1
|
Yang D, Chen H, Zhang Y, Wang Y, Zhai Y, Xu G, Ding Q, Wang M, Zhang QA, Lu X, Yan C. Genome-Wide Identification and Expression Analysis of the Melon Aldehyde Dehydrogenase (ALDH) Gene Family in Response to Abiotic and Biotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:2939. [PMID: 39458887 PMCID: PMC11510909 DOI: 10.3390/plants13202939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Through the integration of genomic information, transcriptome sequencing data, and bioinformatics methods, we conducted a comprehensive identification of the ALDH gene family in melon. We explored the impact of this gene family on melon growth, development, and their expression patterns in various tissues and under different stress conditions. Our study discovered a total of 17 ALDH genes spread across chromosomes 1, 2, 3, 4, 5, 7, 8, 11, and 12 in the melon genome. Through a phylogenetic analysis, these genes were classified into 10 distinct subfamilies. Notably, genes within the same subfamily exhibited consistent gene structures and conserved motifs. Our study discovered a pair of fragmental duplications within the melon ALDH gene. Furthermore, there was a noticeable collinearity relationship between the melon's ALDH gene and that of Arabidopsis (12 times), and rice (3 times). Transcriptome data reanalysis revealed that some ALDH genes consistently expressed highly across all tissues and developmental stages, while others were tissue- or stage-specific. We analyzed the ALDH gene's expression patterns under six stress types, namely salt, cold, waterlogged, powdery mildew, Fusarium wilt, and gummy stem blight. The results showed differential expression of CmALDH2C4 and CmALDH11A3 under all stress conditions, signifying their crucial roles in melon growth and stress response. RT-qPCR (quantitative reverse transcription PCR) analysis further corroborated these findings. This study paves the way for future genetic improvements in melon molecular breeding.
Collapse
Affiliation(s)
- Dekun Yang
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
- Anhui Society for Horticultural Science, Hefei 230001, China
| | - Hongli Chen
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
- Anhui Society for Horticultural Science, Hefei 230001, China
| | - Yu Zhang
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Yan Wang
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
| | - Yongqi Zhai
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
| | - Gang Xu
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
| | - Qiangqiang Ding
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
| | - Mingxia Wang
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
| | - Qi-an Zhang
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
| | - Xiaomin Lu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Congsheng Yan
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
| |
Collapse
|
2
|
Li S, Wang X, Wang W, Zhang Z, Wang X, Zhang Q, Wang Y. Genome-wide identification and expression analysis of the ALDH gene family and functional analysis of PaALDH17 in Prunus avium. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:633-645. [PMID: 38737320 PMCID: PMC11087402 DOI: 10.1007/s12298-024-01444-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 05/14/2024]
Abstract
ALDH (Aldehyde dehydrogenase), as an enzyme that encodes the dehydroxidization of aldehydes into corresponding carboxylic acids, played an important role inregulating gene expression in response to many kinds of biotic and abiotic stress, including saline-alkali stress. Saline-alkali stress was a common stress that seriously affected plant growth and productivity. Saline-alkali soil contained the characteristics of high salinity and high pH value, which could cause comprehensive damage such as osmotic stress, ion toxicity, high pH, and HCO3-/CO32- stress. In our study, 18 PaALDH genes were identified in sweet cherry genome, and their gene structures, phylogenetic analysis, chromosome localization, and promoter cis-acting elements were analyzed. Quantitative real-time PCR confirmed that PaALDH17 exhibited the highest expression compared to other members under saline-alkali stress. Subsequently, it was isolated from Prunus avium, and transgenic A. thaliana was successfully obtained. Compared with wild type, transgenic PaALDH17 plants grew better under saline-alkali stress and showed higher chlorophyll content, Superoxide dismutase (SOD), Peroxidase (POD) and Catalase (CAT) enzyme activities, which indicated that they had strong resistance to stress. These results indicated that PaALDH17 improved the resistance of sweet cherries to saline-alkali stress, which in turn improved quality and yields. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01444-7.
Collapse
Affiliation(s)
- Sitian Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Xiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Wanxia Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Zhongxing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Xingbin Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Qingxia Zhang
- College of Agriculture and Forestry Technology, Longdong University, Qingyang, 745000 China
| | - Yanxiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| |
Collapse
|
3
|
Munim Twaij B, Jameel Ibraheem L, Al-Shammari RHH, Hasan M, Akter Khoko R, Sunzid Ahomed M, Prodhan SH, Nazmul Hasan M. Identification and characterization of aldehyde dehydrogenase (ALDH) gene superfamily in garlic and expression profiling in response to drought, salinity, and ABA. Gene 2023; 860:147215. [PMID: 36709878 DOI: 10.1016/j.gene.2023.147215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
In response to biotic and abiotic stressors, aldehydes are detoxified and converted to carboxylic acids by aldehyde dehydrogenases (ALDHs), which are enzymes that use NAD+/NADP+ as cofactors. Garlic (Allium sativum L.) has not yet undergone a systematic examination of the ALDH superfamily, despite the genome sequence having been made public. In this investigation, we identified, characterized, and profiled the expression of the garlic ALDH gene family over the entire genome. The ALDH Gene Nomenclature Committee (AGNC) classification was used to classify and name the 34 ALDH genes that were discovered. Except for chromosome 8, all AsALDH genes were dispersed across the chromosomes. AsALDH genes have various localizations, according to predictions about subcellular localization. The AsALDH proteins are more varied and closely related to rice than to Arabidopsis, according to a study of conserved motifs and phylogenetic relationships. The presence of stress modulation pathways is indicated by the abundance of stress-related cis-elements in the AsALDH genes' promoter regions. Analysis of the RNA-seq data showed that AsALDHs expressed differently in various tissues and at various developmental stages. Nine AsALDHs were chosen for study using RT-qPCR, and the results revealed that the majority of the genes were upregulated in response to ABA and downregulated in response to salinity and drought. The results of this study improved our knowledge of the traits, evolutionary background, and biological functions of AsALDHs genes in growth and development.
Collapse
Affiliation(s)
- Baan Munim Twaij
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq.
| | | | | | - Mahmudul Hasan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Roksana Akter Khoko
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Md Sunzid Ahomed
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Shamsul H Prodhan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Md Nazmul Hasan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| |
Collapse
|
4
|
Zhang X, Zhong J, Cao L, Ren C, Yu G, Gu Y, Ruan J, Zhao S, Wang L, Ru H, Cheng L, Wang Q, Zhang Y. Genome-wide characterization of aldehyde dehydrogenase gene family members in groundnut ( Arachis hypogaea) and the analysis under saline-alkali stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1097001. [PMID: 36875623 PMCID: PMC9978533 DOI: 10.3389/fpls.2023.1097001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Groundnut or peanut (Arachis hypogaea) is a legume crop. Its seeds are rich in protein and oil. Aldehyde dehydrogenase (ALDH, EC: 1.2.1.3) is an important enzyme involved in detoxification of aldehyde and cellular reactive oxygen species, as well as in attenuation of lipid peroxidation-meditated cellular toxicity under stress conditions. However, few studies have been identified and analyzed about ALDH members in Arachis hypogaea. In the present study, 71 members of the ALDH superfamily (AhALDH) were identified using the reference genome obtained from the Phytozome database. A systematic analysis of the evolutionary relationship, motif, gene structure, cis-acting elements, collinearity, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and expression patterns was conducted to understand the structure and function of AhALDHs. AhALDHs exhibited tissue-specific expression, and quantitative real-time PCR identified significant differences in the expression levels of AhALDH members under saline-alkali stress. The results revealed that some AhALDHs members could be involved in response to abiotic stress. Our findings on AhALDHs provide insights for further study.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- Agricultural College, Northeast Agricultural University, Harbin, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingwen Zhong
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Liang Cao
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chunyuan Ren
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Gaobo Yu
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanhua Gu
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Jingwen Ruan
- Agricultural College, Northeast Agricultural University, Harbin, China
| | - Siqi Zhao
- Agricultural College, Northeast Agricultural University, Harbin, China
| | - Lei Wang
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Haishun Ru
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Lili Cheng
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qi Wang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yuxian Zhang
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
5
|
Du HM, Liu C, Jin XW, Du CF, Yu Y, Luo S, He WZ, Zhang SZ. Overexpression of the Aldehyde Dehydrogenase Gene ZmALDH Confers Aluminum Tolerance in Arabidopsis thaliana. Int J Mol Sci 2022; 23:477. [PMID: 35008903 PMCID: PMC8745680 DOI: 10.3390/ijms23010477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023] Open
Abstract
Aluminum (Al) toxicity is the main factor limiting plant growth and the yield of cereal crops in acidic soils. Al-induced oxidative stress could lead to the excessive accumulation of reactive oxygen species (ROS) and aldehydes in plants. Aldehyde dehydrogenase (ALDH) genes, which play an important role in detoxification of aldehydes when exposed to abiotic stress, have been identified in most species. However, little is known about the function of this gene family in the response to Al stress. Here, we identified an ALDH gene in maize, ZmALDH, involved in protection against Al-induced oxidative stress. Al stress up-regulated ZmALDH expression in both the roots and leaves. The expression of ZmALDH only responded to Al toxicity but not to other stresses including low pH and other metals. The heterologous overexpression of ZmALDH in Arabidopsis increased Al tolerance by promoting the ascorbate-glutathione cycle, increasing the transcript levels of antioxidant enzyme genes as well as the activities of their products, reducing MDA, and increasing free proline synthesis. The overexpression of ZmALDH also reduced Al accumulation in roots. Taken together, these findings suggest that ZmALDH participates in Al-induced oxidative stress and Al accumulation in roots, conferring Al tolerance in transgenic Arabidopsis.
Collapse
Affiliation(s)
- Han-Mei Du
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.-M.D.); (C.L.); (X.-W.J.); (C.-F.D.); (Y.Y.); (S.L.)
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615000, China
| | - Chan Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.-M.D.); (C.L.); (X.-W.J.); (C.-F.D.); (Y.Y.); (S.L.)
| | - Xin-Wu Jin
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.-M.D.); (C.L.); (X.-W.J.); (C.-F.D.); (Y.Y.); (S.L.)
| | - Cheng-Feng Du
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.-M.D.); (C.L.); (X.-W.J.); (C.-F.D.); (Y.Y.); (S.L.)
| | - Yan Yu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.-M.D.); (C.L.); (X.-W.J.); (C.-F.D.); (Y.Y.); (S.L.)
| | - Shuai Luo
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.-M.D.); (C.L.); (X.-W.J.); (C.-F.D.); (Y.Y.); (S.L.)
| | - Wen-Zhu He
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Su-Zhi Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (H.-M.D.); (C.L.); (X.-W.J.); (C.-F.D.); (Y.Y.); (S.L.)
| |
Collapse
|
6
|
Carmona-Molero R, Jimenez-Lopez JC, Caballo C, Gil J, Millán T, Die JV. Aldehyde Dehydrogenase 3 Is an Expanded Gene Family with Potential Adaptive Roles in Chickpea. PLANTS 2021; 10:plants10112429. [PMID: 34834791 PMCID: PMC8619295 DOI: 10.3390/plants10112429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 11/23/2022]
Abstract
Legumes play an important role in ensuring food security, improving nutrition and enhancing ecosystem resilience. Chickpea is a globally important grain legume adapted to semi-arid regions under rain-fed conditions. A growing body of research shows that aldehyde dehydrogenases (ALDHs) represent a gene class with promising potential for plant adaptation improvement. Aldehyde dehydrogenases constitute a superfamily of proteins with important functions as ‘aldehyde scavengers’ by detoxifying aldehydes molecules, and thus play important roles in stress responses. We performed a comprehensive study of the ALDH superfamily in the chickpea genome and identified 27 unique ALDH loci. Most chickpea ALDHs originated from duplication events and the ALDH3 gene family was noticeably expanded. Based on the physical locations of genes and sequence similarities, our results suggest that segmental duplication is a major driving force in the expansion of the ALDH family. Supported by expression data, the findings of this study offer new potential target genes for improving stress tolerance in chickpea that will be useful for breeding programs.
Collapse
Affiliation(s)
- Rocío Carmona-Molero
- Department of Genetics ETSIAM, University of Córdoba, 14071 Córdoba, Spain; (R.C.-M.); (J.G.); (T.M.)
| | - Jose C. Jimenez-Lopez
- Department of Biochemistry, Cell and Molecular Biology of Plants, EEZ-CSIC, 18008 Granada, Spain;
- Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth 6009, Australia
| | - Cristina Caballo
- Área de Genómica y Biotecnología, IFAPA, Alameda del Obispo, 14080 Córdoba, Spain;
| | - Juan Gil
- Department of Genetics ETSIAM, University of Córdoba, 14071 Córdoba, Spain; (R.C.-M.); (J.G.); (T.M.)
| | - Teresa Millán
- Department of Genetics ETSIAM, University of Córdoba, 14071 Córdoba, Spain; (R.C.-M.); (J.G.); (T.M.)
| | - Jose V. Die
- Department of Genetics ETSIAM, University of Córdoba, 14071 Córdoba, Spain; (R.C.-M.); (J.G.); (T.M.)
- Correspondence:
| |
Collapse
|
7
|
Xie X, Zhang Z, Zhao Z, Xie Y, Li H, Ma X, Liu YG, Chen L. The mitochondrial aldehyde dehydrogenase OsALDH2b negatively regulates tapetum degeneration in rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2551-2560. [PMID: 31989154 PMCID: PMC7210758 DOI: 10.1093/jxb/eraa045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/26/2020] [Indexed: 05/02/2023]
Abstract
Timely degradation of anther tapetal cells is a prerequisite for normal pollen development in flowering plants. Although several genes involved in tapetum development have been identified, the molecular basis of tapetum degeneration regulation remains poorly understood. In this study, we identified and characterized the nucleus-encoded, conserved mitochondrial aldehyde dehydrogenase OsALDH2b as a key regulator of tapetum degeneration in rice (Oryza sativa). OsALDH2b was highly expressed in anthers from meiosis to the early microspore stage. Mutation of OsALDH2b resulted in excess malonaldehyde accumulation and earlier programmed cell death in the tapetum, leading to premature tapetum degeneration and abnormal microspore development. These results demonstrate that OsALDH2b negatively regulates tapetal programmed cell death and is required for male reproductive development, providing insights into the regulation of tapetum development in plants.
Collapse
Affiliation(s)
- Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Zixu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou, China
| | - Zhe Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou, China
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou, China
| | - Heying Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xingliang Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou, China
- Correspondence:
| |
Collapse
|
8
|
Mentana A, Camele I, Mang SM, De Benedetto GE, Frisullo S, Centonze D. Volatolomics approach by HS-SPME-GC-MS and multivariate analysis to discriminate olive tree varieties infected by Xylella fastidiosa. PHYTOCHEMICAL ANALYSIS : PCA 2019; 30:623-634. [PMID: 31020714 DOI: 10.1002/pca.2835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Xylella fastidiosa (Xf) is a pathogenic bacterium that causes diseases in olive trees. Therefore, analytical methods for both the characterisation of the host/pathogen interaction and infection monitoring are needed. Volatile organic compounds (VOCs) are emitted by plants relate to their physiological state, therefore VOCs monitoring can assist in detecting stress or infection states before visible signs are present. OBJECTIVE In this work, the headspace-solid phase microextraction-gaschromatography-mass spectrometry (HS-SPME-GC-MS) technique was used for the first time to highlight VOCs differences between healthy and Xf-infected olive trees. METHODOLOGY VOCs from olive tree twig samples were extracted and analysed by HS-SPME-GC-MS, and hence identified by comparing the experimental linear retention indexes with the reference values and by MS data obtained from NIST library. Data were processed by principal component analysis (PCA) and analysis of variance (ANOVA). RESULTS The HS-SPME step was optimised in terms of adsorbent phase and extraction time. HS-SPME-GC-MS technique was applied to the extraction and analysis of VOCs of healthy and Xf-infected olive trees. More than 100 compounds were identified and the differences between samples were evidenced by the multivariate analysis approach. The results showed the marked presence of methyl esters in Xf-infected samples, suggesting their probable involvement in the mechanism of diffusible signal factor. CONCLUSION The proposed approach represents an easy and solvent-free method to evaluate the presence of Xf in olive trees, and to evidence volatiles produced by host/pathogen interactions that could be involved in the defensive mechanism of the olive tree and/or in the infective action of Xf.
Collapse
Affiliation(s)
- Annalisa Mentana
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università degli Studi di Foggia, Via Napoli, Foggia, Italy
| | - Ippolito Camele
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Via dell'Ateneo Lucano, Potenza, Italy
| | - Stefania M Mang
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Via dell'Ateneo Lucano, Potenza, Italy
| | | | - Salvatore Frisullo
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università degli Studi di Foggia, Via Napoli, Foggia, Italy
| | - Diego Centonze
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università degli Studi di Foggia, Via Napoli, Foggia, Italy
| |
Collapse
|
9
|
Wang W, Jiang W, Liu J, Li Y, Gai J, Li Y. Genome-wide characterization of the aldehyde dehydrogenase gene superfamily in soybean and its potential role in drought stress response. BMC Genomics 2017; 18:518. [PMID: 28687067 PMCID: PMC5501352 DOI: 10.1186/s12864-017-3908-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 06/27/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aldehyde dehydrogenases (ALDHs) represent a group of enzymes that detoxify aldehydes by facilitating their oxidation to carboxylic acids, and have been shown to play roles in plant response to abiotic stresses. However, the comprehensive analysis of ALDH superfamily in soybean (Glycine max) has been limited. RESULTS In present study, a total of 53 GmALDHs were identified in soybean, and grouped into 10 ALDH families according to the ALDH Gene Nomenclature Committee and phylogenetic analysis. These groupings were supported by their gene structures and conserved motifs. Soybean ALDH superfamily expanded mainly by whole genome duplication/segmental duplications. Gene network analysis identified 1146 putative co-functional genes of 51 GmALDHs. Gene Ontology (GO) enrichment analysis suggested the co-functional genes of these 51 GmALDHs were enriched (FDR < 1e-3) in the process of lipid metabolism, photosynthesis, proline catabolism, and small molecule catabolism. In addition, 22 co-functional genes of GmALDHs are related to plant response to water deprivation/water transport. GmALDHs exhibited various expression patterns in different soybean tissues. The expression levels of 13 GmALDHs were significantly up-regulated and 14 down-regulated in response to water deficit. The occurrence frequencies of three drought-responsive cis-elements (ABRE, CRT/DRE, and GTGCnTGC/G) were compared in GmALDH genes that were up-, down-, or non-regulated by water deficit. Higher frequency of these three cis-elements was observed for the group of up-regulated GmALDH genes as compared to the group of down- or non- regulated GmALDHs by drought stress, implying their potential roles in the regulation of soybean response to drought stress. CONCLUSIONS A total of 53 ALDH genes were identified in soybean genome and their phylogenetic relationships and duplication patterns were analyzed. The potential functions of GmALDHs were predicted by analyses of their co-functional gene networks, gene expression profiles, and cis-regulatory elements. Three GmALDH genes, including GmALDH3H2, GmALDH12A2 and GmALDH18B3, were highly induced by drought stress in soybean leaves. Our study provides a foundation for future investigations of GmALDH gene function in soybean.
Collapse
Affiliation(s)
- Wei Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement / National Center for Soybean Improvement / Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture) / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Wei Jiang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement / National Center for Soybean Improvement / Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture) / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Juge Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement / National Center for Soybean Improvement / Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture) / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Yang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement / National Center for Soybean Improvement / Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture) / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Junyi Gai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement / National Center for Soybean Improvement / Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture) / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Yan Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement / National Center for Soybean Improvement / Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture) / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu China
| |
Collapse
|
10
|
Meng Y, Hao J, Mayfield D, Luo L, Munkvold GP, Li J. Roles of Genotype-Determined Mycotoxins in Maize Seedling Blight Caused by Fusarium graminearum. PLANT DISEASE 2017; 101:1103-1112. [PMID: 30682974 DOI: 10.1094/pdis-01-17-0119-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fusarium graminearum is an important causal agent of maize seedling blight. The species includes several chemotypes that produce various forms of deoxynivalenol (DON) and nivalenol (NIV). To understand the effects and roles of F. graminearum mycotoxins on maize seedling blight occurring at Zhang Ye of Gansu, China, 23 isolates of F. graminearum were collected and characterized. A PCR assay showed all 23 isolates belonged to the 15-acetyldeoxynivalenol (15-ADON) genotype. This was also confirmed by production of both DON and 15-ADON in either rice culture medium or maize seedling roots, detected by high performance liquid chromatography and mass spectrometry. In maize seedling roots, 15-ADON dominated at 6 days post inoculation (dpi) and DON was the main mycotoxin at 12 dpi. The biomass of F. graminearum doubled from 6 to 12 dpi, and was positively correlated with virulence of the isolates. Both mycotoxins affected maize root vitality, but 15-ADON had a greater effect than DON. ALDH9 and MDH, two dehydrogenase synthesis genes in maize, showed a lower relative expression in 15-ADON treatments than in DON treatments. It indicated that both mycotoxins affected seed germination and root development, with 15-ADON being more destructive. Under scanning electron microscopy and transmission electron microscopy, root hair formation and development were delayed by DON, but completely inhibited by 15-ADON. 15-ADON caused cell shrinkage, loose cellular structure, and widened intercellular spaces; it also destroyed organelles and caused plasmolysis, and eventually ruptured cell membranes causing cell death. DON did not affect cell morphology and arrangement, but altered the morphology of organelles, forming concentric membranous bodies and a large amount of irregular lipid droplets. Thus, both mycotoxins contributed to symptom expression of maize seedling blight, but 15-ADON was more destructive than DON.
Collapse
Affiliation(s)
- Yan Meng
- Department of Plant Pathology, China Agricultural University/Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, P. R. China; Department of Plant Pathology and Microbiology, Iowa State University, Ames, 50011; and College of Agriculture and Biotechnology, Hexi University, Zhangye, 734000, P. R. China
| | - Jianjun Hao
- School of Food and Agriculture, The University of Maine, Orono, 04469
| | - Derrick Mayfield
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, 50011
| | - Laixin Luo
- Department of Plant Pathology, China Agricultural University/Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, P. R. China
| | - Gary P Munkvold
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, 50011
| | - Jianqiang Li
- Department of Plant Pathology, China Agricultural University/Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
11
|
Fang Y, Lu H, Chen S, Zhu K, Song H, Qian H. Leaf proteome analysis provides insights into the molecular mechanisms of bentazon detoxification in rice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 125:45-52. [PMID: 26615150 DOI: 10.1016/j.pestbp.2015.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/18/2015] [Accepted: 06/05/2015] [Indexed: 06/05/2023]
Abstract
Bentazon is a widely used herbicide that selectively removes broad-leaf weeds by competing with plastoquinone for the binding site in the D1 protein and interrupting the PET (photosynthetic electron transfer) chain. However, monocotyledonous plants, such as rice, show strong resistance to bentazon due to CYP81A6 induction, which results in herbicide detoxification. Here, we confirmed that rice was sensitive to bentazon treatment during the initial exposure period, in which bentazon rapidly inhibited photosynthesis efficiency and electron transfer, based on results of chlorophyll fluorescence analysis. In order to gain a comprehensive, pathway-oriented, mechanistic understanding of the effects directly induced by bentazon, we employed 2D-DIGE (two-dimensional difference gel electrophoresis) to analyze the leaf proteome after 8h of bentazon treatment coupled with individual protein identification by MALDI-TOF (Matrix assisted laser desorption/ionization-time of flight) MS/MS. Proteomic analyses revealed that bentazon induced the relative upregulation or downregulation of 30 and 71 proteins (by 1.5-fold or more, p<0.05), respectively. The pathways involved include photosynthesis processes, carbohydrate metabolism, antioxidant systems, and DNA stabilization and protein folding. Protein analysis data revealed that bentazon primarily suppressed photosynthesis processes, and showed inhibitory effects on carbohydrate metabolism and ATP synthesis, whereas several stress response proteins were induced in response to bentazon. Importantly, we identified a 519kD protein containing two histidine kinase-like ATPase domains and a C3HC4 RING type zinc finger domain which may function as a transcript factor to drive expression of detoxification genes such as CYP81A6, leading to bentazon tolerance. This study identifies, for the first time, a candidate transcription factor that could up-regulate CYP81A6 expression, and provides a foundation for further research to advance our knowledge of mechanisms of bentazon resistance in rice.
Collapse
Affiliation(s)
- Yingzhi Fang
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Haiping Lu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Si Chen
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Kun Zhu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Hao Song
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haifeng Qian
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|
12
|
Tian FX, Zang JL, Wang T, Xie YL, Zhang J, Hu JJ. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs. PLoS One 2015; 10:e0124669. [PMID: 25909656 PMCID: PMC4409362 DOI: 10.1371/journal.pone.0124669] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/16/2015] [Indexed: 11/18/2022] Open
Abstract
Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.
Collapse
Affiliation(s)
- Feng-Xia Tian
- College of Life Science and Technology, Nanyang Normal University, Nanyang, Henan, 473061, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jian-Lei Zang
- College of Life Science and Technology, Nanyang Normal University, Nanyang, Henan, 473061, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Tan Wang
- College of Life Science and Technology, Nanyang Normal University, Nanyang, Henan, 473061, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yu-Li Xie
- College of Life Science and Technology, Nanyang Normal University, Nanyang, Henan, 473061, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
- * E-mail: (JZ); (JJH)
| | - Jian-Jun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- * E-mail: (JZ); (JJH)
| |
Collapse
|
13
|
Hou Q, Bartels D. Comparative study of the aldehyde dehydrogenase (ALDH) gene superfamily in the glycophyte Arabidopsis thaliana and Eutrema halophytes. ANNALS OF BOTANY 2015; 115:465-79. [PMID: 25085467 PMCID: PMC4332599 DOI: 10.1093/aob/mcu152] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 05/28/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Stresses such as drought or salinity induce the generation of reactive oxygen species, which subsequently cause excessive accumulation of aldehydes in plant cells. Aldehyde dehydrogenases (ALDHs) are considered as 'aldehyde scavengers' to eliminate toxic aldehydes caused by oxidative stress. The completion of the genome sequencing projects of the halophytes Eutrema parvulum and E. salsugineum has paved the way to explore the relationships and the roles of ALDH genes in the glycophyte Arabidopsis thaliana and halophyte model plants. METHODS Protein sequences of all plant ALDH families were used as queries to search E. parvulum and E. salsugineum genome databases. Evolutionary analyses compared the phylogenetic relationships of ALDHs from A. thaliana and Eutrema. Expression patterns of several stress-associated ALDH genes were investigated under different salt conditions using reverse transcription-PCR. Putative cis-elements in the promoters of ALDH10A8 from A. thaliana and E. salsugineum were compared in silico. KEY RESULTS Sixteen and 17 members of ten ALDH families were identified from E. parvulum and E. salsugineum genomes, respectively. Phylogenetic analysis of ALDH protein sequences indicated that Eutrema ALDHs are closely related to those of Arabidopsis, and members within these species possess nearly identical exon-intron structures. Gene expression analysis under different salt conditions showed that most of the ALDH genes have similar expression profiles in Arabidopsis and E. salsugineum, except for ALDH7B4 and ALDH10A8. In silico analysis of promoter regions of ALDH10A8 revealed different distributions of cis-elements in E. salsugineum and Arabidopsis. CONCLUSIONS Genomic organization, copy number, sub-cellular localization and expression profiles of ALDH genes are conserved in Arabidopsis, E. parvulum and E. salsugineum. The different expression patterns of ALDH7B4 and ALDH10A8 in Arabidopsis and E. salsugineum suggest that E. salsugineum uses modified regulatory pathways, which may contribute to salinity tolerance.
Collapse
Affiliation(s)
- Quancan Hou
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, D-53315 Bonn, Germany
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, D-53315 Bonn, Germany
| |
Collapse
|