FOL and VOA (FOL-VOA), while the expression of anti-inflammatory genes (arginase I [ArgI] and transforming growth factor β1 [TGFβ1]) in FOL was significantly depressed. On the contrary, a significantly depressed expression of pro-inflammatory genes (TLRs, TNFα, IL1β and COX2) and increased expression of anti-inflammatory genes (interleukin 10 [IL10]) in VOL was observed in the co-culture group of VOL and FOA (VOL-FOA) when compared with the co-culture group of VOL and VOA (VOL-VOA). The change of immune-related gene expressions in LT cells was attributed to nuclear factor κB (NF-κB) signalling since the expression of the p65 protein was observed to show a similar trend to the expression of pro-inflammatory genes. It is speculated that dietary VO increased the secretion of cytokines, which induced pro-inflammatory response in LT cells. These ex vivo results indicate that AT plays a vital role in LT pro-inflammatory response in fish fed VO diet.
Collapse
Affiliation(s)
- Peng Tan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, And the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Xueshan Li
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, And the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Xiaojun Xiang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, And the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Xiaojing Dong
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, And the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Songlin Li
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, And the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, And the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, And the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong, 266237, People's Republic of China.
| |
Collapse
|
6
|
Xu H, Liao Z, Wang C, Wei Y, Liang M. Hepatic transcriptome of the euryhaline teleost Japanese seabass (Lateolabrax japonicus) fed diets characterized by α-linolenic acid or linoleic acid. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 29:106-116. [PMID: 30465939 DOI: 10.1016/j.cbd.2018.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/04/2018] [Accepted: 11/04/2018] [Indexed: 11/16/2022]
Abstract
To investigate the different effects of dietary α-linolenic acid (ALA) and linoleic acid (LA) on the euryhaline fish Japanese seabass, a feeding trial followed by hepatic transcriptome assay was conducted. Two experimental diets containing 10% LA-rich sunflower seed oil (diet LA) or 10% ALA-rich perilla oil (diet ALA) were used in the feeding trial. LA and ALA in diets were characteristically incorporated into fish tissues while no significant difference was observed in growth performance and body proximate composition between groups LA and ALA. Compared to LA, ALA up-regulated transcription of 49 unigenes and down-regulated those of 311 unigenes. Quantitative RT-PCR studies on eight lipid metabolism-related genes and seven randomly selected genes were conducted to validate the transcriptomic results. Lipid metabolism-related genes ApoA1, ApoA4, ApoE, FABP1, FABP3, FABP4, FATP6, and DGAT1, as well as ribosomal proteins L9e, L13e, and S4e, were transcriptionally down-regulated by ALA. The differentially expressed genes (DEGs) were primarily enriched in Gene Ontology terms such as Lipid transport, Protein metabolic process, and Ribosome biogenesis, as well as in KEGG pathways such as Complement and coagulation cascades and Ribosome. The Protein-Protein Interaction (PPI) network based on the peptide biosynthesis-related DEGs showed that ribosomal proteins such as SAe, L4e, S4e, L15e, L9e, and L13Ae had high betweenness centrality in the dietary regulation of peptide biosynthetic processes. In conclusion, under the present experimental conditions, a high level of dietary α-linolenic acid tended to suppress lipid transport and protein biosynthetic processes in the liver of Japanese seabass at the gene expression level.
Collapse
Affiliation(s)
- Houguo Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, China
| | - Zhangbin Liao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, Shandong 266071, China
| | - Chengqiang Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, Shandong 266071, China
| | - Yuliang Wei
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, China
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, China.
| |
Collapse
|
7
|
Caballero-Solares A, Xue X, Parrish CC, Foroutani MB, Taylor RG, Rise ML. Changes in the liver transcriptome of farmed Atlantic salmon (Salmo salar) fed experimental diets based on terrestrial alternatives to fish meal and fish oil. BMC Genomics 2018; 19:796. [PMID: 30390635 PMCID: PMC6215684 DOI: 10.1186/s12864-018-5188-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/19/2018] [Indexed: 01/06/2023] Open
Abstract
Background Dependence on marine natural resources threatens the sustainability of Atlantic salmon aquaculture. In the present study, Atlantic salmon fed for 14 weeks with an experimental diet based on animal by-products and vegetable oil (ABP) exhibited reduced growth performance compared with others fed a fish meal/fish oil based experimental diet (MAR) and a plant protein/vegetable oil-based experimental diet (VEG). To characterize the molecular changes underlying the differences in growth performance, we conducted a 44 K microarray study of the liver transcriptome of the three dietary groups. Results The microarray experiment identified 122 differentially expressed features (Rank Products, PFP < 10%). Based on their associated Gene Ontology terms, 46 probes were classified as metabolic and growth-relevant genes, 25 as immune-related, and 12 as related to oxidation-reduction processes. The microarray results were validated by qPCR analysis of 29 microarray-identified transcripts. Diets significantly modulated the transcription of genes involved in carbohydrate metabolism (gck and pfkfb4), cell growth and proliferation (sgk2 and htra1), apoptosis (gadd45b), lipid metabolism (fabp3, idi1, sqs), and immunity (igd, mx, ifit5, and mhcI). Hierarchical clustering and linear correlation analyses were performed to find gene expression patterns among the qPCR-analyzed transcripts, and connections between them and muscle and liver lipid composition. Overall, our results indicate that changes in the liver transcriptome and tissue lipid composition were driven by cholesterol synthesis up-regulation by ABP and VEG diets, and the lower carbohydrate intake in the ABP group. Two of the microarray-identified genes (sgk2 and htra1) might be key to explaining glucose metabolism regulation and the dietary-modulation of the immune system in fish. To evaluate the potential of these genes as predictive biomarkers, we subjected the qPCR data to a stepwise discriminant analysis. Three sets of no more than four genes were found to be able to predict, with high accuracy (67–94%), salmon growth and fatty acid composition. Conclusions This study provides new findings on the impact of terrestrial animal and plant products on the nutrition and health of farmed Atlantic salmon, and a new method based on gene biomarkers for potentially predicting desired phenotypes, which could help formulate superior feeds for the Atlantic salmon aquaculture industry. Electronic supplementary material The online version of this article (10.1186/s12864-018-5188-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Maryam Beheshti Foroutani
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | | | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| |
Collapse
|
8
|
Lazzarotto V, Médale F, Larroquet L, Corraze G. Long-term dietary replacement of fishmeal and fish oil in diets for rainbow trout (Oncorhynchus mykiss): Effects on growth, whole body fatty acids and intestinal and hepatic gene expression. PLoS One 2018; 13:e0190730. [PMID: 29364933 PMCID: PMC5783356 DOI: 10.1371/journal.pone.0190730] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/19/2017] [Indexed: 11/18/2022] Open
Abstract
The effects of replacing fishmeal and fish oil with a plant-based diet were studied in juvenile (10g) and ongrowing (250-350g) rainbow trout from first-feeding. Feed-related differences in the intestinal and hepatic transcriptome were examined in juveniles after 7 months of feeding at 7°C. Based on microarray results obtained for juveniles, the expression of selected genes related to lipid, cholesterol and energy metabolisms, was assessed by RT-qPCR in ongrowing trout after 6 additional months of feeding at 17°C. Plasma glucose and cholesterol, lipid content and fatty acid profile of whole body were analyzed at both stages. After 7 months at 7°C, all juveniles reached the same body weight (10g), while at 13 months ongrowing fish fed the totally plant-based diet exhibited lower body weight (234 vs 330-337g). Body lipid content was higher in juveniles fed the totally plant-based diet (13.2 vs 9.4–9.9%), and plasma cholesterol was about 2-times lower in trout fed the plant-based diets at both stages. Fatty acid profile mirrored that of the respective diet, with low proportions of long-chain n-3 polyunsaturated fatty acids in fish fed plant-based diets. Genes involved in protein catabolism, carbohydrate metabolism and trafficking were down-regulated in the intestines of juveniles fed the plant-based diets. This was not true for ongrowing fish. Genes involved in lipid and cholesterol metabolisms were up-regulated in the livers of fish fed plant-based diets for both stages. In this study, feeding trout a totally plant-based diet from first-feeding affect a relatively low proportion of metabolism-related genes. In the longer term, when fish were reared at a higher temperature, only some of these changes were maintained (i.e. up-regulation of lipid/cholesterol metabolism). Although the plant-based diets tested in this study had no major deficiencies, small adjustments in the feed-formula are needed to further optimize growth performance while sparing marine resources.
Collapse
Affiliation(s)
- Viviana Lazzarotto
- INRA - UMR 1419 “Nutrition Métabolisme Aquaculture”, Aquapôle, Saint Pée-sur-Nivelle, France
| | - Françoise Médale
- INRA - UMR 1419 “Nutrition Métabolisme Aquaculture”, Aquapôle, Saint Pée-sur-Nivelle, France
- * E-mail:
| | - Laurence Larroquet
- INRA - UMR 1419 “Nutrition Métabolisme Aquaculture”, Aquapôle, Saint Pée-sur-Nivelle, France
| | - Geneviève Corraze
- INRA - UMR 1419 “Nutrition Métabolisme Aquaculture”, Aquapôle, Saint Pée-sur-Nivelle, France
| |
Collapse
|
9
|
Herrera-Marcos LV, Lou-Bonafonte JM, Arnal C, Navarro MA, Osada J. Transcriptomics and the Mediterranean Diet: A Systematic Review. Nutrients 2017; 9:E472. [PMID: 28486416 PMCID: PMC5452202 DOI: 10.3390/nu9050472] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/25/2017] [Accepted: 05/01/2017] [Indexed: 01/21/2023] Open
Abstract
The Mediterranean diet has been proven to be highly effective in the prevention of cardiovascular diseases and cancer and in decreasing overall mortality. Nowadays, transcriptomics is gaining particular relevance due to the existence of non-coding RNAs capable of regulating many biological processes. The present work describes a systematic review of current evidence supporting the influence of the Mediterranean diet on transcriptomes of different tissues in various experimental models. While information on regulatory RNA is very limited, they seem to contribute to the effect. Special attention has been given to the oily matrix of virgin olive oil. In this regard, monounsaturated fatty acid-rich diets prevented the expression of inflammatory genes in different tissues, an action also observed after the administration of olive oil phenolic compounds. Among these, tyrosol, hydroxytyrosol, and secoiridoids have been found to be particularly effective in cell cycle expression. Less explored terpenes, such as oleanolic acid, are important modulators of circadian clock genes. The wide range of studied tissues and organisms indicate that response to these compounds is universal and poses an important level of complexity considering the different genes expressed in each tissue and the number of different tissues in an organism.
Collapse
Affiliation(s)
- Luis V Herrera-Marcos
- Departamento de Bioquímicay Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, E-50013 Zaragoza, Spain.
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain.
| | - José M Lou-Bonafonte
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain.
- Departamento de Farmacología y Fisiología, Facultad de Ciencias de la Salud y del Deporte, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, E-22002 Huesca, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain.
| | - Carmen Arnal
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain.
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, E-50013 Zaragoza, Spain.
| | - María A Navarro
- Departamento de Bioquímicay Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, E-50013 Zaragoza, Spain.
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain.
| | - Jesús Osada
- Departamento de Bioquímicay Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, E-50013 Zaragoza, Spain.
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain.
| |
Collapse
|
10
|
Tan P, Dong X, Xu H, Mai K, Ai Q. Dietary vegetable oil suppressed non-specific immunity and liver antioxidant capacity but induced inflammatory response in Japanese sea bass (Lateolabrax japonicus). FISH & SHELLFISH IMMUNOLOGY 2017; 63:139-146. [PMID: 28189766 DOI: 10.1016/j.fsi.2017.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
High percentage of dietary vegetable oil (VO) induced negative effects on immunity in numerous fish species. The present study was conducted to investigate whether VO could exert anti-immunological effects by regulating non-specific immunity, liver antioxidant capacity and nuclear factor kappa beta (NF-κB) signaling in Japanese sea bass (Lateolabrax japonicus). Three iso-nitrogenous and iso-lipid diets were formulated by replacing 0% (FO, the control), 50% (FV) and 100% (VO) of fish oil with vegetable oil. Each diet was randomly fed to triplicate groups of fish for 10 weeks. Results showed that the alternative complement pathway (ACP) activity and the disease resistance were significantly lower in fish fed VO diets compared with the control group (P < 0.05). Liver superoxide dismutase (SOD), catalase (CAT) and glutathion peroxidase (GPx) enzyme activities, as well as total antioxidant capacity (T-AOC) significantly decreased in fish fed VO diets (P < 0.05). Meanwhile, significantly low level of liver SOD1 and CAT mRNA, nuclear factor erythroid 2-related factor 2 (Nrf2) of both mRNA and protein were observed in fish fed VO diets when compared with fish fed FO diets (P < 0.05). However, the transcription level of TNFα and IL1β was significantly higher in the liver of fish fed VO diets, which might be attributed to the activation of NF-κB signaling pathway since the protein expression of p65, one of the key members of NF-κB family, was significantly increased (P < 0.05). These results suggested that dietary VO could lower the ACP activity, disease resistance and liver antioxidant capacity, but it could also exacerbate inflammatory response by activating NF-κB signaling pathway in Japanese sea bass.
Collapse
Affiliation(s)
- Peng Tan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Xiaojing Dong
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Hanlin Xu
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong, 266237, People's Republic of China.
| |
Collapse
|
11
|
Betancor MB, Sprague M, Montero D, Usher S, Sayanova O, Campbell PJ, Napier JA, Caballero MJ, Izquierdo M, Tocher DR. Replacement of Marine Fish Oil with de novo Omega-3 Oils from Transgenic Camelina sativa in Feeds for Gilthead Sea Bream (Sparus aurata L.). Lipids 2016; 51:1171-1191. [PMID: 27590240 PMCID: PMC5418318 DOI: 10.1007/s11745-016-4191-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/19/2016] [Indexed: 02/06/2023]
Abstract
Omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA) are essential components of the diet of all vertebrates. The major dietary source of n-3 LC-PUFA for humans has been fish and seafood but, paradoxically, farmed fish are also reliant on marine fisheries for fish meal and fish oil (FO), traditionally major ingredients of aquafeeds. Currently, the only sustainable alternatives to FO are vegetable oils, which are rich in C18 PUFA, but devoid of the eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) abundant in FO. Two new n-3 LC-PUFA sources obtained from genetically modified (GM) Camelina sativa containing either EPA alone (ECO) or EPA and DHA (DCO) were compared to FO and wild-type camelina oil (WCO) in juvenile sea bream. Neither ECO nor DCO had any detrimental effects on fish performance, although final weight of ECO-fed fish (117 g) was slightly lower than that of FO- and DCO-fed fish (130 and 127 g, respectively). Inclusion of the GM-derived oils enhanced the n-3 LC-PUFA content in fish tissues compared to WCO, although limited biosynthesis was observed indicating accumulation of dietary fatty acids. The expression of genes involved in several lipid metabolic processes, as well as fish health and immune response, in both liver and anterior intestine were altered in fish fed the GM-derived oils. This showed a similar pattern to that observed in WCO-fed fish reflecting the hybrid fatty acid profile of the new oils. Overall the data indicated that the GM-derived oils could be suitable alternatives to dietary FO in sea bream.
Collapse
Affiliation(s)
- Mónica B Betancor
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK.
| | - M Sprague
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | - D Montero
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario Ecoaqua, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte s/n, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - S Usher
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - O Sayanova
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - P J Campbell
- Biomar Ltd., North Shore Road, Grangemouth, FK3 8UL, UK
| | - J A Napier
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - M J Caballero
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario Ecoaqua, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte s/n, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - M Izquierdo
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario Ecoaqua, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte s/n, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - D R Tocher
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
12
|
Does broodstock nutritional history affect the response of progeny to different first-feeding diets? A whole-body transcriptomic study of rainbow trout alevins. Br J Nutr 2016; 115:2079-92. [PMID: 27112276 DOI: 10.1017/s0007114516001252] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The whole-body transcriptome of trout alevins was characterised to investigate the effects of long-term feeding of rainbow trout broodstock females a diet free of fishmeal and fish oil on the metabolic capacities of progeny. Effects were studied before first feeding and after 3 weeks of feeding diets containing different proportions of marine and plant ingredients. Feeding alevins plant-based diets resulted in lower fish body weight, irrespective of maternal nutritional history. No differences in whole-body lipids were found between treatments, and the tissue fatty acid profile strongly reflected that of the respective broodstock or first-feeding diets. We showed that the maternal diet history did not significantly affect expressions of any genes before the first feeding. Interestingly, we found an effect of maternal nutritional history on gene expression in alevins after 3 weeks of feeding. The major differences in the transcriptome of alevins from plant-based diet-fed females compared with those from commercial-fed females were as follows: (i) down-regulation of genes involved in muscle growth/contraction and (ii) up-regulation of genes involved in carbohydrate and energy metabolism related to the delay in growth/development observed with plant-based diets. Our findings also showed an effect of the first-feeding diets, irrespective of maternal nutritional history. Specifically, the introduction of plant ingredients resulted in the up-regulation of genes involved in amino acid/protein and cholesterol metabolism and in differences in the expressions of genes related to carbohydrate metabolism. Information gained through this study opens up avenues for further reduction of marine ingredients in trout diets, including the whole rearing cycle.
Collapse
|
13
|
Maralit BA, Komatsu M, Hipolito SG, Hirono I, Kondo H. Microarray Analysis of Immunity Against WSSV in Response to Injection of Non-specific Long dsRNA in Kuruma Shrimp, Marsupenaeus japonicus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:493-501. [PMID: 25953417 DOI: 10.1007/s10126-015-9637-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/13/2015] [Indexed: 06/04/2023]
Abstract
Injection of shrimp with non-specific double-stranded RNA (dsRNA) of diverse lengths, sequences, and base compositions is known to induce non-specific immunity and protect against lethal disease, although the mechanisms are unclear. Previous shrimp studies examined the effects of non-specific RNA on particular pathways, while their global effects have not been examined. To understand the global effects of non-specific RNA in shrimp, we injected kuruma shrimp (Marsupenaeus japonicus) with a dsRNA and a small interfering RNA (siRNA) that is not specific to any gene in the shrimp genome and then examined global gene expression at 24 and 48 h with a microarray. For the non-specific RNA, we chose double-stranded green fluorescent protein (dsGFP) and siGFP because they are commonly used as mock controls and their effects on shrimp have not yet been studied. Injection of PBS was used as a control. The microarray results showed that many genes were up-regulated and some were down-regulated by dsGFP. In addition, dsGFP injection increased survival following WSSV challenge. The changes in expression for several genes were confirmed by quantitative PCR. The up-regulated genes included genes for eight immune-related proteins: c-type lectin 2, hemocyte homeostasis-associated protein, viral responsive protein, fibrinogen-related protein 1, sid-1 like protein, argonaute 2, Dicer 2, and heat shock protein 90. These results show that injection of shrimp with non-specific dsRNA hinders viral accumulation and prevents significant mortalities.
Collapse
Affiliation(s)
- Benedict Arias Maralit
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | | | | | | | | |
Collapse
|
14
|
Betancor MB, Sprague M, Sayanova O, Usher S, Campbell PJ, Napier JA, Caballero MJ, Tocher DR. Evaluation of a high-EPA oil from transgenic Camelina sativa in feeds for Atlantic salmon ( Salmo salar L.): Effects on tissue fatty acid composition, histology and gene expression. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2015; 444:1-12. [PMID: 26146421 PMCID: PMC4459488 DOI: 10.1016/j.aquaculture.2015.03.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 05/12/2023]
Abstract
Currently, one alternative for dietary fish oil (FO) in aquafeeds is vegetable oils (VO) that are devoid of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFAs). Entirely new sources of n-3 LC-PUFA such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids through de novo production are a potential solution to fill the gap between supply and demand of these important nutrients. Camelina sativa was metabolically engineered to produce a seed oil (ECO) with > 20% EPA and its potential to substitute for FO in Atlantic salmon feeds was tested. Fish were fed with one of the three experimental diets containing FO, wild-type camelina oil (WCO) or ECO as the sole lipid sources for 7 weeks. Inclusion of ECO did not affect any of the performance parameters studied and enhanced apparent digestibility of individual n-6 and n-3 PUFA compared to dietary WCO. High levels of EPA were maintained in brain, liver and intestine (pyloric caeca), and levels of DPA and DHA were increased in liver and intestine of fish fed ECO compared to fish fed WCO likely due to increased LC-PUFA biosynthesis based on up-regulation of the genes. Fish fed ECO showed slight lipid accumulation within hepatocytes similar to that with WCO, although not significantly different to fish fed FO. The regulation of a small number of genes could be attributed to the specific effect of ECO (311 features) with metabolism being the most affected category. The EPA oil from transgenic Camelina (ECO) could be used as a substitute for FO, however it is a hybrid oil containing both FO (EPA) and VO (18:2n-6) fatty acid signatures that resulted in similarly mixed metabolic and physiological responses.
Collapse
Affiliation(s)
- M B Betancor
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - M Sprague
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - O Sayanova
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - S Usher
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - P J Campbell
- Biomar Ltd., North Shore Road, Grangemouth FK3 8UL, United Kingdom
| | - J A Napier
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - M J Caballero
- Aquaculture Research Group, University of Las Palmas de Gran Canaria & ICCM, Instituto Universitario de Sanidad Animal, Trasmontaña s/n, 35413, Arucas, Las Palmas, Canary Islands, Spain
| | - D R Tocher
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| |
Collapse
|
15
|
A nutritionally-enhanced oil from transgenic Camelina sativa effectively replaces fish oil as a source of eicosapentaenoic acid for fish. Sci Rep 2015; 5:8104. [PMID: 25632018 PMCID: PMC4309969 DOI: 10.1038/srep08104] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/06/2015] [Indexed: 12/17/2022] Open
Abstract
For humans a daily intake of up to 500 mg omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA) is recommended, amounting to an annual requirement of 1.25 million metric tonnes (mt) for a population of 7 billion people. The annual global supply of n-3 LC-PUFA cannot meet this level of requirement and so there is a large gap between supply and demand. The dietary source of n-3 LC-PUFA, fish and seafood, is increasingly provided by aquaculture but using fish oil in feeds to supply n-3 LC-PUFA is unsustainable. Therefore, new sources of n-3 LC-PUFA are required to supply the demand from aquaculture and direct human consumption. One approach is metabolically engineering oilseed crops to synthesize n-3 LC-PUFA in seeds. Transgenic Camelina sativa expressing algal genes was used to produce an oil containing n-3 LC-PUFA to replace fish oil in salmon feeds. The oil had no detrimental effects on fish performance, metabolic responses or the nutritional quality of the fillets of the farmed fish.
Collapse
|
16
|
Dong X, Xu H, Mai K, Xu W, Zhang Y, Ai Q. Cloning and characterization of SREBP-1 and PPAR-α in Japanese seabass Lateolabrax japonicus, and their gene expressions in response to different dietary fatty acid profiles. Comp Biochem Physiol B Biochem Mol Biol 2014; 180:48-56. [PMID: 25448051 DOI: 10.1016/j.cbpb.2014.10.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/19/2014] [Accepted: 10/02/2014] [Indexed: 01/22/2023]
Abstract
In the present study, putative cDNA of sterol regulatory element-binding protein 1 (SREBP-1) and peroxisome proliferator-activated receptor α (PPAR-α), key regulators of lipid homoeostasis, were cloned and characterized from liver of Japanese seabass (Lateolabrax japonicus), and their expression in response to diets enriched with fish oil (FO) or fatty acids such as palmitic acid (PA), stearic acid (SA), oleic acid (OA), α-linolenic acid (ALA), and n-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA), was investigated following feeding. The SREBP-1 of Japanese seabass appeared to be equivalent to SREBP-1a of mammals in terms of sequence feature and tissue expression pattern. The stimulation of the mRNA expression level of SREBP-1 in liver of Japanese seabass by dietary fatty acids significantly ranked as follows: PA, OA>SA, ALA, and n-3 LC-PUFA>FO. A new PPAR-α subtype in Japanese seabass, PPAR-α2, was cloned in this study, which is not on the same branch with Japanese seabass PPAR-α1 and mammalian PPAR-α in the phylogenetic tree. Liver gene expression of PPAR-α1 of Japanese seabass was inhibited by diets enriched with ALA or FO compared to diets enriched with PA or OA, while the gene expression of PPAR-α2 of Japanese seabass was up-regulated by diets enriched with ALA or n-3 LC-PUFA compared to diets enriched with OA or FO. This was the first evidence for the great divergence in response to dietary fatty acids between PPAR-α1 and PPAR-α2 of fish, which indicated probable functional distribution between PPAR-α isotypes of fish.
Collapse
Affiliation(s)
- Xiaojing Dong
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Houguo Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Wei Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Yanjiao Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China.
| |
Collapse
|