1
|
Wang H, Xu W, Zhang X, Wang L, Jia S, Zhao S, Li W, Lu R, Ren A, Zhang S. Transcriptomics and metabolomics analyses of Rosa hybrida to identify heat stress response genes and metabolite pathways. BMC PLANT BIOLOGY 2024; 24:874. [PMID: 39304829 DOI: 10.1186/s12870-024-05543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Global warming has greatly increased the impact of high temperatures on crops, resulting in reduced yields and increased mortality. This phenomenon is of significant importance to the rose flower industry because high-temperature stress leads to bud dormancy or even death, reducing ornamental value and incurring economic losses. Understanding the molecular mechanisms underlying the response and resistance of roses to high-temperature stress can serve as an important reference for cultivating high-temperature-stress-resistant roses. RESULTS To evaluate the impact of high temperatures on rose plants, we measured physiological indices in rose leaves following heat stress. Protein and chlorophyll contents were significantly decreased, whereas proline and malondialdehyde (MDA) contents, and peroxidase (POD) activity were increased. Subsequently, transcriptomics and metabolomics analyses identified 4,652 common differentially expressed genes (DEGs) and 57 common differentially abundant metabolites (DAMs) in rose plants from four groups. Enrichment analysis showed that DEGs and DAMs were primarily involved in the mitogen-activated protein kinases (MAPK) signaling pathway, plant hormone signal transduction, alpha-linolenic acid metabolism, phenylpropanoid biosynthesis, and flavonoid biosynthesis. The combined analysis of the DEGs and DAMs revealed that flavonoid biosynthesis pathway-related genes, such as chalcone isomerase (CHI), shikimate O-hydroxycinnamoyl transferase (HCT), flavonol synthase (FLS), and bifunctional dihydroflavonol 4-reductase/flavanone 4-reductase (DFR), were downregulated after heat stress. Moreover, in the MAPK signaling pathway, the expression of genes related to jasmonic acid exhibited a decrease, but ethylene receptor (ETR/ERS), P-type Cu + transporter (RAN1), ethylene-insensitive protein 2/3 (EIN2), ethylene-responsive transcription factor 1 (ERF1), and basic endochitinase B (ChiB), which are associated with the ethylene pathway, were mostly upregulated. Furthermore, heterologous overexpression of the heat stress-responsive gene RcHSP70 increased resistance to heat stress in Arabidopsis thaliana. CONCLUSION The results of this study indicated that the flavonoid biosynthesis pathway, MAPK signaling pathway, and plant hormones may be involved in high-temperature resistance in roses. Constitutive expression of RcHSP70 may contribute to increasing high-temperature tolerance. This study provides new insights into the genes and metabolites induced in roses in response to high temperature, and the results provide a reference for analyzing the molecular mechanisms underlying resistance to heat stress in roses.
Collapse
Affiliation(s)
- Hua Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Wanting Xu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaojuan Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Lian Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Suqi Jia
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Shuwei Zhao
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Wan Li
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Rongqianyi Lu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Aihua Ren
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin, 150069, China
| | - Shuiming Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
2
|
Xu K, Wang P. Transcriptome-wide identification of the Hsp70 gene family in Pugionium cornutum and functional analysis of PcHsp70-5 under drought stress. PLANTA 2024; 260:84. [PMID: 39214933 DOI: 10.1007/s00425-024-04509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
MAIN CONCLUSION The PcHsp70-5 enhances drought stress tolerance in transgenic Arabidopsis thaliana by upregulating stress tolerance genes and antioxidant enzyme activities. Heat shock proteins (HSPs) constitute a class of evolutionarily conserved proteins synthesized by organisms in response to various adverse environmental stimuli such as elevated temperatures, drought, hormonal fluctuations, high salt concentrations, and mechanical stress. However, research on HSPs has predominantly focused on model plants and crops, whereas their functions in desert plants have not been well investigated. This study analyzed the transcriptome of Pugionium cornutum and identified the complete ORFs of 25 genes of the PcHsp70 family genes. Their expression levels under drought stress were investigated using existing RNA-seq data. PcHsp70-5 genes exhibited high expression levels in both roots and leaves under drought stress. Consequently, the PcHsp70-5 genes were cloned and transformed into Arabidopsis thaliana for further analysis of their roles in drought stress response. Real-time fluorescence quantitative PCR (qRT-PCR) analysis demonstrated that both, drought stress and ABA, induced PcHsp70-5 expression. Under drought conditions, transgenic Arabidopsis plants exhibited markedly enhanced growth compared to wild-type plants, as evidenced by improved survival rates, root length, fresh weight, chlorophyll content, and reduced levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in leaves, indicating that PcHsp70-5 overexpression mitigated growth inhibition and oxidative damage induced by drought stress. Subsequent research revealed that PcHsp70-5 overexpression significantly augmented the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and increased the proline content in transgenic Arabidopsis under drought conditions, alongside a significant increase in the expression levels of genes related to stress tolerance. This suggests that PcHsp70-5 enhances drought stress tolerance in transgenic Arabidopsis by upregulating stress tolerance genes and antioxidant enzyme activities.
Collapse
Affiliation(s)
- Ke Xu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, University of East, Hohhot, 01000, Inner Mongolia, China
| | - Ping Wang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, University of East, Hohhot, 01000, Inner Mongolia, China.
| |
Collapse
|
3
|
Chen Y, Chang Q, Fang Q, Zhang Z, Wu D, Bian L, Chen S. Genome-Wide Identification, Molecular Characterization, and Expression Analysis of the HSP70 and HSP90 Gene Families in Thamnaconus septentrionalis. Int J Mol Sci 2024; 25:5706. [PMID: 38891896 PMCID: PMC11172388 DOI: 10.3390/ijms25115706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Heat shock proteins (HSPs) are a class of highly conserved proteins that play an important role in biological responses to various environmental stresses. The mariculture of Thamnaconus septentrionalis, a burgeoning aquaculture species in China, frequently encounters stressors such as extreme temperatures, salinity variations, and elevated ammonia levels. However, systematic identification and analysis of the HSP70 and HSP90 gene families in T. septentrionalis remain unexplored. This study conducted the first genome-wide identification of 12 HSP70 and 4 HSP90 genes in T. septentrionalis, followed by a comprehensive analysis including phylogenetics, gene structure, conserved domains, chromosomal localization, and expression profiling. Expression analysis from RNA-seq data across various tissues and developmental stages revealed predominant expression in muscle, spleen, and liver, with the highest expression found during the tailbud stage, followed by the gastrula, neurula, and juvenile stages. Under abiotic stress, most HSP70 and HSP90 genes were upregulated in response to high temperature, high salinity, and low salinity, notably hspa5 during thermal stress, hspa14 in high salinity, and hsp90ab1 under low salinity conditions. Ammonia stress led to a predominance of downregulated HSP genes in the liver, particularly hspa2, while upregulation was observed in the gills, especially for hsp90b1. Quantitative real-time PCR analysis corroborated the expression levels under environmental stresses, validating their involvement in stress responses. This investigation provides insights into the molecular mechanisms of HSP70 and HSP90 in T. septentrionalis under stress, offering valuable information for future functional studies of HSPs in teleost evolution, optimizing aquaculture techniques, and developing stress-resistant strains.
Collapse
Affiliation(s)
- Ying Chen
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China;
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.C.); (Z.Z.); (D.W.)
| | - Qing Chang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.C.); (Z.Z.); (D.W.)
| | - Qinmei Fang
- Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Ziyang Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.C.); (Z.Z.); (D.W.)
| | - Dan Wu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.C.); (Z.Z.); (D.W.)
| | - Li Bian
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.C.); (Z.Z.); (D.W.)
| | - Siqing Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.C.); (Z.Z.); (D.W.)
| |
Collapse
|
4
|
He J, Han X, Sun S, Jin S, Liu M, Han Z. Genome-Wide Identification and Transcriptome Analysis of the Hsp70 Gene Family in Monodonta labio Reveals Its Role in Response to Nanoplastics Stress. Genes (Basel) 2024; 15:291. [PMID: 38540349 PMCID: PMC10969875 DOI: 10.3390/genes15030291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 06/14/2024] Open
Abstract
For marine invertebrates, the disruption of organismal physiology and behavior by nanoplastics (NPs) has been extensively reported. Heat shock proteins (Hsps) are important for redundant protein breakdown, environmental changes, and intracellular protein transport. An exhaustive identification of Hsp70 genes and an experiment where different concentrations of NPs were stressed were performed to study how Hsp70 genes respond to NPs stress in Monodonta labio. Our results identified 15 members of Hsp70 within the genome of M. labio and provided insights into their responses to different concentrations of acute NP stress. Phylogenetic analyses revealed extensive amplification of the Hsp70 genes from the Hsc70 subfamily, with gene duplication events. As a result of NP stress, five of fifteen genes showed significant upregulation or downregulation. Three Hsp70 genes were highly expressed at an NP concentration of 0.1 mg/L, and no genes were downregulated. At 10 mg/L, they showed significant upregulation of two genes and significant downregulation of two genes. At 1 mg/L treatment, three genes were significantly downregulated, and no genes were significantly upregulated. Moreover, a purifying selection was revealed using a selection test conducted on duplicate gene pairs, indicating functional redundancy. This work is the first thorough examination of the Hsp70s in Archaeogastropoda. The findings improve knowledge of Hsp70s in molluscan adaptation to NP stress and intertidal living and offer essential data for the biological study of M. labio.
Collapse
Affiliation(s)
- Jingjing He
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China; (J.H.); (X.H.); (S.S.); (M.L.)
| | - Xiaolu Han
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China; (J.H.); (X.H.); (S.S.); (M.L.)
| | - Shaolei Sun
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China; (J.H.); (X.H.); (S.S.); (M.L.)
| | - Shihuai Jin
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Mengyuan Liu
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China; (J.H.); (X.H.); (S.S.); (M.L.)
| | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China; (J.H.); (X.H.); (S.S.); (M.L.)
| |
Collapse
|
5
|
Muthusamy SK, Pushpitha P, Makeshkumar T, Sheela MN. Genome-wide identification and expression analysis of Hsp70 family genes in Cassava ( Manihot esculenta Crantz). 3 Biotech 2023; 13:341. [PMID: 37705861 PMCID: PMC10495308 DOI: 10.1007/s13205-023-03760-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
Hsp70 proteins function as molecular chaperones, regulating various cellular processes in plants. In this study, a genome-wide analysis led to the identification of 22 Hsp70 (MeHsp70) genes in cassava. Phylogenetic relationship studies with other Malpighiales genomes (Populus trichocarpa, Ricinus communis and Salix purpurea) classified MeHsp70 proteins into eight groups (Ia, Ib, Ic, Id, Ie, If, IIa and IIb). Promoter analysis of MeHsp70 genes revealed the presence of tissue-specific, light, biotic and abiotic stress-responsive cis-regulatory elements showing their functional importance in cassava. Meta-analysis of publically available RNA-seq transcriptome datasets showed constitutive, tissue-specific, biotic and abiotic stress-specific expression patterns among MeHsp70s in cassava. Among 22 Hsp70, six MeHsp70s viz., MecHsp70-3, MecHsp70-6, MeBiP-1, MeBiP-2, MeBiP-3 and MecpHsp70-2 displayed constitutive expression, while three MecHsp70s were induced under both drought and cold stress conditions. Five MeHsp70s, MecHsp70-7, MecHsp70-11, MecHsp70-12, MecHsp70-13, and MecHsp70-14 were induced under drought stress conditions. We predicted that 19 MeHsp70 genes are under the regulation of 24 miRNAs. This comprehensive genome-wide analysis of the Hsp70 gene family in cassava provided valuable insights into their functional roles and identified various potential Hsp70 genes associated with stress tolerance and adaptation to environmental stimuli. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03760-3.
Collapse
Affiliation(s)
- Senthilkumar K. Muthusamy
- Division of Crop Improvement, ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| | - P. Pushpitha
- Division of Crop Improvement, ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| | - T. Makeshkumar
- Division of Crop Protection, ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| | - M. N. Sheela
- Division of Crop Improvement, ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| |
Collapse
|
6
|
Han X, Jin S, Shou C, Han Z. Hsp70 Gene Family in Sebastiscus marmoratus: The Genome-Wide Identification and Transcriptome Analysis under Thermal Stress. Genes (Basel) 2023; 14:1779. [PMID: 37761919 PMCID: PMC10531354 DOI: 10.3390/genes14091779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Heat shock protein 70 kDa (Hsp70) is a highly conserved heat stress protein that is important in biotic processes and responses to abiotic stress. Hsp70 genes may be important in Sebastiscus marmoratus, for it is a kind of nearshore reef fish, and habitat temperature change is more drastic during development. However, genome-wide identification and expression analysis in the Hsp70 gene family of S. marmoratus are still lacking. Here, a total of 15 Hsp70 genes in the genome of S. marmoratus are identified, and their expression patterns were investigated using transcriptomic data from thermal stress experiments. The expansion and gene duplication events of Hsp70 genes from the Hspa4, Hspa8, and Hspa12a subfamilies in S. marmoratus are revealed by phylogenetic analysis. qRT-PCR expression patterns demonstrated that seven Hsp70 genes were significantly up-regulated and none were significantly down-regulated after heat treatment. Only the hsp70 gene was significantly up-regulated after cold treatment. The selection test further showed a purifying selection on the duplicated gene pairs, suggesting that these genes underwent subfunctionalization. Our results add novel insight to aquaculture and biological research on S. marmoratus, providing important information on how Hsp70 genes are regulated in Scorpaeniformes under thermal stress.
Collapse
Affiliation(s)
| | | | | | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan 316002, China
| |
Collapse
|
7
|
Zhang Y, Xu J, Li R, Ge Y, Li Y, Li R. Plants' Response to Abiotic Stress: Mechanisms and Strategies. Int J Mol Sci 2023; 24:10915. [PMID: 37446089 DOI: 10.3390/ijms241310915] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Abiotic stress is the adverse effect of any abiotic factor on a plant in a given environment, impacting plants' growth and development. These stress factors, such as drought, salinity, and extreme temperatures, are often interrelated or in conjunction with each other. Plants have evolved mechanisms to sense these environmental challenges and make adjustments to their growth in order to survive and reproduce. In this review, we summarized recent studies on plant stress sensing and its regulatory mechanism, emphasizing signal transduction and regulation at multiple levels. Then we presented several strategies to improve plant growth under stress based on current progress. Finally, we discussed the implications of research on plant response to abiotic stresses for high-yielding crops and agricultural sustainability. Studying stress signaling and regulation is critical to understand abiotic stress responses in plants to generate stress-resistant crops and improve agricultural sustainability.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Jing Xu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Ruofan Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Yanrui Ge
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Yufei Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Ruili Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
8
|
Wang X, Jin Z, Ding Y, Guo M. Characterization of HSP70 family in watermelon ( Citrullus lanatus): identification, structure, evolution, and potential function in response to ABA, cold and drought stress. Front Genet 2023; 14:1201535. [PMID: 37323666 PMCID: PMC10265491 DOI: 10.3389/fgene.2023.1201535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Watermelon (Citrullus lanatus) as a crop with important economic value, is widely cultivated around the world. The heat shock protein 70 (HSP70) family in plant is indispensable under stress conditions. However, no comprehensive analysis of watermelon HSP70 family is reported to date. In this study, 12 ClHSP70 genes were identified from watermelon, which were unevenly located in 7 out of 11 chromosomes and divided into three subfamilies. ClHSP70 proteins were predicted to be localized primarily in cytoplasm, chloroplast, and endoplasmic reticulum. Two pairs of segmental repeats and 1 pair of tandem repeats existed in ClHSP70 genes, and ClHSP70s underwent strong purification selection. There were many abscisic acid (ABA) and abiotic stress response elements in ClHSP70 promoters. Additionally, the transcriptional levels of ClHSP70s in roots, stems, true leaves, and cotyledons were also analyzed. Some of ClHSP70 genes were also strongly induced by ABA. Furthermore, ClHSP70s also had different degrees of response to drought and cold stress. The above data indicate that ClHSP70s may be participated in growth and development, signal transduction and abiotic stress response, laying a foundation for further analysis of the function of ClHSP70s in biological processes.
Collapse
Affiliation(s)
- Xinsheng Wang
- School of Wine and Horticulture, Ningxia University, Yinchuan, China
| | - Zhi Jin
- School of Wine and Horticulture, Ningxia University, Yinchuan, China
| | - Yina Ding
- School of Wine and Horticulture, Ningxia University, Yinchuan, China
| | - Meng Guo
- School of Wine and Horticulture, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, Ningxia, China
- Ningxia Facility Horticulture Technology Innovation Center, Ningxia University, Yinchuan, China
| |
Collapse
|
9
|
Vu NT, Nguyen NBT, Ha HH, Nguyen LN, Luu LH, Dao HQ, Vu TT, Huynh HTT, Le HTT. Evolutionary analysis and expression profiling of the HSP70 gene family in response to abiotic stresses in tomato ( Solanum lycopersicum). Sci Prog 2023; 106:368504221148843. [PMID: 36650980 PMCID: PMC10358566 DOI: 10.1177/00368504221148843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Heat shock protein 70 (HSP70) genes play essential roles in guarding plants against abiotic stresses, including heat, drought, and salt. In this study, the SlHSP70 gene family in tomatoes has been characterized using bioinformatic tools. 25 putative SlHSP70 genes in the tomato genome were found and classified into five subfamilies, with multi-subcellular localizations. Twelve pairs of gene duplications were identified, and segmental events were determined as the main factor for the gene family expansion. Based on public RNA-seq data, gene expression analysis identified the majority of genes expressed in the examined organelles. Further RNA-seq analysis and then quantitative RT-PCR validation showed that many SlHSP70 members are responsible for cellular feedback to heat, drought, and salt treatments, in which, at least five genes might be potential key players in the stress response. Our results provided a thorough overview of the SlHSP70 gene family in the tomato, which may be useful for the evolutionary and functional analysis of SlHSP70 under abiotic stress conditions.
Collapse
Affiliation(s)
- Nam Tuan Vu
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ngoc Bich Thi Nguyen
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hanh Hong Ha
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Linh Nhat Nguyen
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ly Han Luu
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ha Quang Dao
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Trinh Thi Vu
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hue Thu Thi Huynh
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hien Thu Thi Le
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
10
|
Ke Y, Xu M, Hwarari D, Chen J, Yang L. Genomic Survey of Heat Shock Proteins in Liriodendron chinense Provides Insight into Evolution, Characterization, and Functional Diversities. Int J Mol Sci 2022; 23:ijms232315051. [PMID: 36499378 PMCID: PMC9739435 DOI: 10.3390/ijms232315051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Heat shock proteins (HSPs) are conserved molecular chaperones whose main role is to facilitate the regulation of plant growth and stress responses. The HSP gene family has been characterized in most plants and elucidated as generally stress-induced, essential for their cytoprotective roles in cells. However, the HSP gene family has not yet been analyzed in the Liriodendron chinense genome. In current study, 60 HSP genes were identified in the L. chinense genome, including 7 LchiHSP90s, 23 LchiHSP70s, and 30 LchiHSP20s. We investigated the phylogenetic relationships, gene structure and arrangement, gene duplication events, cis-acting elements, 3D-protein structures, protein-protein interaction networks, and temperature stress responses in the identified L. chinense HSP genes. The results of the comparative phylogenetic analysis of HSP families in 32 plant species showed that LchiHSPs are closely related to the Cinnamomum kanehirae HSP gene family. Duplication events analysis showed seven segmental and six tandem duplication events that occurred in the LchiHSP gene family, which we speculated to have played an important role in the LchiHSP gene expansion and evolution. Furthermore, the Ka/Ks analysis indicated that these genes underwent a purifying selection. Analysis in the promoter region evidenced that the promoter region LchiHSPs carry many stress-responsive and hormone-related cis-elements. Investigations in the gene expression patterns of the LchiHSPs using transcriptome data and the qRT-PCR technique indicated that most LchiHSPs were responsive to cold and heat stress. In total, our results provide new insights into understanding the LchiHSP gene family function and their regulatory mechanisms in response to abiotic stresses.
Collapse
Affiliation(s)
- Yongchao Ke
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Mingyue Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Delight Hwarari
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (J.C.); (L.Y.)
| | - Liming Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (J.C.); (L.Y.)
| |
Collapse
|
11
|
Chandran AKN, Sandhu J, Irvin L, Paul P, Dhatt BK, Hussain W, Gao T, Staswick P, Yu H, Morota G, Walia H. Rice Chalky Grain 5 regulates natural variation for grain quality under heat stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1026472. [PMID: 36304400 PMCID: PMC9593041 DOI: 10.3389/fpls.2022.1026472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Heat stress occurring during rice (Oryza sativa) grain development reduces grain quality, which often manifests as increased grain chalkiness. Although the impact of heat stress on grain yield is well-studied, the genetic basis of rice grain quality under heat stress is less explored as quantifying grain quality is less tractable than grain yield. To address this, we used an image-based colorimetric assay (Red, R; and Green, G) for genome-wide association analysis to identify genetic loci underlying the phenotypic variation in rice grains exposed to heat stress. We found the R to G pixel ratio (RG) derived from mature grain images to be effective in distinguishing chalky grains from translucent grains derived from control (28/24°C) and heat stressed (36/32°C) plants. Our analysis yielded a novel gene, rice Chalky Grain 5 (OsCG5) that regulates natural variation for grain chalkiness under heat stress. OsCG5 encodes a grain-specific, expressed protein of unknown function. Accessions with lower transcript abundance of OsCG5 exhibit higher chalkiness, which correlates with higher RG values under stress. These findings are supported by increased chalkiness of OsCG5 knock-out (KO) mutants relative to wildtype (WT) under heat stress. Grains from plants overexpressing OsCG5 are less chalky than KOs but comparable to WT under heat stress. Compared to WT and OE, KO mutants exhibit greater heat sensitivity for grain size and weight relative to controls. Collectively, these results show that the natural variation at OsCG5 may contribute towards rice grain quality under heat stress.
Collapse
Affiliation(s)
| | - Jaspreet Sandhu
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Larissa Irvin
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Puneet Paul
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Balpreet K. Dhatt
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Waseem Hussain
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Banos, Philippines
| | - Tian Gao
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Paul Staswick
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Hongfeng Yu
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Gota Morota
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
12
|
Ahmad MZ, Shah Z, Ullah A, Ahmed S, Ahmad B, Khan A. Genome wide and evolutionary analysis of heat shock protein 70 proteins in tomato and their role in response to heat and drought stress. Mol Biol Rep 2022; 49:11229-11241. [PMID: 35788950 DOI: 10.1007/s11033-022-07734-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/22/2022] [Indexed: 11/24/2022]
Abstract
Heat shock protein 70 (HSP70) proteins play a crucial role in mitigating the detrimental effects of abiotic stresses in plants. In the present study, 21 full length non-redundant SlHSP70 genes were detected and characterized in tomato (Solanum lycopersicum L.). The SlHSP70 genes were classified into four groups based on phylogenetic analysis. Similarities were observed in gene features and motif structures of SlHSP70s belonging to the same group. SlHSP70 genes were unevenly and unequally mapped on 11 chromosomes. Segmental and tandem duplication are the main events that have contributed to the expansion of the SlHSP70 genes. A large number of groups and sub-groups were generated during comparative analysis of HSP70 genes in multiple plant species including tomato. These findings indicated a common ancestor which created diverse sub-groups prior to a mono-dicot split. The selection pressure on specific codons was identified through a maximum-likelihood approach and we found some important coding sites in the coding region of all groups. Diversifying positive selection was indirectly associated with evolutionary changes in SlHSP70 proteins and suggests that gene evolution modulated the tomato domestication event. In addition, expression analysis using RNA-seq revealed that 21 SlHSP70 genes were differentially expressed in response to drought and heat stress. SlHSP70-5 was down-regulated by heat treatment and up-regulated by drought stress. Furthermore, the expression of some of the duplicate genes was partially redundant, while others showed functional diversity. Our results indicate the diverse role of HSP70 gene family in S. lycopersicum under drought and heat stress conditions and open the gate for further investigation of HSP70 gene family functions, especially under drought and heat stress.
Collapse
Affiliation(s)
- Muhammad Zulfiqar Ahmad
- Department of Plant Breeding and Genetics, Faculty of Agriculture, University of Agriculture, D.I. Khan, Pakistan.
| | - Zamarud Shah
- Department of Biotechnology, University of Science and Technology, Bannu, Pakistan
| | - Arif Ullah
- Department of Biotechnology, University of Science and Technology, Bannu, Pakistan
| | - Shakeel Ahmed
- Institute de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, 5090000, Valdivia, Chile
| | - Bushra Ahmad
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Afrasyab Khan
- Department of Biotechnology, University of Science and Technology, Bannu, Pakistan
| |
Collapse
|
13
|
Zhou H, Wang Y, Zhang Y, Xiao Y, Liu X, Deng H, Lu X, Tang W, Zhang G. Comparative Analysis of Heat-Tolerant and Heat-Susceptible Rice Highlights the Role of OsNCED1 Gene in Heat Stress Tolerance. PLANTS 2022; 11:plants11081062. [PMID: 35448790 PMCID: PMC9026844 DOI: 10.3390/plants11081062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022]
Abstract
To elucidate the mechanism underlying the response of rice to heat stress (HS), the transcriptome profile of panicles was comparatively analyzed between the heat-tolerant line 252 (HTL252) and heat-susceptible line 082 (HSL082), two rice recombinant inbred lines (RILs). Our differentially expressed gene (DEG) analysis revealed that the DEGs are mainly associated with protein binding, catalysis, stress response, and cellular process. The MapMan analysis demonstrated that the heat-responsive (HR) genes for heat shock proteins, transcription factors, development, and phytohormones are specifically induced in HTL252 under HS. Based on the DEG analysis, the key gene OsNCED1 (Os02g0704000), which was induced under HS, was selected for further functional validation. Moreover, 9-cis-epoxycarotenoid dioxygenase (NCED) is a key rate-limiting enzyme in the ABA biosynthetic pathway. Overexpression of OsNCED1 improved the HS tolerance of rice at the heading and flowering stage. OsNCED1-overexpression plants exhibited significant increases in pollen viability, seed setting rate, superoxide dismutase (SOD) and peroxidase (POD) activities, while significantly lower electrolyte leakage and malondialdehyde (MDA) content relative to the wild type (WT). These results suggested that OsNCED1 overexpression can improve the heat tolerance of rice by enhancing the antioxidant capacity. Overall, this study lays a foundation for revealing the molecular regulatory mechanism underlying the response of rice to prolonged HS.
Collapse
Affiliation(s)
- Huang Zhou
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (Y.W.); (Y.Z.); (Y.X.); (X.L.); (H.D.); (X.L.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Hunan Agricultural University, Changsha 410128, China
| | - Yingfeng Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (Y.W.); (Y.Z.); (Y.X.); (X.L.); (H.D.); (X.L.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Hunan Agricultural University, Changsha 410128, China
| | - Yijin Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (Y.W.); (Y.Z.); (Y.X.); (X.L.); (H.D.); (X.L.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Hunan Agricultural University, Changsha 410128, China
| | - Yunhua Xiao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (Y.W.); (Y.Z.); (Y.X.); (X.L.); (H.D.); (X.L.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Hunan Agricultural University, Changsha 410128, China
| | - Xiong Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (Y.W.); (Y.Z.); (Y.X.); (X.L.); (H.D.); (X.L.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Hunan Agricultural University, Changsha 410128, China
| | - Huabing Deng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (Y.W.); (Y.Z.); (Y.X.); (X.L.); (H.D.); (X.L.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Hunan Agricultural University, Changsha 410128, China
| | - Xuedan Lu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (Y.W.); (Y.Z.); (Y.X.); (X.L.); (H.D.); (X.L.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Hunan Agricultural University, Changsha 410128, China
| | - Wenbang Tang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (Y.W.); (Y.Z.); (Y.X.); (X.L.); (H.D.); (X.L.)
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Centre, Changsha 410125, China
- Correspondence: (W.T.); (G.Z.)
| | - Guilian Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (Y.W.); (Y.Z.); (Y.X.); (X.L.); (H.D.); (X.L.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (W.T.); (G.Z.)
| |
Collapse
|
14
|
Kang Y, Lee K, Hoshikawa K, Kang M, Jang S. Molecular Bases of Heat Stress Responses in Vegetable Crops With Focusing on Heat Shock Factors and Heat Shock Proteins. FRONTIERS IN PLANT SCIENCE 2022; 13:837152. [PMID: 35481144 PMCID: PMC9036485 DOI: 10.3389/fpls.2022.837152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 05/09/2023]
Abstract
The effects of the climate change including an increase in the average global temperatures, and abnormal weather events such as frequent and severe heatwaves are emerging as a worldwide ecological concern due to their impacts on plant vegetation and crop productivity. In this review, the molecular processes of plants in response to heat stress-from the sensing of heat stress, the subsequent molecular cascades associated with the activation of heat shock factors and their primary targets (heat shock proteins), to the cellular responses-have been summarized with an emphasis on the classification and functions of heat shock proteins. Vegetables contain many essential vitamins, minerals, antioxidants, and fibers that provide many critical health benefits to humans. The adverse effects of heat stress on vegetable growth can be alleviated by developing vegetable crops with enhanced thermotolerance with the aid of various genetic tools. To achieve this goal, a solid understanding of the molecular and/or cellular mechanisms underlying various responses of vegetables to high temperature is imperative. Therefore, efforts to identify heat stress-responsive genes including those that code for heat shock factors and heat shock proteins, their functional roles in vegetable crops, and also their application to developing vegetables tolerant to heat stress are discussed.
Collapse
Affiliation(s)
- Yeeun Kang
- World Vegetable Center Korea Office, Wanju-gun, South Korea
| | - Kwanuk Lee
- National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju-gun, South Korea
| | - Ken Hoshikawa
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | | | - Seonghoe Jang
- World Vegetable Center Korea Office, Wanju-gun, South Korea
| |
Collapse
|
15
|
Davoudi M, Chen J, Lou Q. Genome-Wide Identification and Expression Analysis of Heat Shock Protein 70 ( HSP70) Gene Family in Pumpkin ( Cucurbita moschata) Rootstock under Drought Stress Suggested the Potential Role of these Chaperones in Stress Tolerance. Int J Mol Sci 2022; 23:ijms23031918. [PMID: 35163839 PMCID: PMC8836791 DOI: 10.3390/ijms23031918] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 01/01/2023] Open
Abstract
Heat shock protein 70s (HSP70s) are highly conserved proteins that are involved in stress responses. These chaperones play pivotal roles in protein folding, removing the extra amounts of oxidized proteins, preventing protein denaturation, and improving the antioxidant system activities. This conserved family has been characterized in several crops under drought stress conditions. However, there is no study on HSP70s in pumpkin (Cucurbita moschata). Therefore, we performed a comprehensive analysis of this gene family, including phylogenetic relationship, motif and gene structure analysis, gene duplication, collinearity, and promoter analysis. In this research, we found 21 HSP70s that were classified into five groups (from A to E). These genes were mostly localized in the cytoplasm, chloroplast, mitochondria, nucleus, and endoplasmic reticulum (ER). We could observe more similarity in closely linked subfamilies in terms of motifs, the number of introns/exons, and the corresponding cellular compartments. According to the collinearity analysis, gene duplication had occurred as a result of purifying selection. The results showed that the occurrence of gene duplication for all nine gene pairs was due to segmental duplication (SD). Synteny analysis revealed a closer relationship between pumpkin and cucumber than pumpkin and Arabidopsis. Promoter analysis showed the presence of various cis-regulatory elements in the up-stream region of the HSP70 genes, such as hormones and stress-responsive elements, indicating a potential role of this gene family in stress tolerance. We furtherly performed the gene expression analysis of the HSP70s in pumpkin under progressive drought stress. Pumpkin is widely used as a rootstock to improve stress tolerance, as well as fruit quality of cucumber scion. Since stress-responsive mobile molecules translocate through vascular tissue from roots to the whole plant body, we used the xylem of grafted materials to study the expression patterns of the HSP70 (potentially mobile) gene family. The results indicated that all CmoHSP70s had very low expression levels at 4 days after stress (DAS). However, the genes showed different expression patterns by progressing he drought period. For example, the expression of CmoHSP70-4 (in subgroup E) and CmoHSP70-14 (in subgroup C) sharply increased at 6 and 11 DAS, respectively. However, the expression of all genes belonging to subgroup A did not change significantly in response to drought stress. These findings indicated the diverse roles of this gene family under drought stress and provided valuable information for further investigation on the function of this gene family, especially under stressful conditions.
Collapse
|
16
|
Yu X, Mo Z, Tang X, Gao T, Mao Y. Genome-wide analysis of HSP70 gene superfamily in Pyropia yezoensis (Bangiales, Rhodophyta): identification, characterization and expression profiles in response to dehydration stress. BMC PLANT BIOLOGY 2021; 21:435. [PMID: 34560838 PMCID: PMC8464122 DOI: 10.1186/s12870-021-03213-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/14/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Heat shock proteins (HSPs) perform a fundamental role in protecting plants against abiotic stresses. Individual family members have been analyzed in previous studies, but there has not yet been a comprehensive analysis of the HSP70 gene family in Pyropia yezoensis. RESULTS We investigated 15 putative HSP70 genes in Py. yezoensis. These genes were classified into two sub-families, denoted as DnaK and Hsp110. In each sub-family, there was relative conservation of the gene structure and motif. Synteny-based analysis indicated that seven and three PyyHSP70 genes were orthologous to HSP70 genes in Pyropia haitanensis and Porphyra umbilicalis, respectively. Most PyyHSP70s showed up-regulated expression under different degrees of dehydration stress. PyyHSP70-1 and PyyHSP70-3 were expressed in higher degrees compared with other PyyHSP70s in dehydration treatments, and then expression degrees somewhat decreased in rehydration treatment. Subcellular localization showed PyyHSP70-1-GFP and PyyHSP70-3-GFP were in the cytoplasm and nucleus/cytoplasm, respectively. Similar expression patterns of paired orthologs in Py. yezoensis and Py. haitanensis suggest important roles for HSP70s in intertidal environmental adaptation during evolution. CONCLUSIONS These findings provide insight into the evolution and modification of the PyyHSP70 gene family and will help to determine the functions of the HSP70 genes in Py. yezoensis growth and development.
Collapse
Affiliation(s)
- Xinzi Yu
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences , Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Zhaolan Mo
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences , Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xianghai Tang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences , Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Tian Gao
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences , Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yunxiang Mao
- Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource (Hainan Tropical Ocean University), Ministry of Education, Sanya, 572022, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
17
|
Lai DL, Yan J, Fan Y, Li Y, Ruan JJ, Wang JZ, Fan Y, Cheng XB, Cheng JP. Genome-wide identification and phylogenetic relationships of the Hsp70 gene family of Aegilops tauschii, wild emmer wheat ( Triticum dicoccoides) and bread wheat ( Triticum aestivum). 3 Biotech 2021; 11:301. [PMID: 34194894 DOI: 10.1007/s13205-021-02639-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/03/2021] [Indexed: 12/22/2022] Open
Abstract
Heat shock protein 70 (Hsp70) plays an important role in plant development. It is closely related to the physiological process of cell development and the response to abiotic and biological stress. However, the classification and evolution of Hsp70 genes in bread wheat, wild emmer wheat and Aegilops tauschii are still unclear. Therefore, this study conducted a comprehensive bioinformatics analysis of Hsp70 gene in three species. Among these three species, 113, 79 and 36 Hsp70 genes were identified. They are divided into six subfamilies. Group vi-1 is different from Arabidopsis thaliana. It may be the result of early evolutionary segregation. The number of exons in different subfamilies (from 1 to 13) was different, but the distribution patterns of exons / introns in the same subfamily were similar. The results of Hsp70 promoter region analysis showed that the cis-regulatory elements of A. tauschii and wild emmer wheat were different from those of wheat. In addition, CpG island proportion of wild emmer Hsp70 was higher than that of wheat, which may be the molecular basis of heat resistance of wild wheat relative to cultivated wheat. Further comprehensive analysis of chromosome location and repeat events of Hsp70 gene showed that whole-genome duplication and tandem duplication events contributed to the evolution and expansion of Hsp70 gene in wheat. The results of non-synonymous substitution and synonymous substitution analysis showed that Hsp70 genes of three species had undergone purification selection. The expression profile analysis showed that Hsp70 gene was highly expressed in the roots during the vegetative growth period. In addition, TaHsp70 gene was highly expressed under various stress. The identification, classification and evolution of Hsp70 in wheat and its relatives provided a basis for further research on its evolution and its molecular mechanism in response to stress. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02639-5.
Collapse
Affiliation(s)
- Di-Li Lai
- College of Agriculture, Guizhou University, Guiyang, 550025 People's Republic of China
| | - Jun Yan
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106 People's Republic of China
| | - Yu Fan
- College of Agriculture, Guizhou University, Guiyang, 550025 People's Republic of China
| | - Yao Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 People's Republic of China
| | - Jing-Jun Ruan
- College of Agriculture, Guizhou University, Guiyang, 550025 People's Republic of China
| | - Jun-Zhen Wang
- Research Station of Alpine Crops, Xichang Institute of Agricultural Sciences, Liangshan, 616150 People's Republic of China
| | - Yue Fan
- College of Agriculture, Guizhou University, Guiyang, 550025 People's Republic of China
| | - Xiao-Bin Cheng
- Department of Environmental and Life Sciences, Sichuan MinZu College, Kangding, 626001 People's Republic of China
| | - Jian-Ping Cheng
- College of Agriculture, Guizhou University, Guiyang, 550025 People's Republic of China
| |
Collapse
|
18
|
Rehman A, Atif RM, Azhar MT, Peng Z, Li H, Qin G, Jia Y, Pan Z, He S, Qayyum A, Du X. Genome wide identification, classification and functional characterization of heat shock transcription factors in cultivated and ancestral cottons (Gossypium spp.). Int J Biol Macromol 2021; 182:1507-1527. [PMID: 33965497 DOI: 10.1016/j.ijbiomac.2021.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/30/2022]
Abstract
Heat shock transcription factors (HSF) have been demonstrated to play a significant transcriptional regulatory role in plants and considered as an integral part of signal transduction pathways against environmental stresses especially heat stress. Despite of their importance, HSFs have not yet been identified and characterized in all cotton species. In this study, we report the identification of 42, 39, 67, and 79 non-redundant HSF genes from diploid cottons G. arboreum (A2) and G. raimondii (D5), and tetraploid cottons G. barbadense (AD2) and G. hirsutum (AD1) respectively. The chromosome localization of identified HSFs revealed their random distribution on all the 13 chromosomes of A and D genomes of cotton with few regions containing HSFs in clusters. The genes structure and conserved domain analysis revealed the family-specific conservation of intron/exon organization and conserved domains in HSFs. Various abiotic stress-related cis-regulatory elements were identified from the putative promoter regions of cotton HSFs suggesting their possible role in mediating abiotic stress tolerance. The combined phylogenetic analysis of all the cotton HSFs grouped them into three subfamilies; with 145 HSFs belong to class A, 85 to class B, and 17 to class C subfamily. Moreover, a detailed analysis of HSF gene family in four species of cotton elucidated the role of allopolyploid and hybridization during evolutionary cascade of allotetraploid cotton. Comparatively, existence of more orthologous genes in cotton species than Arabidopsis, advocated that polyploidization produced new cotton specific orthologous gene clusters. Phylogenetic, collinearity and multiple synteny analyses exhibited dispersed, segmental, proximal, and tandem gene duplication events in HSF gene family. Duplication of gene events suggests that HSF gene family of cotton evolution was under strong purifying selection. Expression analysis revealed that GarHSF04 were found to be actively involved in PEG and salinity tolerance in G. arboreum. GhiHSF14 upregulated in heat and downregulated in salinity whilst almost illustrated similar behavior under cold and PEG treatments and GhiHSF21 exhibited down regulation almost across all the stresses in G. hirsutum. Overwhelmingly, present study paves the way to better understand the evolution of cotton HSF TFs and lays a foundation for future investigation of HSFs in improving abiotic stress tolerance in cotton.
Collapse
Affiliation(s)
- Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China; Department of Plant Breeding and Genetics, Bahauddin Zakariya university, Multan 60800, Pakistan
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan; Center of Advanced Studies in Agriculture & Food Security, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Muhammad Tehseen Azhar
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Zhen Peng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Hongge Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Guangyong Qin
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Shoupu He
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya university, Multan 60800, Pakistan
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China.
| |
Collapse
|
19
|
Panzade KP, Kale SS, Chavan NR, Hatzade B. Genome-wide analysis of Hsp70 and Hsp100 gene families in Ziziphus jujuba. Cell Stress Chaperones 2021; 26:341-353. [PMID: 33184780 PMCID: PMC7925773 DOI: 10.1007/s12192-020-01179-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
The Ziziphus species are naturally tolerant to a range of abiotic stresses. Therefore, it is expected that they are an enriched source of genes conferring stress tolerance. Heat shock proteins (Hsps) play a significant role in plants in imparting tolerance against abiotic stress conditions. To get an insight into potential Hsp function in Ziziphus, we performed a genome-wide analysis and expression study of Hsp70 and Hsp100 gene families in Ziziphus jujuba. We identified 21 and 6 genes of the ZjHsp70 and ZjHsp100 families, respectively. Physiochemical properties, chromosomal location, gene structure, motifs, and protein domain organization were analysed for structural and functional characterization. We identified the contribution of tandem and segmental gene duplications in expansions of ZjHsp70s and ZjHsp100s in Z. jujuba. Promoter analysis suggested that ZjHsp70s and ZjHsp100s perform diverse functions related to abiotic stress. Furthermore, expression analyses revealed that most of the Z. jujuba Hsp genes are differentially expressed in response to heat, drought, and salinity stress. Our analyses suggested ZjHsp70-3, ZjHsp70-5, ZjHsp70-6, ZjHsp70-16, ZjHsp70-17, ZjHsp70-20, ZjHsp100-1, ZjHsp100-2, and ZjHsp100-3 are potential candidates for further functional analysis and with regard to breeding new more resilient strains. The present analysis laid the foundation for understanding the molecular mechanism of Hsps70 and Hsp100 gene families regulating abiotic stress tolerance in Z. jujuba.
Collapse
Affiliation(s)
- Kishor Prabhakar Panzade
- Division of Molecular Biology and Biotechnology, Indian Agriculture Research Institute, New Delhi, 110012 India
| | - Sonam S. Kale
- Department of Plant Biotechnology, MGM College of Agricultural Biotechnology, Aurangabad, 431007 India
| | - Narendra R. Chavan
- Department of Plant Biotechnology, MGM College of Agricultural Biotechnology, Aurangabad, 431007 India
| | - Bhupal Hatzade
- Department of Plant Biotechnology, Ajeet Seeds Pvt. Ltd., Aurangabad, 431133 India
| |
Collapse
|
20
|
Tiwari LD, Khungar L, Grover A. AtHsc70-1 negatively regulates the basal heat tolerance in Arabidopsis thaliana through affecting the activity of HsfAs and Hsp101. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2069-2083. [PMID: 32573848 DOI: 10.1111/tpj.14883] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 05/04/2023]
Abstract
Heat shock protein 70 (Hsp70) chaperones are highly conserved and essential proteins with diverse cellular functions, including plant abiotic stress tolerance. Hsp70 proteins have been linked with basal heat tolerance in plants. Hsp101 likewise is an important chaperone protein that plays a critical role in heat tolerance in plants. We observed that Arabidopsis hsc70-1 mutant seedlings show elevated basal heat tolerance compared with wild-type. Over-expression of Hsc70-1 resulted in increased heat sensitivity. Hsp101 transcript and protein levels were increased during non-heat stress (HS) and post-HS conditions in hsc70-1 mutant seedlings. In contrast, Hsp101 was repressed in Hsc70-1 over-expressing plants after post-HS conditions. Hsc70-1 showed physical interaction with HsfA1d and HsfA1e protein in the cytosol under non-HS conditions. In transient reporter gene analysis, HsfA1d, HsfA1e and HsfA2 showed transcriptional response on the Hsp101 promoter. HsfA1d and HsfA2 transcripts were at higher levels in hsc70-1 mutant compared with wild-type. We provide genetic evidence that Hsc70-1 is a negative regulator affecting HsfA1d/A1e/A2 activators, which in turn regulate Hsp101 expression and basal thermotolerance.
Collapse
Affiliation(s)
- Lalit D Tiwari
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi,, 110021, India
| | - Lisha Khungar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi,, 110021, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi,, 110021, India
| |
Collapse
|
21
|
Wang J, Hu H, Wang W, Wei Q, Hu T, Bao C. Genome-Wide Identification and Functional Characterization of the Heat Shock Factor Family in Eggplant ( Solanum melongena L.) under Abiotic Stress Conditions. PLANTS 2020; 9:plants9070915. [PMID: 32698415 PMCID: PMC7412109 DOI: 10.3390/plants9070915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 01/10/2023]
Abstract
Plant heat shock factors (Hsfs) play crucial roles in various environmental stress responses. Eggplant (Solanum melongena L.) is an agronomically important and thermophilic vegetable grown worldwide. Although the functions of Hsfs under environmental stress conditions have been characterized in the model plant Arabidopsis thaliana and tomato, their roles in responding to various stresses remain unclear in eggplant. Therefore, we characterized the eggplant SmeHsf family and surveyed expression profiles mediated by the SmeHsfs under various stress conditions. Here, using reported Hsfs from other species as queries to search SmeHsfs in the eggplant genome and confirming the typical conserved domains, we identified 20 SmeHsf genes. The SmeHsfs were further classified into 14 subgroups on the basis of their structure. Additionally, quantitative real-time PCR revealed that SmeHsfs responded to four stresses—cold, heat, salinity and drought—which indicated that SmeHsfs play crucial roles in improving tolerance to various abiotic stresses. The expression pattern of SmeHsfA6b exhibited the most immediate response to the various environmental stresses, except drought. The genome-wide identification and abiotic stress-responsive expression pattern analysis provide clues for further analysis of the roles and regulatory mechanism of SmeHsfs under environmental stresses.
Collapse
|
22
|
Tabassum R, Dosaka T, Ichida H, Morita R, Ding Y, Abe T, Katsube-Tanaka T. FLOURY ENDOSPERM11-2 encodes plastid HSP70-2 involved with the temperature-dependent chalkiness of rice (Oryza sativa L.) grains. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:604-616. [PMID: 32215974 DOI: 10.1111/tpj.14752] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 02/01/2020] [Accepted: 03/10/2020] [Indexed: 05/23/2023]
Abstract
The frequent occurrence of chalky rice (Oryza sativa L.) grains becomes a serious problem as a result of climate change. The molecular mechanism underlying chalkiness is largely unknown, however. In this study, the temperature-sensitive floury endosperm11-2 (flo11-2) mutant was isolated from ion beam-irradiated rice of 1116 lines. The flo11-2 mutant showed significantly higher chalkiness than the wild type grown under a mean temperature of 28°C, but similar levels of chalkiness to the wild type grown under a mean temperature of 24°C. Whole-exome sequencing of the flo11-2 mutant showed three causal gene candidates, including Os12g0244100, which encodes the plastid-localized 70-kDa heat shock protein 2 (cpHSP70-2). The cpHSP70-2 of the flo11-2 mutant has an amino acid substitution on the 259th aspartic acid with valine (D259V) in the conserved Motif 5 of the ATPase domain. Transgenic flo11-2 mutants that express the wild-type cpHSP70-2 showed significantly lower chalkiness than the flo11-2 mutant. Moreover, the accumulation level of cpHSP70-2 was negatively correlated with the chalky ratio, indicating that cpHSP70-2 is a causal gene for the chalkiness of the flo11-2 mutant. The intrinsic ATPase activity of recombinant cpHSP70-2 was lower by 23% at Vmax for the flo11-2 mutant than for the wild type. The growth of DnaK-defective Escherichia coli cells complemented with DnaK with the D201V mutation (equivalent to the D259V mutation) was severely reduced at 37°C, but not in the wild-type DnaK. The results indicate that the lowered cpHSP70-2 function is involved with the chalkiness of the flo11-2 mutant.
Collapse
Affiliation(s)
- Rehenuma Tabassum
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto, 606-8502, Japan
- Department of Crop Botany and Tea Production Technology, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Tokinori Dosaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto, 606-8502, Japan
| | - Hiroyuki Ichida
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama, 351-0198, Japan
| | - Ryouhei Morita
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama, 351-0198, Japan
| | - Yifan Ding
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto, 606-8502, Japan
| | - Tomoko Abe
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
23
|
Transcriptomic data-driven discovery of global regulatory features of rice seeds developing under heat stress. Comput Struct Biotechnol J 2020; 18:2556-2567. [PMID: 33033578 PMCID: PMC7522763 DOI: 10.1016/j.csbj.2020.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/30/2022] Open
Abstract
Plants respond to abiotic stressors through a suite of strategies including differential regulation of stress-responsive genes. Hence, characterizing the influences of the relevant global regulators or on stress-related transcription factors is critical to understand plant stress response. Rice seed development is highly sensitive to elevated temperatures. To elucidate the extent and directional hierarchy of gene regulation in rice seeds under heat stress, we developed and implemented a robust multi-level optimization-based algorithm called Minimal Regulatory Network identifier (MiReN). MiReN could predict the minimal regulatory relationship between a gene and its potential regulators from our temporal transcriptomic dataset. MiReN predictions for global regulators including stress-responsive gene Slender Rice 1 (SLR1) and disease resistance gene XA21 were validated with published literature. It also predicted novel regulatory influences of other major regulators such as Kinesin-like proteins KIN12C and STD1, and WD repeat-containing protein WD40. Out of the 228 stress-responsive transcription factors identified, we predicted de novo regulatory influences on three major groups (MADS-box M-type, MYB, and bZIP) and investigated their physiological impacts during stress. Overall, MiReN results can facilitate new experimental studies to enhance our understanding of global regulatory mechanisms triggered during heat stress, which can potentially accelerate the development of stress-tolerant cultivars.
Collapse
|
24
|
Gurung PD, Upadhyay AK, Bhardwaj PK, Sowdhamini R, Ramakrishnan U. Transcriptome analysis reveals plasticity in gene regulation due to environmental cues in Primula sikkimensis, a high altitude plant species. BMC Genomics 2019; 20:989. [PMID: 31847812 PMCID: PMC6916092 DOI: 10.1186/s12864-019-6354-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 11/29/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Studying plasticity in gene expression in natural systems is crucial, for predicting and managing the effects of climate change on plant species. To understand the contribution of gene expression level variations to abiotic stress compensation in a Himalaya plant (Primula sikkimensis), we carried out a transplant experiment within (Ambient), and beyond (Below Ambient and Above Ambient) the altitudinal range limit of species. We sequenced nine transcriptomes (three each from each altitudinal range condition) using Illumina sequencing technology. We compared the fitness variation of transplants among three transplant conditions. RESULTS A large number of significantly differentially expressed genes (DEGs) between below ambient versus ambient (109) and above ambient versus ambient (85) were identified. Transcripts involved in plant growth and development were mostly up-regulated in below ambient conditions. Transcripts involved in signalling, defence, and membrane transport were mostly up-regulated in above ambient condition. Pathway analysis revealed that most of the genes involved in metabolic processes, secondary metabolism, and flavonoid biosynthesis were differentially expressed in below ambient conditions, whereas most of the genes involved in photosynthesis and plant hormone signalling were differentially expressed in above ambient conditions. In addition, we observed higher reproductive fitness in transplant individuals at below ambient condition compared to above ambient conditions; contrary to what we expect from the cold adaptive P. sikkimensis plants. CONCLUSIONS We reveal P. sikkimensis's capacity for rapid adaptation to climate change through transcriptome variation, which may facilitate the phenotypic plasticity observed in morphological and life history traits. The genes and pathways identified provide a genetic resource for understanding the temperature stress (both the hot and cold stress) tolerance mechanism of P. sikkimensis in their natural environment.
Collapse
Affiliation(s)
- Priya Darshini Gurung
- National Center for Biological Sciences (NCBS), Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, Karnataka 560065 India
- Manipal University, Manipal, India
| | - Atul Kumar Upadhyay
- National Center for Biological Sciences (NCBS), Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, Karnataka 560065 India
- Present Address: Thapar Institute of Engineering & Technology, Department of Biotechnology, Patiala, Punjab 147004 India
| | - Pardeep Kumar Bhardwaj
- Institute of Bioresource & Sustainable Development, A National Institute under Department of Biotechnology, Ministry of Science & Technology, Government of India, Gangtok, Sikkim 737102 India
- Present address: Institute of Bioresources and Sustainable Development, Meghalaya, 6th Mile, Upper Shillong, Meghalaya 793009 India
| | - Ramanathan Sowdhamini
- National Center for Biological Sciences (NCBS), Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, Karnataka 560065 India
| | - Uma Ramakrishnan
- National Center for Biological Sciences (NCBS), Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, Karnataka 560065 India
| |
Collapse
|
25
|
Zhou H, Wang X, Huo C, Wang H, An Z, Sun D, Liu J, Tang W, Zhang B. A Quantitative Proteomics Study of Early Heat-Regulated Proteins by Two-Dimensional Difference Gel Electrophoresis Identified OsUBP21 as a Negative Regulator of Heat Stress Responses in Rice. Proteomics 2019; 19:e1900153. [PMID: 31491808 DOI: 10.1002/pmic.201900153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/10/2019] [Indexed: 12/11/2022]
Abstract
To understand the early heat shock (HS)-regulated cellular responses that influence the tolerance of rice plant to high environmental temperatures, two-dimensional difference gel electrophoresis (2D-DIGE) is performed to explore the early HS-regulated proteome. Multiple proteins that show abundance changes after 1 and 5 min of HS treatment are identified. Of the early HS-regulated proteins identified, the abundance of a ubiquitin-specific protease, OsUBP21, and its Arabidopsis homolog, AtUBP13, is found to be upregulated by 5 min of HS treatment. Further, knocking the expression of OsUBP21 or AtUBP13 down or out increases the tolerance of rice and Arabidopsis plants to HS stress, suggesting that the function of these ubiquitin-specific proteases in regulating plant HS responses is conserved between monocots and dicots. 2D-DIGE showed a group of proteins are differentially regulated in wild-type and ubp21 mutant after 30 min of HS treatment. Among these proteins, 11 are found to interact directly with OsUBP21; thus, they may be targets of OsUBP21. Future analyses of the roles of these OsUBP21-interacting proteins in plant HS responses will help reveal the protein ubiquitination/deubiquitination-regulated cellular responses induced by HS in rice.
Collapse
Affiliation(s)
- Hangfan Zhou
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Xiaolong Wang
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Chenmin Huo
- College of Biological Science and Engineering, Hebei University of Economics and Business, Shijiazhuang, Hebei, 050061, China
| | - Hui Wang
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Zhichao An
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Daye Sun
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Jingze Liu
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Wenqiang Tang
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Baowen Zhang
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| |
Collapse
|
26
|
Jasrotia RS, Jaiswal S, Yadav PK, Raza M, Iquebal MA, Rai A, Kumar D. Genome-Wide Analysis of HSP70 Family Protein in Vigna radiata and Coexpression Analysis Under Abiotic and Biotic Stress. J Comput Biol 2019; 27:738-754. [PMID: 31464514 DOI: 10.1089/cmb.2019.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heat shock protein 70 (Hsp70), a 70-kDa protein, also known as a molecular chaperone, is highly conserved. It plays a major role in cellular functions such as protein folding, regulation of protein degradation, translocation of proteins across membranes, receptor signaling, and protein assembly or disassembly. Vigna radiata is an important legume crop with available whole-genome sequence, but no such study on the HSP70 family is reported. A total of 32 V. radiate HSP70s (Vr-HSP70s) were identified and described. They are phylogenetically clustered into four subgroups. Vr-HSP70s show variations in intron/exon organization. This indicates that introns may play an essential role in gene regulating. The coexpression analysis of Vr-HSP70s revealed that these genes were involved in both abiotic and biotic stresses. Three cytoplasmic hub genes namely Vr-HSP70-C-14, Vr-HSP70-C-29, and Vr-HSP70-C-30 were found common in both stresses. Our findings provide directions for future studies to dissect functional analysis of Vr-HSP70s in response to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Rahul Singh Jasrotia
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India.,Department of Computational Biology & Bioinformatics, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS), Allahabad, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Pramod Kumar Yadav
- Department of Computational Biology & Bioinformatics, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS), Allahabad, India
| | - Mustafa Raza
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
27
|
Wang Y, Zhang Y, Zhang Q, Cui Y, Xiang J, Chen H, Hu G, Chen Y, Wang X, Zhu D, Zhang Y. Comparative transcriptome analysis of panicle development under heat stress in two rice ( Oryza sativa L.) cultivars differing in heat tolerance. PeerJ 2019; 7:e7595. [PMID: 31528506 PMCID: PMC6717657 DOI: 10.7717/peerj.7595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/31/2019] [Indexed: 12/18/2022] Open
Abstract
Heat stress inhibits rice panicle development and reduces the spikelet number per panicle. This study investigated the mechanism involved in heat-induced damage to panicle development and spikelet formation in rice cultivars that differ in heat tolerance. Transcriptome data from developing panicles grown at 40 °C or 32 °C were compared for two rice cultivars: heat-tolerant Huanghuazhan and heat-susceptible IR36. Of the differentially expressed genes (DEGs), 4,070 heat stress-responsive genes were identified, including 1,688 heat-resistant-cultivar-related genes (RHR), 707 heat-susceptible-cultivar-related genes (SHR), and 1,675 common heat stress-responsive genes (CHR). A Gene Ontology (GO) analysis showed that the DEGs in the RHR category were significantly enriched in 54 gene ontology terms, some of which improved heat tolerance, including those in the WRKY, HD-ZIP, ERF, and MADS transcription factor families. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEGs in the RHR and SHR categories were enriched in 15 and 11 significant metabolic pathways, respectively. Improved signal transduction capabilities of endogenous hormones under high temperature seemed to promote heat tolerance, while impaired starch and sucrose metabolism under high temperature might have inhibited young panicle development. Our transcriptome analysis provides insights into the different molecular mechanisms of heat stress tolerance in developing rice.
Collapse
Affiliation(s)
- Yaliang Wang
- State Key Laboratory of Rice Biology, China National Rice Research Inistitute, Hangzhou, Zhejiang, China
| | - Yikai Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Inistitute, Hangzhou, Zhejiang, China
| | - Qiang Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Inistitute, Hangzhou, Zhejiang, China
| | - Yongtao Cui
- State Key Laboratory of Rice Biology, China National Rice Research Inistitute, Hangzhou, Zhejiang, China
| | - Jing Xiang
- State Key Laboratory of Rice Biology, China National Rice Research Inistitute, Hangzhou, Zhejiang, China
| | - Huizhe Chen
- State Key Laboratory of Rice Biology, China National Rice Research Inistitute, Hangzhou, Zhejiang, China
| | - Guohui Hu
- State Key Laboratory of Rice Biology, China National Rice Research Inistitute, Hangzhou, Zhejiang, China
| | - Yanhua Chen
- State Key Laboratory of Rice Biology, China National Rice Research Inistitute, Hangzhou, Zhejiang, China
| | - Xiaodan Wang
- State Key Laboratory of Rice Biology, China National Rice Research Inistitute, Hangzhou, Zhejiang, China
| | - Defeng Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Inistitute, Hangzhou, Zhejiang, China
| | - Yuping Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Inistitute, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Expression and molecular characterization of stress-responsive genes (hsp70 and Mn-sod) and evaluation of antioxidant enzymes (CAT and GPx) in heavy metal exposed freshwater ciliate, Tetmemena sp. Mol Biol Rep 2019; 46:4921-4931. [PMID: 31273612 DOI: 10.1007/s11033-019-04942-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022]
Abstract
Response of heavy metals namely cadmium (Cd) and copper (Cu) on the expression of stress responsive genes in the fresh water ciliate, Tetmemena sp. (single cell eukaryote) was studied. Stress responsive genes include heat shock protein genes and genes involved in antioxidant defence system. Quantitative real time PCR (qRT-PCR) was employed to evaluate the effects of Cd and Cu on the expression of cytosolic hsp70 and Mn-sod genes. Increase in the expression of these genes was observed after exposure with the heavy metals. The macronuclear cytosolic hsp70 and Mn-sod (SOD2) genes were also sequenced and characterized using various bioinformatics tools. In antioxidant defence system, the superoxide dismutase (SOD) family is a first line antioxidant enzyme group involved in catalysing reactive oxygen species (ROS) to hydrogen peroxide and molecular oxygen. Influence of Cd and Cu on the activity of SOD has already been reported by our group. Therefore, the enzymatic activities of antioxidant enzymes, catalase (CAT) and glutathione peroxidase (GPx) were studied in the presence of Cd and Cu and there was significant increase in activity of these enzymes in concentration dependent manner. This study suggests that cytosolic hsp70, Mn-sod and the antioxidant enzymes such as CAT and GPx can be used as effective molecular biomarkers for heavy metal toxicity and Tetmemena sp. can be used as potential model for understanding the molecular response to heavy metal contamination in aquatic ecosystems.
Collapse
|
29
|
The Hsp70 Gene Family in Boleophthalmus pectinirostris: Genome-Wide Identification and Expression Analysis under High Ammonia Stress. Animals (Basel) 2019; 9:ani9020036. [PMID: 30691127 PMCID: PMC6406738 DOI: 10.3390/ani9020036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Heat shock proteins 70 is a family of proteins, which were expressed in response to a wide range of biotic and abiotic stressors. The development of genomic resources and transcriptome sequences makes it practical to conduct a systematic analysis of these genes. In this study, exhaustive searches of all genomic resources for Boleophthalmus pectinirostris Hsp70 genes were performed and their responses to high environmental ammonia stress were investigated. Besides, selection test was implemented on those duplicated genes, and the phylogenetic tree, gene structure, and motif analysis were also constructed to assign names of them. The result showed that there were 20 Hsp70 genes within the genome of Boleophthalmus pectinirostris, and some sites in the duplicated genes may experience positive selection, and most of Hsp70 genes were downregulated after exposure to high concentration ammonia. The present results of this study can be used as a reference for further biological studies on mudskippers. Abstract Heat shock proteins 70 have triggered a remarkable large body of research in various fishes; however, no genome-wide identification and expression analysis has been performed on the Hsp70 gene family of Boleophthalmus pectinirostris. In this study, we identified 20 Hsp70 genes within the genome of B. pectinirostris and provided insights into their response to high environmental ammonia (HEA) stress. Positive selection on stress response genes and expansion of hspa1a and hspa1a-like genes might be related to terrestrial adaptations in this species. The expression patterns of the Hsp70 gene family in the gill and liver of B. pectinirostris under HEA stress were studied by examining transcriptome data. The results showed that most Hsp70 genes were downregulated after high concentration ammonia exposure. The downregulation may be related to the hypoxic condition of the tissues.
Collapse
|
30
|
Lohani N, Golicz AA, Singh MB, Bhalla PL. Genome-wide analysis of the Hsf gene family in Brassica oleracea and a comparative analysis of the Hsf gene family in B. oleracea, B. rapa and B. napus. Funct Integr Genomics 2019; 19:515-531. [DOI: 10.1007/s10142-018-0649-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 02/05/2023]
|
31
|
The Hsp70 Gene Family in Solanum tuberosum: Genome-Wide Identification, Phylogeny, and Expression Patterns. Sci Rep 2018; 8:16628. [PMID: 30413778 PMCID: PMC6226454 DOI: 10.1038/s41598-018-34878-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/28/2018] [Indexed: 11/08/2022] Open
Abstract
Heat shock protein 70 (Hsp70) family members play important roles in protecting plants against abiotic stresses, including salt, drought, heat, and cold. In this study, 20 putative StHsp70 genes were identified in potato (Solanum tuberosum L.) through the integration of the gene structures, chromosome locations, phylogenetic relationships, and expression profiles. These StHsp70 genes were classified into five sub-families based on phylogenetic analysis. Chromosome mapping revealed that they were unevenly and unequally distributed on 10 of the 12 chromosomes. Furthermore, segmental and tandem duplication events contributed to the expansion of the StHsp70 genes. Phylogenetic tree of the HSP70 genes from potato and other plant species revealed multiple sub-families. These findings indicated a common ancestor which had generated diverse sub-families prior to a mono-dicot split. In addition, expression analysis using RNA-seq revealed that the majority of these genes were expressed in at least one of the tested tissue, and were induced by Phytophthora infestans. Then, based on qRT-PCR analysis, the results showed that the transcript levels of some of the StHsp70 genes could be remarkably induced by such abiotic and hormone stresses, which indicated their potential roles in mediating the responses of potato plants to both abiotic and biotic stress conditions.
Collapse
|
32
|
Xin L, Zheng H, Yang Z, Guo J, Liu T, Sun L, Xiao Y, Yang J, Yang Q, Guo L. Physiological and proteomic analysis of maize seedling response to water deficiency stress. JOURNAL OF PLANT PHYSIOLOGY 2018; 228:29-38. [PMID: 29852332 DOI: 10.1016/j.jplph.2018.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 05/10/2023]
Abstract
Low water availability is a major abiotic factor limiting photosynthesis and the growth and yield of crops. Maize (Zea mays) is among the most drought-sensitive cereal crops. Herein, the physiological and proteomic changes of maize seedlings caused by polyethylene-glycol-induced water deficit were analyzed. The results showed that malondialdehyde and proline contents increased continuously in the treated seedlings. Soluble sugar content and superoxide dismutase activity were upregulated initially but became downregulated under prolonged water deficit. A total of 104 proteins were found to be differentially accumulated under water stress. The identified proteins were mainly involved in photosynthesis, carbohydrate metabolism, stress defense, energy production, and protein metabolism. Interestingly, substantial incongruence between protein and transcript levels was observed, indicating that gene expression in water-stressed maize seedlings is controlled by complex mechanisms. Finally, we propose a hypothetical model that includes the different molecular, physiological, and biochemical changes that occurred during the response and tolerance of maize seedlings to water deficiency. Our study provides valuable insight for further research into the overall mechanisms underlying drought response and tolerance in maize and other plants.
Collapse
Affiliation(s)
- Longfei Xin
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Huifang Zheng
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Zongju Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiameng Guo
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Tianxue Liu
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Lei Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Xiao
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianping Yang
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qinghua Yang
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Lin Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
33
|
Unraveling Field Crops Sensitivity to Heat Stress:Mechanisms, Approaches, and Future Prospects. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8070128] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The astonishing increase in temperature presents an alarming threat to crop production worldwide. As evident by huge yield decline in various crops, the escalating drastic impacts of heat stress (HS) are putting global food production as well as nutritional security at high risk. HS is a major abiotic stress that influences plant morphology, physiology, reproduction, and productivity worldwide. The physiological and molecular responses to HS are dynamic research areas, and molecular techniques are being adopted for producing heat tolerant crop plants. In this article, we reviewed recent findings, impacts, adoption, and tolerance at the cellular, organellar, and whole plant level and reported several approaches that are used to improve HS tolerance in crop plants. Omics approaches unravel various mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward HS. Our review about physiological and molecular mechanisms may enlighten ways to develop thermo-tolerant cultivars and to produce crop plants that are agriculturally important in adverse climatic conditions.
Collapse
|
34
|
Trapero‐Mozos A, Morris WL, Ducreux LJM, McLean K, Stephens J, Torrance L, Bryan GJ, Hancock RD, Taylor MA. Engineering heat tolerance in potato by temperature-dependent expression of a specific allele of HEAT-SHOCK COGNATE 70. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:197-207. [PMID: 28509353 PMCID: PMC5785350 DOI: 10.1111/pbi.12760] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/03/2017] [Accepted: 05/11/2017] [Indexed: 05/23/2023]
Abstract
For many commercial potato cultivars, tuber yield is optimal at average daytime temperatures in the range of 14-22 °C. Further rises in ambient temperature can reduce or completely inhibit potato tuber production, with damaging consequences for both producer and consumer. The aim of this study was to use a genetic screen based on a model tuberization assay to identify quantitative trait loci (QTL) associated with enhanced tuber yield. A candidate gene encoding HSc70 was identified within one of the three QTL intervals associated with elevated yield in a Phureja-Tuberosum hybrid diploid potato population (06H1). A particular HSc70 allelic variant was linked to elevated yield in the 06H1 progeny. Expression of this allelic variant was much higher than other alleles, particularly on exposure to moderately elevated temperature. Transient expression of this allele in Nicotiana benthamiana resulted in significantly enhanced tolerance to elevated temperature. An TA repeat element was present in the promoter of this allele, but not in other HSc70 alleles identified in the population. Expression of the HSc70 allelic variant under its native promoter in the potato cultivar Desiree resulted in enhanced HSc70 expression at elevated temperature. This was reflected in greater tolerance to heat stress as determined by improved yield under moderately elevated temperature in a model nodal cutting tuberization system and in plants grown from stem cuttings. Our results identify HSc70 expression level as a significant factor influencing yield stability under moderately elevated temperature and identify specific allelic variants of HSc70 for the induction of thermotolerance via conventional introgression or molecular breeding approaches.
Collapse
Affiliation(s)
| | - Wayne L. Morris
- Cell and Molecular SciencesThe James Hutton InstituteDundeeUK
| | | | - Karen McLean
- Cell and Molecular SciencesThe James Hutton InstituteDundeeUK
| | | | - Lesley Torrance
- School of BiologyUniversity of St AndrewsSt AndrewsFifeUK
- Cell and Molecular SciencesThe James Hutton InstituteDundeeUK
| | - Glenn J. Bryan
- Cell and Molecular SciencesThe James Hutton InstituteDundeeUK
| | | | - Mark A. Taylor
- Cell and Molecular SciencesThe James Hutton InstituteDundeeUK
| |
Collapse
|
35
|
Gho YS, Park SA, Kim SR, Chandran AKN, An G, Jung KH. Comparative Expression Analysis of Rice and Arabidopsis Peroxiredoxin Genes Suggests Conserved or Diversified Roles Between the Two Species and Leads to the Identification of Tandemly Duplicated Rice Peroxiredoxin Genes Differentially Expressed in Seeds. RICE (NEW YORK, N.Y.) 2017. [PMID: 28647924 PMCID: PMC5483221 DOI: 10.1186/s12284-017-0170-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND Peroxiredoxins (PRXs) have recently been identified as plant antioxidants. Completion of various genome sequencing projects has provided genome-wide information about PRX genes in major plant species. Two of these -- Oryza sativa (rice) and Arabidopsis -- each have 10 PRX members. Although significant progress has been made in understanding their biological roles in Arabidopsis, those functions in rice, a model crop plant, have not been well studied. RESULTS We performed a comparative expression analysis of rice and Arabidopsis PRXs. Our phylogenetic analysis revealed that one subgroup contains three rice and three Arabidopsis Type-II PRXs that are expressed ubiquitously. This suggests that they are involved in housekeeping functions to process reactive oxygen species (ROS). Within the second subgroup, expression of Os1-CysPrxA (LOC_Os7g44430) and AtOs1-CysPrx is conserved in seeds while Os1-CysPrxB (LOC_Os7g44440) shows a root-preferential pattern of expression. We used transgenic plants expressing the GUS reporter gene under the control of the promoters of these two tandem duplicates to confirm their meta-expression patterns. Our GUS expression data from developing seeds and those that were germinating indicated that Os1-CysPrxB is involved in root development, as initiated from the embryo, while Os1-CysPrxA has roles in regulating endosperm development near the aleurone layer. For the third and fourth subgroups, the rice PRXs are more likely to show leaf/shoot-preferential expression, while those from Arabidopsis are significantly expressed in the flowers and seeds in addition to the leaf/shoot. To determine the biological meaning of those expression patterns that were dominantly identified in rice PRXs, we analyzed three rice genes showing leaf/shoot-preferential expression in a mutant of the light-responsive 1-deoxy-D-xylulose 5-phosphate reductoisomerase (dxr) gene and found that two of them were significantly down-regulated in the mutant. CONCLUSION A global expression analysis of the PRX family in rice identified tandem duplicates, Os1-CysPrxA and Os1-CysPrxB, in the 1-CysPrx subgroup that are differentially expressed in developing seeds and germinating seeds. Analysis of the cis-acting regulatory elements (CREs) revealed unique CREs responsible for embryo and root or endosperm-preferential expression. In addition, the presence of leaf/shoot-preferential PRXs in rice suggests that they are required in that crop because those plants must tolerate a higher light intensity in their normal growth environment when compared with that of Arabidopsis. Downregulation of two PRXs in the dxr mutant causing an albino phenotype, implying that those genes have roles in processing ROS produced during photosynthesis. Network analysis of four PRXs allowed us to model regulatory pathways that explain the underlying protein interaction network. This will be a useful hypothetical model for further study.
Collapse
Affiliation(s)
- Yun-Shil Gho
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Sun-A Park
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Sung-Ruyl Kim
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, Metro Manila, Philippines
| | - Anil Kumar Nalini Chandran
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Gynheung An
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
36
|
Functional Characterization of Waterlogging and Heat Stresses Tolerance Gene Pyruvate decarboxylase 2 from Actinidia deliciosa. Int J Mol Sci 2017; 18:ijms18112377. [PMID: 29120390 PMCID: PMC5713346 DOI: 10.3390/ijms18112377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 11/17/2022] Open
Abstract
A previous report showed that both Pyruvatedecarboxylase (PDC) genes were significantly upregulated in kiwifruit after waterlogging treatment using Illumina sequencing technology, and that the kiwifruit AdPDC1 gene was required during waterlogging, but might not be required during other environmental stresses. Here, the function of another PDC gene, named AdPDC2, was analyzed. The expression of the AdPDC2 gene was determined using qRT-PCR, and the results showed that the expression levels of AdPDC2 in the reproductive organs were much higher than those in the nutritive organs. Waterlogging, NaCl, and heat could induce the expression of AdPDC2. Overexpression of kiwifruit AdPDC2 in transgenic Arabidopsis enhanced resistance to waterlogging and heat stresses in five-week-old seedlings, but could not enhance resistance to NaCl and mannitol stresses at the seed germination stage and in early seedlings. These results suggested that the kiwifruit AdPDC2 gene may play an important role in waterlogging resistance and heat stresses in kiwifruit.
Collapse
|
37
|
Kim SW, Lee SK, Jeong HJ, An G, Jeon JS, Jung KH. Crosstalk between diurnal rhythm and water stress reveals an altered primary carbon flux into soluble sugars in drought-treated rice leaves. Sci Rep 2017; 7:8214. [PMID: 28811563 PMCID: PMC5557844 DOI: 10.1038/s41598-017-08473-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/30/2017] [Indexed: 12/13/2022] Open
Abstract
Plants retain rhythmic physiological responses when adapting to environmental challenges. However, possible integrations between drought conditions and those responses have not received much focus, especially regarding crop plants, and the relationship between abiotic stress and the diurnal cycle is generally not considered. Therefore, we conducted a genome-wide analysis to identify genes showing both diurnal regulation and water-deficiency response in rice (Oryza sativa). Among the 712 drought-responsive genes primary identified, 56.6% are diurnally expressed while 47.6% of the 761 that are down-regulated by drought are also diurnal. Using the β-glucuronidase reporter system and qRT-PCR analyses, we validated expression patterns of two candidate genes, thereby supporting the reliability of our transcriptome data. MapMan analysis indicated that diurnal genes up-regulated by drought are closely associated with the starch-sucrose pathway while those that are down-regulated are involved in photosynthesis. We then confirmed that starch-sucrose contents and chlorophyll fluorescence are altered in a diurnal manner under drought stress, suggesting these metabolic diurnal alterations as a novel indicator to evaluate the drought response in rice leaves. We constructed a functional gene network associated with the starch-sucrose KEGG metabolic pathway for further functional studies, and also developed a regulatory pathway model that includes OsbZIP23 transcription factor.
Collapse
Affiliation(s)
- Seo-Woo Kim
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Sang-Kyu Lee
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Hee-Jeong Jeong
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Gynheung An
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea.
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea.
| |
Collapse
|
38
|
Wen F, Wu X, Li T, Jia M, Liu X, Li P, Zhou X, Ji X, Yue X. Genome-wide survey of heat shock factors and heat shock protein 70s and their regulatory network under abiotic stresses in Brachypodium distachyon. PLoS One 2017; 12:e0180352. [PMID: 28683139 PMCID: PMC5500289 DOI: 10.1371/journal.pone.0180352] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/14/2017] [Indexed: 11/18/2022] Open
Abstract
The heat shock protein 70s (Hsp70s) and heat shock factors (Hsfs) play key roles in protecting plant cells or tissues from various abiotic stresses. Brachypodium distachyon, recently developed an excellent model organism for functional genomics research, is related to the major cereal grain species. Although B. distachyon genome has been fully sequenced, the information of Hsf and Hsp70 genes and especially the regulatory network between Hsfs and Hsp70s remains incomplete. Here, a total of 24 BdHsfs and 29 BdHsp70s were identified in the genome by bioinformatics analysis and the regulatory network between Hsfs and Hsp70s were performed in this study. Based on highly conserved domain and motif analysis, BdHsfs were grouped into three classes, and BdHsp70s divided into six groups, respectively. Most of Hsf proteins contain five conserved domains: DBD, HR-A/B region, NLS and NES motifs and AHA domain, while Hsp70 proteins have three conserved domains: N-terminal nucleotide binding domain, peptide binding domain and a variable C-terminal lid region. Expression data revealed a large number of BdHsfs and BdHsp70s were induced by HS challenge, and a previous heat acclimation could induce the acquired thermotolerance to help seedling suffer the severe HS challenge, suggesting that the BdHsfs and BdHsp70s played a role in alleviating the damage by HS. The comparison revealed that, most BdHsfs and BdHsp70s genes responded to multiple abiotic stresses in an overlapping relationship, while some of them were stress specific response genes. Moreover, co-expression relationships and predicted protein-protein interaction network implied that class A and B Hsfs played as activator and repressors, respectively, suggesting that BdHsp70s might be regulated by both the activation and the repression mechanisms under stress condition. Our genomics analysis of BdHsfs and BdHsp70s provides important evolutionary and functional characterization for further investigation of the accurate regulatory mechanisms among Hsfs and Hsp70s in herbaceous plants.
Collapse
Affiliation(s)
- Feng Wen
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
- * E-mail:
| | - Xiaozhu Wu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Tongjian Li
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Mingliang Jia
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xinshen Liu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Peng Li
- Shanghai Chenshan Plant Science Research Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS). Shanghai Chenshan Botanic Garden, Songjiang, Shanghai, China
| | - Xiaojian Zhou
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xinxin Ji
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xiaomin Yue
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| |
Collapse
|
39
|
Wang H, Niu H, Zhai Y, Lu M. Characterization of BiP Genes from Pepper ( Capsicum annuum L.) and the Role of CaBiP1 in Response to Endoplasmic Reticulum and Multiple Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2017; 8:1122. [PMID: 28702041 PMCID: PMC5487487 DOI: 10.3389/fpls.2017.01122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/12/2017] [Indexed: 05/18/2023]
Abstract
Adverse environmental conditions have a detrimental impact on crop growth and development, and cause protein denaturation or misfolding. The binding protein (BiP) plays an important protective role by alleviating endoplasmic reticulum (ER) stress induced by misfolded proteins. In this study, we characterized three BiP genes (CaBiP1, CaBiP2, and CaBiP3) in pepper, an economically important vegetable and spice species. The role of CaBiP1 in plant tolerance to ER stress and adverse environmental conditions (including heat, salinity, osmotic and drought stress) were investigated. All the expected functional and signaling domains were detected in three BiP proteins, but the motifs and exon-intron distribution differed slightly in CaBiP3. CaBiP1 and CaBiP2 were constitutively expressed in all the tested tissues under both normal and stressed conditions, whereas CaBiP3 was mainly expressed following stress. Silencing of CaBiP1 reduced pepper tolerance to ER stress and various environment stresses, and was accompanied by increased H2O2 accumulation, MDA content, relative electric leakage (REL), water loss rate, and a reduction in soluble protein content and relative water content (RWC) in the leaves. Conversely, overexpression of CaBiP1 in Arabidopsis enhanced tolerance to ER stress and multiple environment stresses, as demonstrated by an increase in germination rate, root length, survival rate, RWC, the unfolded protein response (UPR) pathway, and a decrease in water loss rate. Our results suggest that CaBiP1 may contribute to plant tolerance to abiotic stresses by reducing ROS accumulation, increasing the water-retention ability, and stimulating UPR pathways and expression of stress-related genes.
Collapse
|
40
|
|
41
|
Divya D, Singh YT, Nair S, Bentur JS. Analysis of SSH library of rice variety Aganni reveals candidate gall midge resistance genes. Funct Integr Genomics 2016; 16:153-69. [DOI: 10.1007/s10142-016-0474-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/19/2015] [Accepted: 01/07/2016] [Indexed: 12/19/2022]
|
42
|
Choudhary MK, Nomura Y, Shi H, Nakagami H, Somers DE. Circadian Profiling of the Arabidopsis Proteome Using 2D-DIGE. FRONTIERS IN PLANT SCIENCE 2016; 7:1007. [PMID: 27462335 PMCID: PMC4940426 DOI: 10.3389/fpls.2016.01007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/27/2016] [Indexed: 05/18/2023]
Abstract
Clock-generated biological rhythms provide an adaptive advantage to an organism, resulting in increased fitness and survival. To better elucidate the plant response to the circadian system, we surveyed protein oscillations in Arabidopsis seedlings under constant light. Using large-scale two-dimensional difference in gel electrophoresis (2D-DIGE) the abundance of more than 1000 proteins spots was reproducibly resolved quantified and profiled across a circadian time series. A comparison between phenol-extracted samples and RuBisCO-depleted extracts identified 71 and 40 rhythmically-expressed proteins, respectively, and between 30 and 40% of these derive from non-rhythmic transcripts. These included proteins influencing transcriptional regulation, translation, metabolism, photosynthesis, protein chaperones, and stress-mediated responses. The phasing of maximum expression for the cyclic proteins was similar for both datasets, with a nearly even distribution of peak phases across the time series. STRING clustering analysis identified two interaction networks with a notable number of oscillating proteins: plastid-based and cytosolic chaperones and 10 proteins involved in photosynthesis. The oscillation of the ABA receptor, PYR1/RCAR11, with peak expression near dusk adds to a growing body of evidence that intimately ties ABA signaling to the circadian system. Taken together, this study provides new insights into the importance of post-transcriptional circadian control of plant physiology and metabolism.
Collapse
Affiliation(s)
- Mani K. Choudhary
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and TechnologyPohang, South Korea
| | - Yuko Nomura
- Plant Proteomics Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Hua Shi
- Department of Molecular Genetics, Ohio State UniversityColumbus, OH, USA
| | - Hirofumi Nakagami
- Plant Proteomics Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - David E. Somers
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and TechnologyPohang, South Korea
- Department of Molecular Genetics, Ohio State UniversityColumbus, OH, USA
- *Correspondence: David E. Somers
| |
Collapse
|
43
|
Yang J, Chen X, Zhu C, Peng X, He X, Fu J, Ouyang L, Bian J, Hu L, Sun X, Xu J, He H. Using RNA-seq to Profile Gene Expression of Spikelet Development in Response to Temperature and Nitrogen during Meiosis in Rice (Oryza sativa L.). PLoS One 2015; 10:e0145532. [PMID: 26714321 PMCID: PMC4694716 DOI: 10.1371/journal.pone.0145532] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 12/04/2015] [Indexed: 11/18/2022] Open
Abstract
Rice reproductive development is sensitive to high temperature and soil nitrogen supply, both of which are predicted to be increased threats to rice crop yield. Rice spikelet development is a critical process that determines yield, yet little is known about the transcriptional regulation of rice spikelet development in response to the combination of heat stress and low nitrogen availability. Here, we profiled gene expression of rice spikelet development during meiosis under heat stress and different nitrogen levels using RNA-seq. We subjected plants to four treatments: 1) NN: normal nitrogen level (165 kg ha-1) with normal temperature (30°C); 2) HH: high nitrogen level (264 kg ha-1) with high temperature (37°C); 3) NH: normal nitrogen level and high temperature; and 4) HN: high nitrogen level and normal temperature. The de novo transcriptome assembly resulted in 52,250,482 clean reads aligned with 76,103 unigenes, which were then used to compare differentially expressed genes (DEGs) in the different treatments. Comparing gene expression in samples with the same nitrogen levels but different temperatures, we identified 70 temperature-responsive DEGs in normal nitrogen levels (NN vs NH) and 135 DEGs in high nitrogen levels (HN vs HH), with 27 overlapping DEGs. We identified 17 and seven nitrogen-responsive DEGs by comparing changes in nitrogen levels in lower temperature (NN vs HN) and higher temperature (NH vs HH), with one common DEG. The temperature-responsive genes were principally associated with cytochrome, heat shock protein, peroxidase, and ubiquitin, while the nitrogen-responsive genes were mainly involved in glutamine synthetase, amino acid transporter, pollen development, and plant hormone. Rice spikelet fertility was significantly reduced under high temperature, but less reduced under high-nitrogen treatment. In the high temperature treatments, we observed downregulation of genes involved in spikelet development, such as pollen tube growth, pollen maturation, especially sporopollenin biosynthetic process, and pollen exine formation. Moreover, we observed higher expression levels of the co-expressed DEGs in HN vs HH compared to NN vs NH. These included the six downregulated genes (one pollen maturation and five pollen exine formation genes), as well as the four upregulated DEGs in response to heat. This suggests that high-nitrogen treatment may enhance the gene expression levels to mitigate aspects of heat-stress. The spikelet genes identified in this study may play important roles in response to the combined effects of high temperature and high nitrogen, and may serve as candidates for crop improvement.
Collapse
Affiliation(s)
- Jun Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaorong Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Changlan Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaosong Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaopeng He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Junru Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Linjuan Ouyang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Lifang Hu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaotang Sun
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Jie Xu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
- * E-mail:
| |
Collapse
|
44
|
Yang J, Chen X, Zhu C, Peng X, He X, Fu J, Ouyang L, Bian J, Hu L, Sun X, Xu J, He H. RNA-seq reveals differentially expressed genes of rice (Oryza sativa) spikelet in response to temperature interacting with nitrogen at meiosis stage. BMC Genomics 2015; 16:959. [PMID: 26576634 PMCID: PMC4650392 DOI: 10.1186/s12864-015-2141-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022] Open
Abstract
Background Rice (Oryza sativa) is one of the most important cereal crops, providing food for more than half of the world’s population. However, grain yields are challenged by various abiotic stresses such as drought, fertilizer, heat, and their interaction. Rice at reproductive stage is much more sensitive to environmental temperatures, and little is known about molecular mechanisms of rice spikelet in response to high temperature interacting with nitrogen (N). Results Here we reported the transcriptional profiling analysis of rice spikelet at meiosis stage using RNA sequencing (RNA-seq) as an attempt to gain insights into molecular events associated with temperature and nitrogen. This study received four treatments: 1) NN: normal nitrogen level (165 kg ha−1) with natural temperature (30 °C); 2) HH: high nitrogen level (330 kg ha−1) with high temperature (37 °C); 3) NH: normal nitrogen level and high temperature; and 4) HN: high nitrogen level and natural temperature, respectively. The de novo assembly generated 52,553,536 clean reads aligned with 72,667 unigenes. About 10 M reads were identified from each treatment. In these differentially expressed genes (DEGs), we found 151 and 323 temperature-responsive DEGs in NN-vs-NH and HN-vs-HH, and 114 DEGs were co-expressed. Meanwhile, 203 and 144 nitrogen-responsive DEGs were focused in NN-vs-HN and NH-vs-HH, and 111 DEGs were co-expressed. The temperature-responsive genes were principally associated with calcium-dependent protein, cytochrome, flavonoid, heat shock protein, peroxidase, ubiquitin, and transcription factor while the nitrogen-responsive genes were mainly involved in glutamine synthetase, transcription factor, anthocyanin, amino acid transporter, leucine zipper protein, and hormone. It is noted that, rice spikelet fertility was significantly decreased under high temperature, but it was more reduced under higher nitrogen. Accordingly, numerous spikelet genes involved in pollen development, pollen tube growth, pollen germination, especially sporopollenin biosynthetic process, and pollen exine formation were mainly down-regulated under high temperature. Moreover, the expression levels of co-expressed DEGs including 5 sporopollenin biosynthetic process and 7 pollen exine formation genes of NN-vs-NH were lower than that of HN-vs-HH. Therefore, these spikelet genes may play important roles in response to high temperature with high nitrogen and may be good candidates for crop improvement. Conclusions This RNA-seq study will help elucidate the molecular mechanisms of rice spikelet defense response to high temperature interacting with high nitrogen level. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2141-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Xiaorong Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Changlan Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Xiaosong Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Xiaopeng He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Junru Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Linjuan Ouyang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Lifang Hu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Xiaotang Sun
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Jie Xu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| |
Collapse
|
45
|
Jeong HJ, Jung KH. Rice tissue-specific promoters and condition-dependent promoters for effective translational application. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:913-24. [PMID: 25882130 DOI: 10.1111/jipb.12362] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/15/2015] [Indexed: 05/10/2023]
Abstract
Rice (Oryza sativa) is one of the most important staple food crops for more than half of the world's population. The demand is increasing for food security because of population growth and environmental challenges triggered by climate changes. This scenario has led to more interest in developing crops with greater productivity and sustainability. The process of genetic transformation, a major tool for crop improvement, utilizes promoters as one of its key elements. Those promoters are generally divided into three types: constitutive, spatiotemporal, and condition-dependent. Transcriptional control of a constitutive promoter often leads to reduced plant growth, due to a negative effect of accumulated molecules during cellular functions or energy consumption. To maximize the effect of a transgene on transgenic plants, it is better to use condition-dependent or tissue-specific promoters. However, until now, those types have not been as widely applied in crop biotechnology. In this review, we introduce and discuss four groups of tissue-specific promoters (50 promoters in total) and six groups of condition-dependent promoters (27 promoters). These promoters can be utilized to fine-tune desirable agronomic traits and develop crops with tolerance to various stresses, enhanced nutritional value, and advanced productivity.
Collapse
Affiliation(s)
- Hee-Jeong Jeong
- Department of Plant Molecular Systems Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| | - Ki-Hong Jung
- Department of Plant Molecular Systems Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| |
Collapse
|
46
|
Vanhove AC, Vermaelen W, Cenci A, Swennen R, Carpentier SC. Data for the characterization of the HSP70 family during osmotic stress in banana, a non-model crop. Data Brief 2015. [PMID: 26217722 PMCID: PMC4510055 DOI: 10.1016/j.dib.2015.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Here, we present the data from an in-depth analysis of the HSP70 family in the non-model banana during osmotic stress [1]. First, a manual curation of HSP70 sequences from the banana genome was performed and updated on the Musa hub http://banana-genome.cirad.fr/. These curated protein sequences were then introduced into our in-house Mascot database for an in-depth look at the HSP70 protein profiles in banana meristem cultures and roots during osmotic stress. A 2D-DIGE LC MS/MS approach was chosen to identify and quantify the different paralogs and allelic variants in the HSP70 spots.
Collapse
Affiliation(s)
- Anne-Catherine Vanhove
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Leuven, Belgium
| | - Wesley Vermaelen
- Facility for Systems Biology based Mass Spectrometry (SYBIOMA), KU Leuven, Leuven, Belgium
| | | | - Rony Swennen
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Leuven, Belgium ; Bioversity International, Leuven, Belgium ; International Institute of Tropical Agriculture, Arusha, Tanzania
| | - Sebastien C Carpentier
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Leuven, Belgium ; Facility for Systems Biology based Mass Spectrometry (SYBIOMA), KU Leuven, Leuven, Belgium
| |
Collapse
|
47
|
Vanhove AC, Vermaelen W, Swennen R, Carpentier SC. A look behind the screens: Characterization of the HSP70 family during osmotic stress in a non-model crop. J Proteomics 2015; 119:10-20. [DOI: 10.1016/j.jprot.2015.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/23/2014] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
|
48
|
Nguyen QN, Lee YS, Cho LH, Jeong HJ, An G, Jung KH. Genome-wide identification and analysis of Catharanthus roseus RLK1-like kinases in rice. PLANTA 2015; 241:603-13. [PMID: 25399351 DOI: 10.1007/s00425-014-2203-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 11/05/2014] [Indexed: 05/22/2023]
Abstract
A genome-wide survey of Catharanthus roseus receptor-like kinase1-like kinases (CrRLK1Ls) in rice revealed that the pattern of expression by some CrRLK1Ls is controlled by drought or circadian rhythms. This is probably accomplished through the functioning of Gigantea ( OsGI ). Such findings provide a novel angle for using CrRLK1Ls to study the drought-stress response and circadian regulation. The 17 CrRLK1L members of a novel RLK family have been identified in Arabidopsis. Each carries a putative extracellular carbohydrate-binding malectin-like domain. However, their roles in rice, a widely consumed staple food, are not well understood. To investigate the functions of CrRLK1Ls in rice, we utilized phylogenomics data obtained through anatomical and diurnal meta-expression analyses. This information was integrated with a large set of public microarray data within the context of the rice CrRLK1L family phylogenic tree. Chromosomal locations indicated that 3 of 16 genes were tandem-duplicated, suggesting possible functional redundancy within this family. However, integrated diurnal expression showed functional divergence between two of three genes, i.e., peak expression was detected during the day for OsCrRLK1L2, but during the night for OsCrRLK1L3. We found it interesting that OsCrRLK1L2 expression was repressed in osgigantea (osgi) mutants, which suggests that it could function downstream of OsGI. Network analysis associated with OsCrRLK1L2 and OsGI suggested a novel circadian regulation mechanism mediated by OsGI. In addition, two of five OsCrRLK1Ls preferentially expressed in the roots were stimulated by drought, suggesting a potential role for this family in water-use efficiency. This preliminary identification of CrRLK1Ls and study of their expression in rice will facilitate further functional classifications and applications in plant production.
Collapse
Affiliation(s)
- Quynh-Nga Nguyen
- Department of Plant Molecular Systems Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, Korea
| | | | | | | | | | | |
Collapse
|
49
|
Zhang L, Zhao HK, Dong QL, Zhang YY, Wang YM, Li HY, Xing GJ, Li QY, Dong YS. Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean (Glycine max L.). FRONTIERS IN PLANT SCIENCE 2015; 6:773. [PMID: 26442082 PMCID: PMC4585176 DOI: 10.3389/fpls.2015.00773] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/09/2015] [Indexed: 05/03/2023]
Abstract
Heat shock proteins (HSPs) perform a fundamental role in protecting plants against abiotic stresses. Previous studies have made great efforts in the functional analysis of individual family members, but there has not yet been an overall analysis or expression profiling of the HSP70 gene family in soybeans (Glycine max L.). In this study, an investigation of the soybean genome revealed 61 putative HSP70 genes, which were evaluated. These genes were classified into eight sub-families, denoted I-VIII, based on a phylogenetic analysis. In each sub-family, the constituent parts of the gene structure and motif were relatively conserved. These GmHSP70 genes were distributed unequally on 17 of the 20 chromosomes. The analysis of the expression profiles showed that 53 of the 61 GmHSP70 genes were differentially expressed across the 14 tissues. However, most of the GmHSP70s were differentially expressed in a tissue-specific expression pattern. Furthermore, the expression of some of the duplicate genes was partially redundant, while others showed functional diversity. The quantitative real-time PCR (qRT-PCR) analysis of the 61 soybean HSP70 genes confirmed their stress-inducible expression patterns under both drought and heat stress. These findings provide a thorough overview of the evolution and modification of the GmHSP70 gene family, which will help to determine the functional characteristics of the HSP70 genes in soybean growth and development.
Collapse
Affiliation(s)
- Ling Zhang
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
| | - Hong-Kun Zhao
- Crop Germplasm Institute, Jilin Academy of Agricultural SciencesGongzhuling, China
| | - Qian-Li Dong
- Department of Biology, Beijing Normal UniversityBeijing, China
| | - Yuan-Yu Zhang
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
| | - Yu-Min Wang
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
| | - Hai-Yun Li
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
| | - Guo-Jie Xing
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
| | - Qi-Yun Li
- Institute of Plant Protection, Jilin Academy of Agricultural SciencesGongzhuling, China
- *Correspondence: Qi-Yun Li, Institute of Plant Protection, Jilin Academy of Agricultural Sciences, No. 303 Kemaoxi Street, Gongzhuling, JiLin 136100, China
| | - Ying-Shan Dong
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
- Ying-Shan Dong, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, No. 1363 Shengtai Street, Jing Yue District, ChangChun, JiLin 130033, China
| |
Collapse
|
50
|
Zhou S, Sun H, Zheng B, Li R, Zhang W. Cell cycle transcription factor E2F2 mediates non-stress temperature response of AtHSP70-4 in Arabidopsis. Biochem Biophys Res Commun 2014; 455:139-46. [DOI: 10.1016/j.bbrc.2014.10.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 01/24/2023]
|