1
|
Novak JK, Gardner JG. Current models in bacterial hemicellulase-encoding gene regulation. Appl Microbiol Biotechnol 2024; 108:39. [PMID: 38175245 PMCID: PMC10766802 DOI: 10.1007/s00253-023-12977-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
The discovery and characterization of bacterial carbohydrate-active enzymes is a fundamental component of biotechnology innovation, particularly for renewable fuels and chemicals; however, these studies have increasingly transitioned to exploring the complex regulation required for recalcitrant polysaccharide utilization. This pivot is largely due to the current need to engineer and optimize enzymes for maximal degradation in industrial or biomedical applications. Given the structural simplicity of a single cellulose polymer, and the relatively few enzyme classes required for complete bioconversion, the regulation of cellulases in bacteria has been thoroughly discussed in the literature. However, the diversity of hemicelluloses found in plant biomass and the multitude of carbohydrate-active enzymes required for their deconstruction has resulted in a less comprehensive understanding of bacterial hemicellulase-encoding gene regulation. Here we review the mechanisms of this process and common themes found in the transcriptomic response during plant biomass utilization. By comparing regulatory systems from both Gram-negative and Gram-positive bacteria, as well as drawing parallels to cellulase regulation, our goals are to highlight the shared and distinct features of bacterial hemicellulase-encoding gene regulation and provide a set of guiding questions to improve our understanding of bacterial lignocellulose utilization. KEY POINTS: • Canonical regulatory mechanisms for bacterial hemicellulase-encoding gene expression include hybrid two-component systems (HTCS), extracytoplasmic function (ECF)-σ/anti-σ systems, and carbon catabolite repression (CCR). • Current transcriptomic approaches are increasingly being used to identify hemicellulase-encoding gene regulatory patterns coupled with computational predictions for transcriptional regulators. • Future work should emphasize genetic approaches to improve systems biology tools available for model bacterial systems and emerging microbes with biotechnology potential. Specifically, optimization of Gram-positive systems will require integration of degradative and fermentative capabilities, while optimization of Gram-negative systems will require bolstering the potency of lignocellulolytic capabilities.
Collapse
Affiliation(s)
- Jessica K Novak
- Department of Biological Sciences, University of Maryland - Baltimore County, Baltimore, MD, USA
| | - Jeffrey G Gardner
- Department of Biological Sciences, University of Maryland - Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
2
|
Hu X, Meneses YE, Stratton J, Huo S. Direct processing of alginate-immobilized microalgae into polyhydroxybutyrate using marine bacterium of Saccharophagus degradans. BIORESOURCE TECHNOLOGY 2022; 351:126898. [PMID: 35245650 DOI: 10.1016/j.biortech.2022.126898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Alginate immobilized microalgae (AIM) was found efficient in algal cells separation and pollutants removal, however, its processing required alginate removal. In present study, polysaccharide-degrading bacterium of Saccharophagus degradans was used to biodegrade alginate and microalgae in AIM and produce polyhydroxybutyrate (PHB). Results showed that AIM cultivated in wastewater contained 34.0% carbohydrate and 45.7% protein. S. degradans effectively degraded and utilized polysaccharide of AIM to maintain five-day continuous growth at 7.1-8.8 log CFU/mL. Compared with glucose, S. degradans metabolism of mixed polysaccharide in AIM maintained the medium pH at 7.1-7.8. Increasing the inoculum concentration did not enhance AIM utilization by S. degradans due to the carbon catabolite repression of glucose which likely inactivated hydrolysis enzymes. PHB production in S. degradans peaked at 64.9 mg/L after 72 h cultivation but was later degraded to provide energy. Conclusively, S. degradans was effective in direct processing of AIM while showing potential in PHB production.
Collapse
Affiliation(s)
- Xinjuan Hu
- Department of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Food Science and Technology, Food Processing Center, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, United States
| | - Yulie E Meneses
- Department of Food Science and Technology, Food Processing Center, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, United States; Daugherty Water for Food Global Institute, Nebraska Innovation Campus, University of Nebraska-Lincoln, Lincoln, NE 68588-6204, United States.
| | - Jayne Stratton
- Department of Food Science and Technology, Food Processing Center, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, United States
| | - Shuhao Huo
- Department of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Kawai S, Hashimoto W. 4-Deoxy-l- erythro-5-hexoseulose Uronate (DEH) and DEH Reductase: Key Molecule and Enzyme for the Metabolism and Utilization of Alginate. Molecules 2022; 27:338. [PMID: 35056653 PMCID: PMC8778563 DOI: 10.3390/molecules27020338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/31/2022] Open
Abstract
4-Deoxy-l-erythro-5-hexoseulose uronate (DEH), DEH reductase, and alginate lyase have key roles in the metabolism of alginate, a promising carbon source in brown macroalgae for biorefinery. In contrast to the widely reviewed alginate lyase, DEH and DEH reductase have not been previously reviewed. Here, we summarize the current understanding of DEH and DEH reductase, with emphasis on (i) the non-enzymatic and enzymatic formation and structure of DEH and its reactivity to specific amino groups, (ii) the molecular identification, classification, function, and structure, as well as the structural determinants for coenzyme specificity of DEH reductase, and (iii) the significance of DEH for biorefinery. Improved understanding of this and related fields should lead to the practical utilization of alginate for biorefinery.
Collapse
Affiliation(s)
- Shigeyuki Kawai
- Laboratory for Environmental Biotechnology, Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi 921-8836, Ishikawa, Japan
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Kyoto, Japan
| |
Collapse
|
4
|
Furusawa G, Azami NA, Teh AH. Genes for degradation and utilization of uronic acid-containing polysaccharides of a marine bacterium Catenovulum sp. CCB-QB4. PeerJ 2021; 9:e10929. [PMID: 33732545 PMCID: PMC7953866 DOI: 10.7717/peerj.10929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/20/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Oligosaccharides from polysaccharides containing uronic acids are known to have many useful bioactivities. Thus, polysaccharide lyases (PLs) and glycoside hydrolases (GHs) involved in producing the oligosaccharides have attracted interest in both medical and industrial settings. The numerous polysaccharide lyases and glycoside hydrolases involved in producing the oligosaccharides were isolated from soil and marine microorganisms. Our previous report demonstrated that an agar-degrading bacterium, Catenovulum sp. CCB-QB4, isolated from a coastal area of Penang, Malaysia, possessed 183 glycoside hydrolases and 43 polysaccharide lyases in the genome. We expected that the strain might degrade and use uronic acid-containing polysaccharides as a carbon source, indicating that the strain has a potential for a source of novel genes for degrading the polysaccharides. METHODS To confirm the expectation, the QB4 cells were cultured in artificial seawater media with uronic acid-containing polysaccharides, namely alginate, pectin (and saturated galacturonate), ulvan, and gellan gum, and the growth was observed. The genes involved in degradation and utilization of uronic acid-containing polysaccharides were explored in the QB4 genome using CAZy analysis and BlastP analysis. RESULTS The QB4 cells were capable of using these polysaccharides as a carbon source, and especially, the cells exhibited a robust growth in the presence of alginate. 28 PLs and 22 GHs related to the degradation of these polysaccharides were found in the QB4 genome based on the CAZy database. Eleven polysaccharide lyases and 16 glycoside hydrolases contained lipobox motif, indicating that these enzymes play an important role in degrading the polysaccharides. Fourteen of 28 polysaccharide lyases were classified into ulvan lyase, and the QB4 genome possessed the most abundant ulvan lyase genes in the CAZy database. Besides, genes involved in uronic acid metabolisms were also present in the genome. These results were consistent with the cell growth. In the pectin metabolic pathway, the strain had genes for three different pathways. However, the growth experiment using saturated galacturonate exhibited that the strain can only use the pathway related to unsaturated galacturonate.
Collapse
Affiliation(s)
- Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Penang, Malaysia
| | - Nor Azura Azami
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Penang, Malaysia
| | - Aik-Hong Teh
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Penang, Malaysia
| |
Collapse
|
5
|
Koch H, Dürwald A, Schweder T, Noriega-Ortega B, Vidal-Melgosa S, Hehemann JH, Dittmar T, Freese HM, Becher D, Simon M, Wietz M. Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. THE ISME JOURNAL 2019; 13:92-103. [PMID: 30116038 PMCID: PMC6298977 DOI: 10.1038/s41396-018-0252-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/10/2018] [Accepted: 07/19/2018] [Indexed: 11/08/2022]
Abstract
Algal polysaccharides are an important bacterial nutrient source and central component of marine food webs. However, cellular and ecological aspects concerning the bacterial degradation of polysaccharide mixtures, as presumably abundant in natural habitats, are poorly understood. Here, we contextualize marine polysaccharide mixtures and their bacterial utilization in several ways using the model bacterium Alteromonas macleodii 83-1, which can degrade multiple algal polysaccharides and contributes to polysaccharide degradation in the oceans. Transcriptomic, proteomic and exometabolomic profiling revealed cellular adaptations of A. macleodii 83-1 when degrading a mix of laminarin, alginate and pectin. Strain 83-1 exhibited substrate prioritization driven by catabolite repression, with initial laminarin utilization followed by simultaneous alginate/pectin utilization. This biphasic phenotype coincided with pronounced shifts in gene expression, protein abundance and metabolite secretion, mainly involving CAZymes/polysaccharide utilization loci but also other functional traits. Distinct temporal changes in exometabolome composition, including the alginate/pectin-specific secretion of pyrroloquinoline quinone, suggest that substrate-dependent adaptations influence chemical interactions within the community. The ecological relevance of cellular adaptations was underlined by molecular evidence that common marine macroalgae, in particular Saccharina and Fucus, release mixtures of alginate and pectin-like rhamnogalacturonan. Moreover, CAZyme microdiversity and the genomic predisposition towards polysaccharide mixtures among Alteromonas spp. suggest polysaccharide-related traits as an ecophysiological factor, potentially relating to distinct 'carbohydrate utilization types' with different ecological strategies. Considering the substantial primary productivity of algae on global scales, these insights contribute to the understanding of bacteria-algae interactions and the remineralization of chemically diverse polysaccharide pools, a key step in marine carbon cycling.
Collapse
Affiliation(s)
- Hanna Koch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Alexandra Dürwald
- Institute of Marine Biotechnology, Greifswald, Germany
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Thomas Schweder
- Institute of Marine Biotechnology, Greifswald, Germany
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Beatriz Noriega-Ortega
- ICBM-MPI Bridging Group for Marine Geochemistry, University of Oldenburg, Oldenburg, Germany
| | - Silvia Vidal-Melgosa
- MARUM-MPI Bridge Group for Marine Glycobiology, University of Bremen, Bremen, Germany
| | - Jan-Hendrik Hehemann
- MARUM-MPI Bridge Group for Marine Glycobiology, University of Bremen, Bremen, Germany
| | - Thorsten Dittmar
- ICBM-MPI Bridging Group for Marine Geochemistry, University of Oldenburg, Oldenburg, Germany
| | - Heike M Freese
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dörte Becher
- Institute of Marine Biotechnology, Greifswald, Germany
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Matthias Wietz
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
6
|
Takagi T, Kuroda K, Ueda M. Platform construction of molecular breeding for utilization of brown macroalgae. J Biosci Bioeng 2018; 125:1-7. [DOI: 10.1016/j.jbiosc.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/05/2017] [Accepted: 08/09/2017] [Indexed: 01/04/2023]
|
7
|
Construction of bioengineered yeast platform for direct bioethanol production from alginate and mannitol. Appl Microbiol Biotechnol 2017; 101:6627-6636. [PMID: 28741083 DOI: 10.1007/s00253-017-8418-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 10/19/2022]
Abstract
Brown macroalgae are a sustainable and promising source for bioethanol production because they are abundant in ocean ecosystems and contain negligible quantities of lignin. Brown macroalgae contain cellulose, hemicellulose, mannitol, laminarin, and alginate as major carbohydrates. Among these carbohydrates, brown macroalgae are characterized by high levels of alginate and mannitol. The direct bioconversion of alginate and mannitol into ethanol requires extensive bioengineering of assimilation processes in the standard industrial microbe Saccharomyces cerevisiae. Here, we constructed an alginate-assimilating S. cerevisiae recombinant strain by genome integration and overexpression of the genes encoding endo- and exo-type alginate lyases, DEH (4-deoxy-L-erythro-5-hexoseulose uronic acid) transporter, and components of the DEH metabolic pathway. Furthermore, the mannitol-metabolizing capacity of S. cerevisiae was enhanced by prolonged culture in a medium containing mannitol as the sole carbon source. When the constructed strain AM1 was anaerobically cultivated in a fermentation medium containing 6% (w/v) total sugars (approximately 1:2 ratio of alginate/mannitol), it directly produced ethanol from alginate and mannitol, giving 8.8 g/L ethanol and yields of up to 32% of the maximum theoretical yield from consumed sugars. These results indicate that all major carbohydrates of brown macroalgae can be directly converted into bioethanol by S. cerevisiae. This strain and system could provide a platform for the complete utilization of brown macroalgae.
Collapse
|
8
|
Nishiyama R, Inoue A, Ojima T. Identification of 2-keto-3-deoxy-d-Gluconate Kinase and 2-keto-3-deoxy-d-Phosphogluconate Aldolase in an Alginate-Assimilating Bacterium, Flavobacterium sp. Strain UMI-01. Mar Drugs 2017; 15:md15020037. [PMID: 28216576 PMCID: PMC5334617 DOI: 10.3390/md15020037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/26/2017] [Accepted: 02/08/2017] [Indexed: 01/21/2023] Open
Abstract
Recently, we identified an alginate-assimilating gene cluster in the genome of Flavobacterium sp. strain UMI-01, a member of Bacteroidetes. Alginate lyase genes and a 4-deoxy-l-erythro-5-hexoseulose uronic acid (DEH) reductase gene in the cluster have already been characterized; however, 2-keto-3-deoxy-d-gluconate (KDG) kinase and 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase genes, i.e., flkin and flald, still remained uncharacterized. The amino acid sequences deduced from flkin and flald showed low identities with those of corresponding enzymes of Saccharophagus degradans 2-40T, a member of Proteobacteria (Kim et al., Process Biochem., 2016). This led us to consider that the DEH-assimilating enzymes of Bacteroidetes species are somewhat deviated from those of Proteobacteria species. Thus, in the present study, we first assessed the characteristics in the primary structures of KDG kinase and KDG aldolase of the strain UMI-01, and then investigated the enzymatic properties of recombinant enzymes, recFlKin and recFlAld, expressed by an Escherichia coli expression system. Multiple-sequence alignment among KDG kinases and KDG aldolases from several Proteobacteria and Bacteroidetes species indicated that the strain UMI-01 enzymes showed considerably low sequence identities (15%-25%) with the Proteobacteria enzymes, while they showed relatively high identities (47%-68%) with the Bacteroidetes enzymes. Phylogenetic analyses for these enzymes indicated the distant relationship between the Proteobacteria enzymes and the Bacteroidetes enzymes, i.e., they formed distinct clusters in the phylogenetic tree. recFlKin and recFlAld produced with the genes flkin and flald, respectively, were confirmed to show KDG kinase and KDPG aldolase activities. Namely, recFlKin produced 1.7 mM KDPG in a reaction mixture containing 2.5 mM KDG and 2.5 mM ATP in a 90-min reaction, while recFlAld produced 1.2 mM pyruvate in the reaction mixture containing 5 mM KDPG at the equilibrium state. An in vitro alginate-metabolizing system constructed from recFlKin, recFlAld, and previously reported alginate lyases and DEH reductase of the strain UMI-01 could convert alginate to pyruvate and glyceraldehyde-3-phosphate with an efficiency of 38%.
Collapse
Affiliation(s)
- Ryuji Nishiyama
- Laboratory of Marine Biotechnology and Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan.
| | - Akira Inoue
- Laboratory of Marine Biotechnology and Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan.
| | - Takao Ojima
- Laboratory of Marine Biotechnology and Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
9
|
Validation of the metabolic pathway of the alginate-derived monomer in Saccharophagus degradans 2-40 T by gas chromatography–mass spectrometry. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Effective production of fermentable sugars from brown macroalgae biomass. Appl Microbiol Biotechnol 2016; 100:9439-9450. [DOI: 10.1007/s00253-016-7857-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 01/30/2023]
|
11
|
Motone K, Takagi T, Sasaki Y, Kuroda K, Ueda M. Direct ethanol fermentation of the algal storage polysaccharide laminarin with an optimized combination of engineered yeasts. J Biotechnol 2016; 231:129-135. [DOI: 10.1016/j.jbiotec.2016.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/09/2016] [Accepted: 06/06/2016] [Indexed: 12/23/2022]
|
12
|
Matos MN, Lozada M, Anselmino LE, Musumeci MA, Henrissat B, Jansson JK, Mac Cormack WP, Carroll J, Sjöling S, Lundgren L, Dionisi HM. Metagenomics unveils the attributes of the alginolytic guilds of sediments from four distant cold coastal environments. Environ Microbiol 2016; 18:4471-4484. [PMID: 27348213 DOI: 10.1111/1462-2920.13433] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/23/2016] [Indexed: 12/20/2022]
Abstract
Alginates are abundant polysaccharides in brown algae that constitute an important energy source for marine heterotrophic bacteria. Despite the key role of alginate degradation processes in the marine carbon cycle, little information is available on the bacterial populations involved in these processes. The aim of this work was to gain a better understanding of alginate utilization capabilities in cold coastal environments. Sediment metagenomes from four high-latitude regions of both Hemispheres were interrogated for alginate lyase gene homologue sequences and their genomic context. Sediments contained highly abundant and diverse bacterial assemblages with alginolytic potential, including members of Bacteroidetes and Proteobacteria, as well as several poorly characterized taxa. The microbial communities in Arctic and Antarctic sediments exhibited the most similar alginolytic profiles, whereas brackish sediments showed distinct structures with a higher proportion of novel genes. Examination of the gene neighbourhood of the alginate lyase homologues revealed distinct patterns depending on the potential lineage of the scaffolds, with evidence of evolutionary relationships among alginolytic gene clusters from Bacteroidetes and Proteobacteria. This information is relevant for understanding carbon fluxes in cold coastal environments and provides valuable information for the development of biotechnological applications from brown algae biomass.
Collapse
Affiliation(s)
- Marina N Matos
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos (CESIMAR, CONICET), Puerto Madryn, U9120ACD, Argentina
| | - Mariana Lozada
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos (CESIMAR, CONICET), Puerto Madryn, U9120ACD, Argentina
| | - Luciano E Anselmino
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos (CESIMAR, CONICET), Puerto Madryn, U9120ACD, Argentina
| | - Matías A Musumeci
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos (CESIMAR, CONICET), Puerto Madryn, U9120ACD, Argentina
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, 13288, France.,INRA, USC 1408 AFMB, Marseille, F-13288, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Walter P Mac Cormack
- Instituto Antártico Argentino, Ciudad Autónoma de Buenos Aires, C1064ABR, Argentina.,Instituto Nanobiotec, CONICET - Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1113AAC, Argentina
| | - JoLynn Carroll
- Akvaplan-niva, Fram - High North Research Centre for Climate and the Environment, Tromsø, NO-9296, Norway.,CAGE - Centre for Arctic Gas Hydrate, Environment and Climate, UiT The Arctic University of Norway, Tromsø, N-9037, Norway
| | - Sara Sjöling
- School of Natural Sciences and Environmental Studies, Södertörn University, Huddinge, 141 89, Sweden
| | | | - Hebe M Dionisi
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos (CESIMAR, CONICET), Puerto Madryn, U9120ACD, Argentina
| |
Collapse
|
13
|
Sasaki Y, Takagi T, Motone K, Kuroda K, Ueda M. Ethanol production from hemicellulose using xylose isomerase-displaying yeast. N Biotechnol 2016. [DOI: 10.1016/j.nbt.2016.06.1013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Takagi T, Morisaka H, Aburaya S, Tatsukami Y, Kuroda K, Ueda M. Proposed alginate utilization process of the macroalgae-assimilating Saccharophagus degradans 2-40 based on quantitative proteomic analysis. N Biotechnol 2016. [DOI: 10.1016/j.nbt.2016.06.1016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Motone K, Takagi T, Sasaki Y, Kuroda K, Ueda M. Platform of direct ethanol production from macroalgae by engineered Saccharomyces cerevisiae. N Biotechnol 2016. [DOI: 10.1016/j.nbt.2016.06.902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Abstract
Cell surface display of proteins/peptides has been established based on mechanisms of localizing proteins to the cell surface. In contrast to conventional intracellular and extracellular (secretion) expression systems, this method, generally called an arming technology, is particularly effective when using yeasts as a host, because the control of protein folding that is often required for the preparation of proteins can be natural. This technology can be employed for basic and applied research purposes. In this review, I describe various strategies for the construction of engineered yeasts and provide an outline of the diverse applications of this technology to industrial processes such as the production of biofuels and chemicals, as well as bioremediation and health-related processes. Furthermore, this technology is suitable for novel protein engineering and directed evolution through high-throughput screening, because proteins/peptides displayed on the cell surface can be directly analyzed using intact cells without concentration and purification. Functional proteins/peptides with improved or novel functions can be created using this beneficial, powerful, and promising technique.
Collapse
Affiliation(s)
- Mitsuyoshi Ueda
- a Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Sakyo-ku , Japan
| |
Collapse
|