1
|
Khadem S, Marles RJ. Natural 3,4-dihydro-2(1 h)-quinolinones- Part II: animal, bacterial, and fungal sources. Nat Prod Res 2025; 39:374-387. [PMID: 38564663 DOI: 10.1080/14786419.2024.2324377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
While natural products have undoubtedly played a pivotal role in drug discovery, their potential as lead compounds has been hindered by challenges such as limited accessibility and complex synthesis processes. At the core of numerous natural and synthetic compounds, each exhibiting remarkable biological traits, lies the foundational structure of 3,4-dihydro-2(1H)-quinolinone, also recognised as 2-oxo-tetrahydroquinoline (2 O-THQ). This article extensively examines the occurrence of 2 O-THQ alkaloids across diverse organisms including animals, fungi, and bacteria, exploring their capacity to serve as a source for innovative bioactive natural products. Despite the undeniable significance of these compounds, the existing body of review literature has yet to provide comprehensive coverage, underscoring the pivotal contribution of this present article in investigating their prevalence in nature.
Collapse
Affiliation(s)
- Shahriar Khadem
- Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Ottawa, Health Canada, Canada
| | - Robin J Marles
- Retired Senior Scientific Advisor, Ottawa, Health Canada, Canada
| |
Collapse
|
2
|
Liao X, Dong W, Chen X, Zheng X, Chen Z, Huang R, Wei J, Zhang X. Biodiversity and antifouling activity of microbes associated with gorgonian corals Leptogorgia rigida and Menella kanisa from the South China Sea. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106783. [PMID: 39406173 DOI: 10.1016/j.marenvres.2024.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/20/2024]
Abstract
Recently, coral-associated microorganisms have attracted widespread attention, and most of these studies have focused on stony and soft corals. However, our knowledge of the diversity and bioactivity of microorganisms in gorgonian corals is still limited. In this study, the biodiversity of microbes in two gorgonian corals (Leptogorgia rigida and Menella kanisa) from the South China Sea was investigated by combining traditional culture method with molecular biology technique (bacterial 16S or fungal internal transcribed spacer (ITS) rRNA gene sequences). A total of 216 bacterial and 98 fungal isolates were obtained using 4 different isolation media. These isolates were identified and belonged to 31 bacterial and 12 fungal species, suggesting an unexpectedly diverse microbial community harbored in the South China Sea gorgonian corals L. rigida and M. kanisa. Furthermore, 56% of the tested microbial isolates displayed various antifouling activities against four biofouling organisms (including two microfouling bacteria Micrococcus luteus and Shewanella onedensis, and two macrofouling organisms Bugula neritina and Balanus amphitrite). Among the microbial isolates with antifouling activity, Bacillus firmus SCAU-038 and Streptomyces parvulus SCAU-062 displayed moderate or strong antifouling activity against all tested biofouling organisms. This is the first study on the biodiversity and antifouling activity of microorganisms associated with gorgonians L. rigida and M. kanisa from the South China Sea. These results contribute to the further understanding of microorganisms associated with gorgonian corals and provide potential resources for new natural antifouling agents.
Collapse
Affiliation(s)
- Xinyu Liao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenyu Dong
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xinye Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoning Zheng
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zihui Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jingguang Wei
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Khan MAR, Wang BW, Lin HC, Yang YL, Liaw CC. Structure-Functional Activity of Pyrone Derivatives for Inhibition of Barnacle Settlement and Biofilm Formation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1000-1008. [PMID: 39066983 DOI: 10.1007/s10126-024-10349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Naturally occurring 6-pentyl-2H-pyran-2-one and its synthetic analogues greatly inhibit the settlement of Amphibalanus amphitrite cyprids and the growth and biofilm formation of marine bacteria. To optimize the antifouling activities of pyrone derivatives, this study designed pyrone analogues by modifying functional groups, such as the benzyl group, cyclopentane, and halides, substituted on both sides of a pyrone. The antifouling effects of the synthesized pyrone derivatives were subsequently evaluated against five marine biofilm-forming bacteria, Loktanella hongkongensis, Staphylococcus cohnii, S. saprophyticus, Photobacterium angustum, and Alteromonas macleodii, along with barnacle cyprids of Amphibalanus amphitrite. Substituting nonpolar parts-such as the aliphatic, cyclopentyl, or phenyl moieties on C-5 or the furan moieties on C-3-not only increased antibacterial activity and inhibited biofilm formation but also inhibited barnacle cyprid settlement when compared to 6-pentyl-2H-pyran-2-one.
Collapse
Affiliation(s)
- Mo Aqib Raza Khan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Bo-Wei Wang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, 711, Taiwan
| | - Hsiu-Chin Lin
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, 711, Taiwan
| | - Chih-Chuang Liaw
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
4
|
Zeng Y, Lu T, Ren S, Hu Z, Fang J, Guan Z, Li J, Liu L, Gao Z. Biosynthesis of Ester-Bond Containing Quinolone Alkaloids with (3 R,4 S) Stereoconfiguration. Org Lett 2024; 26:6692-6697. [PMID: 39058897 DOI: 10.1021/acs.orglett.4c02372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Asperalins represent a novel class of viridicatin natural products with potent inhibitory activities against fish pathogens. In this study, we elucidated the biosynthesis of asperalins in the Aspergillus oryzae NSAR1 heterologous host and identified the FAD-dependent monooxygenase AplB stereoselectively hydroxylates viridicatin to yield a unique 3R,4S configuration. The monomodular NRPS AplJ catalyzes a rare intramolecular ester bond formation reaction using dihydroquinoline as a nucleophile. Subsequent modifications by cytochrome P450 AplF, chlorinase AplN, and prenyltransferase AplE tailor the anthranilic acid portion, leading to the formation of asperalins. Additionally, we explored the potential of AplB for the hydroxylation of viridicatin analogs, demonstrating its relaxed substrate specificity. This finding suggests that AplB could be developed as a biocatalyst for the synthesis of viridicatin derivatives.
Collapse
Affiliation(s)
- Yujing Zeng
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tiantian Lu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuya Ren
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhibo Hu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Fang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhifeng Guan
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Li
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhizeng Gao
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| |
Collapse
|
5
|
Wei T, Wu Y, Zhang X, Zhang H, Crous P, Jiang Y. A comprehensive molecular phylogeny of Cephalotrichum and Microascus provides novel insights into their systematics and evolutionary history. PERSOONIA 2024; 52:119-160. [PMID: 39161634 PMCID: PMC11319840 DOI: 10.3767/persoonia.2024.52.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/12/2024] [Indexed: 08/21/2024]
Abstract
The genera Cephalotrichum and Microascus contain ecologically, morphologically and lifestyle diverse fungi in Microascaceae (Microascales, Sordariomycetes) with a world-wide distribution. Despite previous studies having elucidated that Cephalotrichum and Microascus are highly polyphyletic, the DNA phylogeny of many traditionally morphology-defined species is still poorly resolved, and a comprehensive taxonomic overview of the two genera is lacking. To resolve this issue, we integrate broad taxon sampling strategies and the most comprehensive multi-gene (ITS, LSU, tef1 and tub2) datasets to date, with fossil calibrations to address the phylogenetic relationships and divergence times among major lineages of Microascaceae. Two previously recognised main clades, Cephalotrichum (24 species) and Microascus (49 species), were re-affirmed based on our phylogenetic analyses, as well as the phylogenetic position of 15 genera within Microascaceae. In this study, we provide an up-to-date overview on the taxonomy and phylogeny of species belonging to Cephalotrichum and Microascus, as well as detailed descriptions and illustrations of 21 species of which eight are newly described. Furthermore, the divergence time estimates indicate that the crown age of Microascaceae was around 210.37 Mya (95 % HPD: 177.18-246.96 Mya) in the Late Triassic, and that Cephalotrichum and Microascus began to diversify approximately 27.07 Mya (95 % HPD: 20.47-34.37 Mya) and 70.46 Mya (95 % HPD: 56.96-86.24 Mya), respectively. Our results also demonstrate that multigene sequence data coupled with broad taxon sampling can help elucidate previously unresolved clade relationships. Citation: Wei TP, Wu YM, Zhang X, et al. 2024. A comprehensive molecular phylogeny of Cephalotrichum and Microascus provides novel insights into their systematics and evolutionary history. Persoonia 52: 119-160. https://doi.org/10.3767/persoonia.2024.52.05 .
Collapse
Affiliation(s)
- T.P. Wei
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Y.M. Wu
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian, 271018, China
- Shandong Key Laboratory of Agricultural Microbiology, Taian, 271018, China
| | - X. Zhang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, 550009, Guizhou Province, China
| | - H. Zhang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Guizhou Academy of Testing and Analysis, Guiyang, 550014, Guizhou Province, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Y.L. Jiang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, 550025, Guizhou Province, China
| |
Collapse
|
6
|
Khadem S, Marles RJ. Natural 3,4-Dihydro-2(1 H)-quinolinones - part III: biological activities. Nat Prod Res 2024:1-8. [PMID: 38795182 DOI: 10.1080/14786419.2024.2357663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/14/2024] [Indexed: 05/27/2024]
Abstract
Natural products have played a crucial role in drug discovery, but their development is hindered by challenges such as inadequate availability and complex synthesis methods. However, both natural and synthetic compounds that have the core structure of 3,4-dihydro-2(1H)-quinolinone, also known as 2-oxo-1,2,3,4-tetrahydroquinoline (2O-THQ), display a diverse array of effects in both central and peripheral tissues, with some showing therapeutic potential in treating various disorders. Despite the significance of this family of compounds, the current literature lacks comprehensive coverage of their biological functions. This article aims to address this gap by extensively reviewing the biological activities of 2O-THQ alkaloids from diverse organisms and exploring their potential to serve as a source of innovative bioactive natural products.
Collapse
Affiliation(s)
- Shahriar Khadem
- Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Robin J Marles
- Retired Senior Scientific Advisor, Health Canada, Ottawa, Canada
| |
Collapse
|
7
|
Morgan RN, Ali AA, Alshahrani MY, Aboshanab KM. New Insights on Biological Activities, Chemical Compositions, and Classifications of Marine Actinomycetes Antifouling Agents. Microorganisms 2023; 11:2444. [PMID: 37894102 PMCID: PMC10609280 DOI: 10.3390/microorganisms11102444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Biofouling is the assemblage of undesirable biological materials and macro-organisms (barnacles, mussels, etc.) on submerged surfaces, which has unfavorable impacts on the economy and maritime environments. Recently, research efforts have focused on isolating natural, eco-friendly antifouling agents to counteract the toxicities of synthetic antifouling agents. Marine actinomycetes produce a multitude of active metabolites, some of which acquire antifouling properties. These antifouling compounds have chemical structures that fall under the terpenoids, polyketides, furanones, and alkaloids chemical groups. These compounds demonstrate eminent antimicrobial vigor associated with antiquorum sensing and antibiofilm potentialities against both Gram-positive and -negative bacteria. They have also constrained larval settlements and the acetylcholinesterase enzyme, suggesting a strong anti-macrofouling activity. Despite their promising in vitro and in vivo biological activities, scaled-up production of natural antifouling agents retrieved from marine actinomycetes remains inapplicable and challenging. This might be attributed to their relatively low yield, the unreliability of in vitro tests, and the need for optimization before scaled-up manufacturing. This review will focus on some of the most recent marine actinomycete-derived antifouling agents, featuring their biological activities and chemical varieties after providing a quick overview of the disadvantages of fouling and commercially available synthetic antifouling agents. It will also offer different prospects of optimizations and analysis to scale up their industrial manufacturing for potential usage as antifouling coatings and antimicrobial and therapeutic agents.
Collapse
Affiliation(s)
- Radwa N. Morgan
- National Centre for Radiation Research and Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Ahmed El-Zomor St, Cairo 11787, Egypt;
| | - Amer Al Ali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia;
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 9088, Saudi Arabia;
| | - Khaled M. Aboshanab
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo 11566, Egypt
| |
Collapse
|
8
|
Qu Y, Zhou TY, Guo FW, Wei MY, Chen GY, Gu YC, Wang CY, Shao CL. Analogues of natural products yaequinolones as potential inflammatory inhibitors: Design, synthesis and biological evaluation. Eur J Med Chem 2023; 250:115183. [PMID: 36758306 DOI: 10.1016/j.ejmech.2023.115183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Inflammation is connected with a variety of diseases and there is still a need to develop more effective and safer anti-inflammatory drugs. Herein, we synthesized, resolved, and characterized eight enantiopure isomers of yaequinolone J1 (1), yaequinolone J2 (2), 4'-desmethoxyyaequinolone J1 (3), and 4'-desmethoxyyaequinolone J2 (4). The key synthetic steps were extended and 34 racemic analogues modified at the 4-aryl, the N-position, and the pyran ring were designed and synthesized. All the synthesized compounds were evaluated for their anti-inflammatory activities in RAW 264.7 cells of which 13 compounds showed significant inhibition of nitric oxide (NO) production at a concentration of 0.1 μM, which was more potent than that of indomethacin. Furthermore, compounds (-)-3, (-)-4, 5h, and 6g reduced the production of IL-6 in LPS-stimulated RAW 264.7 cells at a concentration of 50 nM. A preliminary SAR indicated that 3'-Br (5h), 4'-NO2 (6g) on 4-phenyl and 3-bromobenzyl (7f) on the N-position were the most effective substituents. This is the first report of the anti-inflammatory yaequinolone alkaloids and the present study provided evidence for exploiting this series of highly efficacious derivatives for new anti-inflammatory agents.
Collapse
Affiliation(s)
- Yong Qu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, People's Republic of China; Laoshan Laboratory, Qingdao, 266237, People's Republic of China
| | - Tian-Yi Zhou
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Feng-Wei Guo
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, People's Republic of China; Laoshan Laboratory, Qingdao, 266237, People's Republic of China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Guang-Ying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre Bracknell, Berkshire, RG42 6EY, UK
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, People's Republic of China; Laoshan Laboratory, Qingdao, 266237, People's Republic of China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, People's Republic of China; Laoshan Laboratory, Qingdao, 266237, People's Republic of China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China.
| |
Collapse
|
9
|
Guo FW, Gao Y, Gu YC, Shao CL. Scalable total synthesis of aflaquinolone I and confirmation of the absolute configuration. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Lahiri D, Nag M, Dey A, Sarkar T, Pati S, Nirmal NP, Ray RR, Upadhye VJ, Pandit S, Moovendhan M, Kavisri M. Marine bioactive compounds as antibiofilm agent: a metabolomic approach. Arch Microbiol 2023; 205:54. [PMID: 36602609 DOI: 10.1007/s00203-022-03391-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
The ocean is a treasure trove of both living and nonliving creatures, harboring incredibly diverse group of organisms. A plethora of marine sourced bioactive compounds are discovered over the past few decades, many of which are found to show antibiofilm activity. These are of immense clinical significance since the formation of microbial biofilm is associated with the development of high antibiotic resistance. Biofilms are also responsible to bring about problems associated with industries. In fact, the toilets and wash-basins also show degradation due to development of biofilm on their surfaces. Antimicrobial resistance exhibited by the biofilm can be a potent threat not only for the health care unit along with industries and daily utilities. Various recent studies have shown that the marine members of various kingdom are capable of producing antibiofilm compounds. Many such compounds are with unique structural features and metabolomics approaches are essential to study such large sets of metabolites. Associating holobiome metabolomics with analysis of their chemical attribute may bring new insights on their antibiofilm effect and their applicability as a substitute for conventional antibiotics. The application of computer-aided drug design/discovery (CADD) techniques including neural network approaches and structured-based virtual screening, ligand-based virtual screening in combination with experimental validation techniques may help in the identification of these molecules and evaluation of their drug like properties.
Collapse
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Ankita Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, 732102, West Bengal, India
| | - Siddhartha Pati
- Nat Nov Bioscience Private Limited, Balasore, 756001, Odisha, India
| | - Nilesh P Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, 73170, Nakhon Pathom, Thailand.
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India.
| | - Vijay Jagdish Upadhye
- Center of Research for Development (CR4D), Parul Institute of Applied Sciences (PIAS), Parul University, Vadodara, Gujarat, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India
| | - M Moovendhan
- Centre for Ocean Research (DST-FIST Sponsored Centre) MoES-Earth Science & Technology Cell, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - M Kavisri
- Department of Civil Engineering, School of Building and Environment, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| |
Collapse
|
11
|
Chen Y, Pang X, He Y, Lin X, Zhou X, Liu Y, Yang B. Secondary Metabolites from Coral-Associated Fungi: Source, Chemistry and Bioactivities. J Fungi (Basel) 2022; 8:1043. [PMID: 36294608 PMCID: PMC9604832 DOI: 10.3390/jof8101043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 10/19/2023] Open
Abstract
Our study of the secondary metabolites of coral-associated fungi produced a valuable and extra-large chemical database. Many of them exhibit strong biological activity and can be used for promising drug lead compounds. Serving as an epitome of the most promising compounds, which take the ultra-new skeletons and/or remarkable bioactivities, this review presents an overview of new compounds and bioactive compounds isolated from coral-associated fungi, covering the literature from 2010 to 2021. Its scope included 423 metabolites, focusing on the bioactivity and structure diversity of these compounds. According to structure, these compounds can be roughly classified as terpenes, alkaloids, peptides, aromatics, lactones, steroids, and other compounds. Some of them described in this review possess a wide range of bioactivities, such as anticancer, antimicrobial, antifouling, and other activities. This review aims to provide some significant chemical and/or biological enlightenment for the study of marine natural products and marine drug development in the future.
Collapse
Affiliation(s)
- Ying Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yanchun He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiuping Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
12
|
Marine fungal metabolites as a source of drug leads against aquatic pathogens. Appl Microbiol Biotechnol 2022; 106:3337-3350. [PMID: 35486178 DOI: 10.1007/s00253-022-11939-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/26/2022]
Abstract
Aquatic pathogens, including Vibrio, Edwardsiella, Pseudomonas, and Aeromonas, which could result in bacterial diseases to aquaculture, have seriously threatened the world aquaculture production. Marine-derived fungi, which could produce novel secondary metabolites with significant antibacterial activity, may be an important source for finding effective agents against aquatic pathogens. In this review, a systematically overview of the harm of several aquatic pathogens, and 134 antibacterial secondary metabolites against aquatic pathogens from 13 genera of marine-derived fungi, were summarized and concluded. The aim of this review is to find out the relationships between activity and structural type, between bioactive compounds and their hosts, and so on. Altogether, 95 references published during 1997-2021 were cited. KEY POINTS: •Aquatic pathogens, which could result in bacterial diseases to aquaculture, were described. •Marine fungal metabolites with activities against aquatic pathogens were summarized. •The distributions of these bioactive marine fungal metabolites were analyzed.
Collapse
|
13
|
Guo FW, Mou XF, Qu Y, Wei MY, Chen GY, Wang CY, Gu YC, Shao CL. Scalable total synthesis of (+)-aniduquinolone A and its acid-catalyzed rearrangement to aflaquinolones. Commun Chem 2022; 5:35. [PMID: 36697782 PMCID: PMC9814574 DOI: 10.1038/s42004-022-00655-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/21/2022] [Indexed: 01/28/2023] Open
Abstract
The strong antibacterial, antiviral and anticancer activities demonstrated by quinolones make them promising lead structures and important synthetic targets for drug discovery. Here, we report, to the best of our knowledge, the first scalable total synthesis of antiviral (+)-aniduquinolone A, possessing a 3,4-dioxygenated 5-hydroxy-4-aryl-quinolin-2(1H)-one skeleton. This synthetic strategy explores E-stereoselective Horner-Wadsworth-Emmons (HWE) olefination as the key step to assemble isopropenyl substituted tetrahydrofuran onto the 3,4-dioxygenated 5-hydroxy-4-aryl-quinolin-2(1H)-one core, which is built by highly diastereoselective intramolecular aldol reaction. Moreover, two sets of stereoisomers of aniduquinolone A with substantially overlapping NMR data were synthesized completely and assigned unambiguously by comprehensive analysis of both their spectroscopic and X-ray diffraction data. Unexpectedly, aflaquinolones A, C, and D that feature different 2,4-dimethyl cyclohexanone moieties were transformed successfully from (+)-aniduquinolone A by treating with TFA. The methodology delineated herein can be applied broadly to the synthesis of natural alkaloids containing the core structure of 3,4-dioxygenated 5-hydroxy-4-aryl-quinolin-2(1H)-one.
Collapse
Affiliation(s)
- Feng-Wei Guo
- grid.4422.00000 0001 2152 3263Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266200 China
| | - Xiao-Feng Mou
- grid.4422.00000 0001 2152 3263Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China ,grid.440761.00000 0000 9030 0162School of Pharmacy, Yantai University, Yantai, 264005 China
| | - Yong Qu
- grid.4422.00000 0001 2152 3263Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266200 China
| | - Mei-Yan Wei
- grid.4422.00000 0001 2152 3263Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
| | - Guang-Ying Chen
- grid.440732.60000 0000 8551 5345College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158 China
| | - Chang-Yun Wang
- grid.4422.00000 0001 2152 3263Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266200 China
| | - Yu-Cheng Gu
- grid.426114.40000 0000 9974 7390Syngenta Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY UK
| | - Chang-Lun Shao
- grid.4422.00000 0001 2152 3263Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266200 China
| |
Collapse
|
14
|
Wang KL, Dou ZR, Gong GF, Li HF, Jiang B, Xu Y. Anti-Larval and Anti-Algal Natural Products from Marine Microorganisms as Sources of Anti-Biofilm Agents. Mar Drugs 2022; 20:90. [PMID: 35200620 PMCID: PMC8876061 DOI: 10.3390/md20020090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/19/2022] Open
Abstract
Bacteria growing inside biofilms are more resistant to hostile environments, conventional antibiotics, and mechanical stresses than their planktonic counterparts. It is estimated that more than 80% of microbial infections in human patients are biofilm-based, and biofouling induced by the biofilms of some bacteria causes serious ecological and economic problems throughout the world. Therefore, exploring highly effective anti-biofilm compounds has become an urgent demand for the medical and marine industries. Marine microorganisms, a well-documented and prolific source of natural products, provide an array of structurally distinct secondary metabolites with diverse biological activities. However, up to date, only a handful of anti-biofilm natural products derived from marine microorganisms have been reported. Meanwhile, it is worth noting that some promising antifouling (AF) compounds from marine microbes, particularly those that inhibit settlement of fouling invertebrate larvae and algal spores, can be considered as potential anti-biofilm agents owing to the well-known knowledge of the correlations between biofilm formation and the biofouling process of fouling organisms. In this review, a total of 112 anti-biofilm, anti-larval, and anti-algal natural products from marine microbes and 26 of their synthetic analogues are highlighted from 2000 to 2021. These compounds are introduced based on their microbial origins, and then categorized into the following different structural groups: fatty acids, butenolides, terpenoids, steroids, phenols, phenyl ethers, polyketides, alkaloids, flavonoids, amines, nucleosides, and peptides. The preliminary structure-activity relationships (SAR) of some important compounds are also briefly discussed. Finally, current challenges and future research perspectives are proposed based on opinions from many previous reviews.
Collapse
Affiliation(s)
- Kai-Ling Wang
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from West Yunnan (Cultivation), Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China; (K.-L.W.); (Z.-R.D.); (G.-F.G.); (H.-F.L.); (B.J.)
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zheng-Rong Dou
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from West Yunnan (Cultivation), Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China; (K.-L.W.); (Z.-R.D.); (G.-F.G.); (H.-F.L.); (B.J.)
| | - Gao-Fen Gong
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from West Yunnan (Cultivation), Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China; (K.-L.W.); (Z.-R.D.); (G.-F.G.); (H.-F.L.); (B.J.)
| | - Hai-Feng Li
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from West Yunnan (Cultivation), Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China; (K.-L.W.); (Z.-R.D.); (G.-F.G.); (H.-F.L.); (B.J.)
| | - Bei Jiang
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from West Yunnan (Cultivation), Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China; (K.-L.W.); (Z.-R.D.); (G.-F.G.); (H.-F.L.); (B.J.)
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
15
|
Tang J, Huang X, Cao MH, Wang Z, Yu Z, Yan Y, Huang JP, Wang L, Huang SX. Mono-/Bis-Alkenoic Acid Derivatives From an Endophytic Fungus Scopulariopsis candelabrum and Their Antifungal Activity. Front Chem 2022; 9:812564. [PMID: 35087795 PMCID: PMC8787343 DOI: 10.3389/fchem.2021.812564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
During a screening for antifungal secondary metabolites, six new mono-/bis-alkenoic acid derivatives (2–7) and one known alkenoic acid derivative (1) were isolated from an endophytic fungi Scopulariopsis candelabrum. Their chemical structures were identified by 1H-NMR, 13C-NMR, 2D NMR, and high-resolution mass spectrometry, as well as comparisons with previously reported literatures. Among them, fusariumesters C‒F (2–5) are bis-alkenoic acid derivatives dimerized by an ester bond, while acetylfusaridioic acid A (6) and fusaridioic acid D (7) are alkenoic acid monomers. All the isolates were submitted to an antifungal assay against Candida albicans and the corn pathogen Exserohilum turcicum using the filter paper agar diffusion method. As a result, only compound 1 decorating with β-lactone ring turned out to be active against these two tested fungi. The broth microdilution assay against Candida albicans showed the minimum inhibitory concentration (MIC) value of 1 to be 20 μg/ml, while the minimum inhibitory concentration value of the positive control (naystatin) was 10 μg/ml. And the half maximal inhibitory concentration (IC50) value (21.23 μg/ml) of 1 against Exserohilum turcicum was determined by analyzing its inhibition effect on the mycelial growth, using cycloheximide (IC50 = 46.70 μg/ml) as the positive control.
Collapse
Affiliation(s)
- Jun Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Ming-Hang Cao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zhiyan Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyin Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yijun Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jian-Ping Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Li Wang, ; Sheng-Xiong Huang,
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
- *Correspondence: Li Wang, ; Sheng-Xiong Huang,
| |
Collapse
|
16
|
Qiu H, Feng K, Gapeeva A, Meurisch K, Kaps S, Li X, Yu L, Mishra YK, Adelung R, Baum M. Functional Polymer Materials for Modern Marine Biofouling Control. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101516] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Xin S, Li SM, Gao L, Zheng JJ, Wu YW, Shao CL, Ren WH, Zhi K. CHNQD-00603 Promotes Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells by the miR-452-3p-Mediated Autophagy Pathway. Front Cell Dev Biol 2021; 9:779287. [PMID: 34993197 PMCID: PMC8724776 DOI: 10.3389/fcell.2021.779287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/24/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Periodontitis is a chronic and progressive disease accompanied by bone loss. It is still a challenge to restore the bone structure. The osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) plays a decisive role in bone restoration and regeneration. Marine natural products (MNPs) have multiple biological activities, including anti-tumor and anti-inflammatory properties. However, the exploration of MNPs in osteogenesis is far from sufficient. Methods: We obtained a series of derivatives through structural optimization from 4-phenyl-3,4-dihydroquinolin-2(1H)-one alkaloid isolated from Scopulariopsis sp. Some preliminary cytological experiments showed that CHNQD-00603, obtained by adding a methoxy group to the position C3 and a hydroxyl group to the position C4 of 4-phenyl-3,4-dihydroquinolin-2(1H)-one, might promote the osteogenic differentiation of BMSCs. To further investigate the effects of CHNQD-00603 on BMSCs, we performed a CCK-8 assay and qRT-PCR, alkaline phosphatase staining (ALP), and alizarin red S staining to assess the cytotoxicity and the ability of osteogenic differentiation of CHNQD-00603. The autophagy level was assessed and validated by WB, qRT-PCR, and transmission electron microscopy. Then, 3-methyladenine (3-MA) was added to further examine the role of autophagy. Based on the expression of autophagy-related genes, we predicted and examined the potential miRNAs by bioinformatics. Results: CCK-8 assay showed that CHNQD-00603 at 1 µg/ml did not influence BMSCs activity. However, the proliferation rate decreased from the seventh day. qRT-PCR, ALP staining, ALP activity assay, and Alizarin red S staining showed that the best concentration of CHNQD-00603 to promote osteogenic differentiation was 1 µg/ml. Further investigations indicated that CHNQD-00603 activated autophagy, and the inhibition of autophagy by 3-MA attenuated CHNQD-00603-enhanced osteogenic differentiation. Subsequently, the findings from bioinformatics and qRT-PCR indicated that miR-452-3p might be a regulator of autophagy and osteogenesis. Furthermore, we transfected BMSCs with miR-452-3p NC and mimics separately to further determine the function of miR-452-3p. The data showed that the overexpression of miR-452-3p moderated the level of autophagy and osteogenic differentiation of CHNQD-00603-treated BMSCs. Conclusion: Our data suggested that CHNQD-00603 promoted the osteogenic differentiation of BMSCs by enhancing autophagy. Meanwhile, miR-452-3p played a regulatory role in this process.
Collapse
Affiliation(s)
- Shanshan Xin
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Shao-Ming Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Ling Gao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing-Jing Zheng
- Department of Endodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan-Wei Wu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Wen-Hao Ren
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Keqian Zhi
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Keqian Zhi, ,
| |
Collapse
|
18
|
Jia WL, Ces SV, Fernández-Ibáñez MÁ. Divergent Total Syntheses of Yaequinolone-Related Natural Products by Late-Stage C-H Olefination. J Org Chem 2021; 86:6259-6277. [PMID: 33886329 PMCID: PMC8154619 DOI: 10.1021/acs.joc.1c00042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Divergent total syntheses of 10 yaequinolone-related natural products have been achieved for the first time by late-stage C-H olefination of 3,4-dioxygenated 4-aryl-5-hydroxyquinolin-2(1H)-ones, core structures of this family of natural products. A robust synthetic methodology to construct the core structures has been established, and the C-H olefination reaction has been carried out with synthetically useful yields and high levels of site-selectivity under mild reaction conditions in the presence of a Pd/S,O-ligand catalyst.
Collapse
Affiliation(s)
- Wen-Liang Jia
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sabela Vega Ces
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - M Ángeles Fernández-Ibáñez
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
19
|
Youssef FS, Simal-Gandara J. Comprehensive Overview on the Chemistry and Biological Activities of Selected Alkaloid Producing Marine-Derived Fungi as a Valuable Reservoir of Drug Entities. Biomedicines 2021; 9:485. [PMID: 33925060 PMCID: PMC8145996 DOI: 10.3390/biomedicines9050485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
Marine-associated fungal strains act as a valuable reservoir of bioactive diverse secondary metabolites including alkaloids which are highly popular by their biological activities. This review highlighted the chemistry and biology of alkaloids isolated from twenty-six fungal genera associated with marine organisms and marine sea sediments. The selected fungi are from different marine sources without focusing on mangroves. The studied fungal genera comprises Acrostalagmus, Arthrinium, Chaetomium, Cladosporium, Coniothyrium, Curvularia, Dichotomomyces, Eurotium, Eutypella, Exophiala, Fusarium, Hypocrea, Microsphaeropsis, Microsporum, Neosartorya, Nigrospora, Paecilomyces, Penicillium, Pleosporales, Pseudallescheria, Scedosporium, Scopulariopsis, Stagonosporopsis, Thielavia, Westerdykella, and Xylariaceae. Around 347 alkaloid metabolites were isolated and identified via chromatographic and spectroscopic techniques comprising 1D and 2D NMR (one and two dimensional nuclear magnetic resonance) which were further confirmed using HR-MS (high resolution mass spectrometry) and Mosher reactions for additional ascertaining of the stereochemistry. About 150 alkaloids showed considerable effect with respect to the tested activities. Most of the reported bioactive alkaloids showed considerable biological activities mainly cytotoxic followed by antibacterial, antifungal, antiviral, antioxidant; however, a few showed anti-inflammatory and antifouling activities. However, the rest of the compounds showed weak or no activity toward the tested biological activities and required further investigations for additional biological activities. Thus, alkaloids isolated from marine-associated fungi can afford an endless source of new drug entities that could serve as leads for drug discovery combating many human ailments.
Collapse
Affiliation(s)
- Fadia S. Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain
| |
Collapse
|
20
|
El-Bondkly EAM, El-Bondkly AAM, El-Bondkly AAM. Marine endophytic fungal metabolites: A whole new world of pharmaceutical therapy exploration. Heliyon 2021; 7:e06362. [PMID: 33869822 PMCID: PMC8035529 DOI: 10.1016/j.heliyon.2021.e06362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/16/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
The growing threat arises due to diseases such as cancer and the infections around the world leading to a critical requirement for novel and constructive compounds with unique ways of action capable of combating these deadly diseases. At present, it is evident that endophytic fungi constitute an enormous as well as comparatively untapped source of great biodiversity that can be considered as a wellspring of effective novel natural products for medical, agricultural and industrial use. Marine endophytic fungi have been found in every marine plants (algae, seagrass, driftwood, mangrove plants), marine vertebrates (mainly, fish) or marine invertebrates (mainly, sponge and coral) inter- and intra-cellular without causing any palpable symptoms of illness. Since evolution of microbes and eukaryotes to a higher level, coevolution has resulted in specific interaction mechanisms. Endophytic fungi are known to influence the life cycle and are necessary for the homeostasis of their eukaryotic hosts and the chemical signals of their host have been shown to activate gene expression in endophytes to induce expression of endophytic secondary metabolites. Marine endophytic fungi are receiving increasing attention by chemists because of their varied and structurally unmatched compounds that have strong biological roles in life as lead pharmaceutical compounds, including anticancer, antiviral, insulin mimetic, antineurodegenerative, antimicrobial, antioxidant and immuno-suppressant compounds. Moreover, fungal endophytes proved to have different biological activities for exploitation in the environmental and agricultural sustainability.
Collapse
|
21
|
Liu LL, Wu CH, Qian PY. Marine natural products as antifouling molecules - a mini-review (2014-2020). BIOFOULING 2020; 36:1210-1226. [PMID: 33401982 DOI: 10.1080/08927014.2020.1864343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
In the present review, 182 antifouling (AF) natural products from marine microorganisms, algae and marine invertebrates reported from August 2014 to May 2020 are presented. Amongst these compounds, over half were isolated from marine-derived microorganisms, including 70 compounds from fungi and 31 compounds from bacteria. The structure-relationship of some of these compounds is also briefly discussed. Based on the work reported, a general workflow was drafted to refine the procedures for the commercialization of any novel AF compounds. Finally, butenolide, which is considered a potential environmentally friendly antifoulant, is used as a case study to show the procedures involved in AF compound work from the aspect of discovery, structure optimization, toxicity, stability, AF mechanism and coating incorporation, which highlight the current challenges and future perspectives in AF compound research.
Collapse
Affiliation(s)
- Ling-Li Liu
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Chuan-Hai Wu
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
22
|
Hou XM, Hai Y, Gu YC, Wang CY, Shao CL. Chemical and Bioactive Marine Natural Products of Coral-Derived Microorganisms (2015-2017). Curr Med Chem 2020; 26:6930-6941. [PMID: 31241431 DOI: 10.2174/0929867326666190626153819] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/22/2018] [Accepted: 12/14/2018] [Indexed: 01/28/2023]
Abstract
Coral-derived microorganisms are known for their inherent ability to produce novel products of pharmaceutical importance. Nearly 260 marine natural products (MNPs) have been isolated from coral-derived microorganisms till 2014. In the last three years, 118 MNPs have been isolated from coral-associated microorganisms including 46 new compounds, two with a novel skeleton, and four new natural products. Most of them exhibited in vitro or in vivo activities against tumor cell lines, parasites, pathogenic bacteria, fungi and virus. We reviewed the natural products reported from 2015 to 2017 that have a wide range of bioactivities against different biological targets.
Collapse
Affiliation(s)
- Xue-Mei Hou
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yang Hai
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell RG42 6EY, Berkshire, United Kingdom
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
23
|
Sang VT, Dat TTH, Vinh LB, Cuong LCV, Oanh PTT, Ha H, Kim YH, Anh HLT, Yang SY. Coral and Coral-Associated Microorganisms: A Prolific Source of Potential Bioactive Natural Products. Mar Drugs 2019; 17. [PMID: 31405226 DOI: 10.3390/md1708046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 05/20/2023] Open
Abstract
Marine invertebrates and their associated microorganisms are rich sources of bioactive compounds. Among them, coral and its associated microorganisms are promising providers of marine bioactive compounds. The present review provides an overview of bioactive compounds that are produced by corals and coral-associated microorganisms, covering the literature from 2010 to March 2019. Accordingly, 245 natural products that possess a wide range of potent bioactivities, such as anti-inflammatory, cytotoxic, antimicrobial, antivirus, and antifouling activities, among others, are described in this review.
Collapse
Affiliation(s)
- Vo Thanh Sang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 5, Ho Chi Minh City 748000, Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Le Ba Vinh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000, Vietnam
| | - Le Canh Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Phung Thi Thuy Oanh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Hoang Le Tuan Anh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam.
- Graduated University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam.
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
24
|
Sang VT, Dat TTH, Vinh LB, Cuong LCV, Oanh PTT, Ha H, Kim YH, Anh HLT, Yang SY. Coral and Coral-Associated Microorganisms: A Prolific Source of Potential Bioactive Natural Products. Mar Drugs 2019; 17:E468. [PMID: 31405226 PMCID: PMC6723858 DOI: 10.3390/md17080468] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Marine invertebrates and their associated microorganisms are rich sources of bioactive compounds. Among them, coral and its associated microorganisms are promising providers of marine bioactive compounds. The present review provides an overview of bioactive compounds that are produced by corals and coral-associated microorganisms, covering the literature from 2010 to March 2019. Accordingly, 245 natural products that possess a wide range of potent bioactivities, such as anti-inflammatory, cytotoxic, antimicrobial, antivirus, and antifouling activities, among others, are described in this review.
Collapse
Affiliation(s)
- Vo Thanh Sang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 5, Ho Chi Minh City 748000, Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Le Ba Vinh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000, Vietnam
| | - Le Canh Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Phung Thi Thuy Oanh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Hoang Le Tuan Anh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam.
- Graduated University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam.
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
25
|
Zhang XY, Hao HL, Lau SCK, Wang HY, Han Y, Dong LM, Huang RM. Biodiversity and antifouling activity of fungi associated with two soft corals from the South China Sea. Arch Microbiol 2019; 201:757-767. [PMID: 30840101 DOI: 10.1007/s00203-019-01639-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/07/2019] [Accepted: 02/19/2019] [Indexed: 11/28/2022]
Abstract
Bacteria in corals have been studied in detail in the past decades. However, the biodiversity and bioactivity of fungi in corals are still poorly understood. This study investigated the biodiversity and antifouling activity of fungi in soft corals Cladiella krempfi and Sarcophyton tortuosum from the South China Sea. A high diverse and abundant fungal community was found in the two soft corals. Furthermore, five isolates shared 83-95% similarity with their closest relatives, indicating that they might be novel species in genera Phaeoshaeria and Mucor. In addition, approximately 50% of the representative isolates exhibited distinct antifouling activity. In particular, isolates Fungal sp. SCAU132 and Fungal sp. SCAU133 displayed very strong antifouling activity against Bugula neritina, suggesting they can provide a potential resource for further investigation on isolation of novel antifouling metabolites. To our knowledge, this study is the first report to investigate the biodiversity and antifouling activity of fungi in C. krempfi and S. tortuosum.
Collapse
Affiliation(s)
- Xiao-Yong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bior-esource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Hui-Li Hao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642, Guangzhou, China
| | - Stanley Chun Kwan Lau
- Department of Ocean Science, Hong Kong University of Science and Technology, Clearwater Bay, 999077, Kowloon, Hong Kong, China
| | - Huai-You Wang
- Division of Life Science and Center for Chinese Medicine, Hong Kong University of Science and Technology, Clearwater Bay, 999077, Kowloon, Hong Kong, China
| | - Yu Han
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642, Guangzhou, China
| | - Li-Mei Dong
- College of Forestry and Landscape Architecture, South China Agricultural University, 510642, Guangzhou, China.
| | - Ri-Ming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
26
|
Nakayama A, Sato H, Karanjit S, Hayashi N, Oda M, Namba K. Asymmetric Total Syntheses and Structure Revisions of Eurotiumide A and Eurotiumide B, and Their Evaluation as Natural Fluorescent Probes. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800535] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Atsushi Nakayama
- Graduate School of Pharmaceutical Sciences; Tokushima University; 1-78 Shomachi 770-8505 Tokushima Japan
| | - Hideo Sato
- Graduate School of Pharmaceutical Sciences; Tokushima University; 1-78 Shomachi 770-8505 Tokushima Japan
| | - Sangita Karanjit
- Graduate School of Pharmaceutical Sciences; Tokushima University; 1-78 Shomachi 770-8505 Tokushima Japan
| | - Naoki Hayashi
- Department of Microbiology and Infection Control Sciences; Kyoto Pharmaceutical University; Misasaginakauchi-cho, Yamashina-ku 607-8414 Kyoto Japan
| | - Masataka Oda
- Department of Microbiology and Infection Control Sciences; Kyoto Pharmaceutical University; Misasaginakauchi-cho, Yamashina-ku 607-8414 Kyoto Japan
| | - Kosuke Namba
- Graduate School of Pharmaceutical Sciences; Tokushima University; 1-78 Shomachi 770-8505 Tokushima Japan
| |
Collapse
|
27
|
Adnan M, Alshammari E, Patel M, Amir Ashraf S, Khan S, Hadi S. Significance and potential of marine microbial natural bioactive compounds against biofilms/biofouling: necessity for green chemistry. PeerJ 2018; 6:e5049. [PMID: 29967730 PMCID: PMC6026461 DOI: 10.7717/peerj.5049] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/01/2018] [Indexed: 12/17/2022] Open
Abstract
Natural products from the unique environments of sea water and oceans represent a largely unfamiliar source for isolation of new microbes, which are potent producers of secondary bioactive metabolites. These unique life-forms from the marine ecosphere have served as an important source of drugs since ancient times and still offer a valuable resource for novel findings by providing remedial treatments. Therefore, it can be expected that many naturally bioactive marine microbial compounds with novel structures and bioactivities against those from terrestrial environments may be found among marine metabolites. Biofilms in aquatic environment possess serious problems to naval forces and oceanic industries around the globe. Current anti-biofilm or anti-biofouling technology is based on the use of toxic substances that can be harmful to their surrounding natural locales. Comprehensive research has been done to examine the bioactive potential of marine microbes. Results are remarkably varied and dynamic, but there is an urgent need for bioactive compounds with environmentally friendly or "green" chemical activities. Marine microbes have the potential as upcoming and promising source of non-toxic compounds with sustainable anti-biofouling/anti-biofilm properties as they can produce substances that can inhibit not only the chemical components required for biofilm production but also the attachment, microorganism growth, and/or cell-cell communication.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Eyad Alshammari
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Mitesh Patel
- Department of Biosciences, Bapalal Vaidhya Botanical Research Centre, Veer Narmad South Gujarat University, Surat, India
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Saif Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Sibte Hadi
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston, UK
| |
Collapse
|
28
|
Hou XM, Zhang YH, Hai Y, Zheng JY, Gu YC, Wang CY, Shao CL. Aspersymmetide A, a New Centrosymmetric Cyclohexapeptide from the Marine-Derived Fungus Aspergillus versicolor. Mar Drugs 2017; 15:E363. [PMID: 29165326 PMCID: PMC5706052 DOI: 10.3390/md15110363] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/31/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022] Open
Abstract
A new centrosymmetric cyclohexapeptide, aspersymmetide A (1), together with a known peptide, asperphenamate (2), was isolated from the fungus Aspergillus versicolor isolated from a gorgonian coral Carijoa sp., collected from the South China Sea. The chemical structure of 1 was elucidated by analyzing its NMR spectroscopy and MS spectrometry data, and the absolute configurations of the amino acids of 1 were determined by Marfey's method and UPLC-MS analysis of the hydrolysate. Aspersymmetide A (1) represents the first example of marine-derived centrosymmetric cyclohexapeptide. Moreover, 1 exhibited weak cytotoxicity against NCI-H292 and A431 cell lines at the concentration of 10 μM.
Collapse
Affiliation(s)
- Xue-Mei Hou
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research (LSMRI), Qingdao 266061, China.
| | - Ya-Hui Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| | - Yang Hai
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| | - Ji-Yong Zheng
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research (LSMRI), Qingdao 266061, China.
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell RG42 6EY, Berkshire, UK.
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research (LSMRI), Qingdao 266061, China.
| |
Collapse
|
29
|
Wang KL, Wu ZH, Wang Y, Wang CY, Xu Y. Mini-Review: Antifouling Natural Products from Marine Microorganisms and Their Synthetic Analogs. Mar Drugs 2017; 15:E266. [PMID: 28846626 PMCID: PMC5618405 DOI: 10.3390/md15090266] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/02/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022] Open
Abstract
Biofouling causes huge economic loss and generates serious ecological issues worldwide. Marine coatings incorporated with antifouling (AF) compounds are the most common practices to prevent biofouling. With a ban of organotins and an increase in the restrictions regarding the use of other AF alternatives, exploring effective and environmentally friendly AF compounds has become an urgent demand for marine coating industries. Marine microorganisms, which have the largest biodiversity, represent a rich and important source of bioactive compounds and have many medical and industrial applications. This review summarizes 89 natural products from marine microorganisms and 13 of their synthetic analogs with AF EC50 values ≤ 25 μg/mL from 1995 (the first report about marine microorganism-derived AF compounds) to April 2017. Some compounds with the EC50 values < 5 μg/mL and LC50/EC50 ratios > 50 are highlighted as potential AF compounds, and the preliminary analysis of structure-relationship (SAR) of these compounds is also discussed briefly. In the last part, current challenges and future research perspectives are proposed based on opinions from many previous reviews. To provide clear guidance for the readers, the AF compounds from microorganisms and their synthetic analogs in this review are categorized into ten types, including fatty acids, lactones, terpenes, steroids, benzenoids, phenyl ethers, polyketides, alkaloids, nucleosides and peptides. In addition to the major AF compounds which targets macro-foulers, this review also includes compounds with antibiofilm activity since micro-foulers also contribute significantly to the biofouling communities.
Collapse
Affiliation(s)
- Kai-Ling Wang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| | - Ze-Hong Wu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China.
- Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou 510632, China.
| | - Yu Wang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
30
|
Mou XF, Liu X, Xu RF, Wei MY, Fang YW, Shao CL. Scopuquinolone B, a new monoterpenoid dihydroquinolin-2(1H)-one isolated from the coral-derived Scopulariopsis sp. fungus. Nat Prod Res 2017; 32:773-776. [DOI: 10.1080/14786419.2017.1359177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiao-Feng Mou
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao, The People’s Republic of China
| | - Xin Liu
- Technical Center, Beijing Entry-Exit Inspection and Quarantine Bureau, Beijing, The People’s Republic of China
| | - Ru-Fang Xu
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao, The People’s Republic of China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao, The People’s Republic of China
- School of Pharmacy, Guangdong Medical University, Dongguan, The People’s Republic of China
| | - Yao-Wei Fang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao, The People’s Republic of China
- College of Marine Life and Fisheries, Huanghai Institute of Technology, Lianyungang, The People’s Republic of China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao, The People’s Republic of China
| |
Collapse
|
31
|
Wang CY, Wang KL, Qian PY, Xu Y, Chen M, Zheng JJ, Liu M, Shao CL, Wang CY. Antifouling phenyl ethers and other compounds from the invertebrates and their symbiotic fungi collected from the South China Sea. AMB Express 2016; 6:102. [PMID: 27785778 PMCID: PMC5081312 DOI: 10.1186/s13568-016-0272-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/14/2016] [Indexed: 01/29/2023] Open
Abstract
Marine organism-derived secondary metabolites are promising potential sources for discovering environmentally safe antifouling agents. In present study, 55 marine secondary metabolites and their synthesized derivatives were tested and evaluated for their antifouling activities and security. These compounds include 44 natural products isolated from marine invertebrates and their symbiotic microorganisms collected from the South China Sea and 11 structural modified products derived from the isolated compounds. The natural secondary metabolites, covering phenyl ether derivatives, terpenoids, 9, 11-secosteroids, anthraquinones, alkaloids, nucleoside derivatives and peptides, were isolated from two corals, one sponge and five symbiotic fungi. All of the isolated and synthesized compounds were tested for their antifouling activities against the cyprids of barnacle Balanus (Amphibalanus) amphitrite Darwin. Noticeably, five phenyl ether derivatives (9, 11, 13-15) exhibited potent anti-larval settlement activity with the EC50 values lower than 3.05 μM and the LC50/EC50 ratios higher than 15. The study of structure-activity relationship (SAR) revealed that the introduction of acetoxy groups and bromine atoms to phenyl ether derivatives could significantly improve their antifouling activities. This is the first report on the SAR of phenyl ether derivatives on antifouling activity against barnacle B. amphitrite. The polybrominated diphenyl ether derivative, 2, 4, 6, 2', 4', 6'-hexabromo-diorcinol (13), which displayed excellent antifouling activity, was considered as a promising candidate of environmentally friendly antifouling agents.
Collapse
Affiliation(s)
- Chao-Yi Wang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, 5 Yushan Road, Qingdao, 266003 People’s Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 People’s Republic of China
| | - Kai-Ling Wang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, 5 Yushan Road, Qingdao, 266003 People’s Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 People’s Republic of China
- College of Life Science, Shenzhen University, 3688 Nanhai Ave, Shenzhen, 518060 People’s Republic of China
| | - Pei-Yuan Qian
- KAUST Global Collaborative Research, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, People’s Republic of China
| | - Ying Xu
- College of Life Science, Shenzhen University, 3688 Nanhai Ave, Shenzhen, 518060 People’s Republic of China
| | - Min Chen
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, 5 Yushan Road, Qingdao, 266003 People’s Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 People’s Republic of China
| | - Juan-Juan Zheng
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, 5 Yushan Road, Qingdao, 266003 People’s Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 People’s Republic of China
| | - Min Liu
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, 5 Yushan Road, Qingdao, 266003 People’s Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 People’s Republic of China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, 5 Yushan Road, Qingdao, 266003 People’s Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 People’s Republic of China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, 5 Yushan Road, Qingdao, 266003 People’s Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 People’s Republic of China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 People’s Republic of China
| |
Collapse
|
32
|
Satheesh S, Ba-akdah MA, Al-Sofyani AA. Natural antifouling compound production by microbes associated with marine macroorganisms — A review. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|