1
|
Xiao T, Feng S, Liu J, Wang Y, Shangguan X, Yu X, Shen Z, Hu Z, Xia Y. OsGLP8-7 interacts with OsPRX111 to detoxify excess copper in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108564. [PMID: 38555719 DOI: 10.1016/j.plaphy.2024.108564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Lignin is a phenolic biopolymer generated from phenylpropanoid pathway in the secondary cell wall and is required for defense of plants against various stress. Although the fact of stress-induced lignin deposition has been clearly demonstrated, it remains largely elusive how the formation of lignin is promoted under Cu stress. The present study showed that OsGLP8-7, an extracellular glycoprotein of rice (Oryza sativa L.), plays an important function against Cu stress. The loss function of OsGLP8-7 results in Cu sensitivity whereas overexpression of OsGLP8-7 scavenges Cu-induced superoxide anion (O2•-). OsGLP8-7 interacts with apoplastic peroxidase111 (OsPRX111) and elevates OsPRX111 stability when exposed to excess Cu. In OsGLP8-7 overexpressing (OE) lines, the retention of Cu within cell wall limiting Cu uptake into cytoplasm is attributed to the enhanced lignification required for Cu tolerance. Exogenous application of a lignin inhibitor can impair the Cu tolerance of transgenic Arabidopsis lines overexpressing OsGLP8-7. In addition, co-expression of OsGLP8-7 and OsPRX111 genes in tobacco leaves leads to an improved lignin deposition compared to leaves expressing each gene individually or the empty vector. Taken together, our findings provided the convincing evidences that the interaction between OsGLP8-7 and OsPRX111 facilitates effectively lignin polymerization, thereby contributing to Cu tolerance in rice.
Collapse
Affiliation(s)
- Tengwei Xiao
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuhua Feng
- Heilongjiang Vocational College of Agricultural Engineering, Harbin, 150088, China
| | - Jia Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China
| | - Yu Wang
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiangchao Shangguan
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyu Yu
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhubing Hu
- Center for Multi-Omics Research, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Yan Xia
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Ilyas M, Rahman A, Khan NH, Haroon M, Hussain H, Rehman L, Alam M, Rauf A, Waggas DS, Bawazeer S. Analysis of Germin-like protein genes family in Vitis vinifera (VvGLPs) using various in silico approaches. BRAZ J BIOL 2024; 84:e256732. [DOI: 10.1590/1519-6984.256732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/28/2021] [Indexed: 12/26/2022] Open
Abstract
Abstract Germin-like proteins (GLPs) play an important role against various stresses. Vitis vinifera L. genome contains 7 GLPs; many of them are functionally unexplored. However, the computational analysis may provide important new insight into their function. Currently, physicochemical properties, subcellular localization, domain architectures, 3D structures, N-glycosylation & phosphorylation sites, and phylogeney of the VvGLPs were investigated using the latest computational tools. Their functions were predicted using the Search tool for the retrieval of interacting genes/proteins (STRING) and Blast2Go servers. Most of the VvGLPs were extracellular (43%) in nature but also showed periplasmic (29%), plasma membrane (14%), and mitochondrial- or chloroplast-specific (14%) expression. The functional analysis predicted unique enzymatic activities for these proteins including terpene synthase, isoprenoid synthase, lipoxygenase, phosphate permease, receptor kinase, and hydrolases generally mediated by Mn+ cation. VvGLPs showed similarity in the overall structure, shape, and position of the cupin domain. Functionally, VvGLPs control and regulate the production of secondary metabolites to cope with various stresses. Phylogenetically VvGLP1, -3, -4, -5, and VvGLP7 showed greater similarity due to duplication while VvGLP2 and VvGLP6 revealed a distant relationship. Promoter analysis revealed the presence of diverse cis-regulatory elements among which CAAT box, MYB, MYC, unnamed-4 were common to all of them. The analysis will help to utilize VvGLPs and their promoters in future food programs by developing resistant cultivars against various biotic (Erysiphe necator and in Powdery Mildew etc.) and abiotic (Salt, drought, heat, dehydration, etc.) stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - M. Alam
- University of Swabi, Pakistan
| | - A. Rauf
- University of Swabi, Pakistan
| | - D. S. Waggas
- Fakeeh College of Medical Sciences, Saudi Arabia
| | | |
Collapse
|
3
|
Zorin EA, Sulima AS, Zhernakov AI, Kuzmina DO, Rakova VA, Kliukova MS, Romanyuk DA, Kulaeva OA, Akhtemova GA, Shtark OY, Tikhonovich IA, Zhukov VA. Genomic and Transcriptomic Analysis of Pea ( Pisum sativum L.) Breeding Line 'Triumph' with High Symbiotic Responsivity. PLANTS (BASEL, SWITZERLAND) 2023; 13:78. [PMID: 38202386 PMCID: PMC10781049 DOI: 10.3390/plants13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Pea (Pisum sativum L.), like most legumes, forms mutualistic symbioses with nodule bacteria and arbuscular mycorrhizal (AM) fungi. The positive effect of inoculation is partially determined by the plant genotype; thus, pea varieties with high and low symbiotic responsivity have been described, but the molecular genetic basis of this trait remains unknown. Here, we compare the symbiotically responsive breeding line 'Triumph' of grain pea with its parental cultivars 'Vendevil' (a donor of high symbiotic responsivity) and 'Classic' (a donor of agriculturally valuable traits) using genome and transcriptome sequencing. We show that 'Triumph' inherited one-fourth of its genome from 'Vendevil', including the genes related to AM and nodule formation, and reveal that under combined inoculation with nodule bacteria and AM fungi, 'Triumph' and 'Vendevil', in contrast to 'Classic', demonstrate similar up-regulation of the genes related to solute transport, hormonal regulation and flavonoid biosynthesis in their roots. We also identify the gene PsGLP2, whose expression pattern distinguishing 'Triumph' and 'Vendevil' from 'Classic' correlates with difference within the promoter region sequence, making it a promising marker for the symbiotic responsivity trait. The results of this study may be helpful for future molecular breeding programs aimed at creation of symbiotically responsive cultivars of pea.
Collapse
Affiliation(s)
- Evgeny A. Zorin
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia; (E.A.Z.); (A.S.S.); (A.I.Z.); (D.O.K.); (M.S.K.); (D.A.R.); (O.A.K.); (G.A.A.); (O.Y.S.); (I.A.T.)
| | - Anton S. Sulima
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia; (E.A.Z.); (A.S.S.); (A.I.Z.); (D.O.K.); (M.S.K.); (D.A.R.); (O.A.K.); (G.A.A.); (O.Y.S.); (I.A.T.)
| | - Aleksandr I. Zhernakov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia; (E.A.Z.); (A.S.S.); (A.I.Z.); (D.O.K.); (M.S.K.); (D.A.R.); (O.A.K.); (G.A.A.); (O.Y.S.); (I.A.T.)
| | - Daria O. Kuzmina
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia; (E.A.Z.); (A.S.S.); (A.I.Z.); (D.O.K.); (M.S.K.); (D.A.R.); (O.A.K.); (G.A.A.); (O.Y.S.); (I.A.T.)
| | - Valeria A. Rakova
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius 354340, Russia;
| | - Marina S. Kliukova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia; (E.A.Z.); (A.S.S.); (A.I.Z.); (D.O.K.); (M.S.K.); (D.A.R.); (O.A.K.); (G.A.A.); (O.Y.S.); (I.A.T.)
| | - Daria A. Romanyuk
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia; (E.A.Z.); (A.S.S.); (A.I.Z.); (D.O.K.); (M.S.K.); (D.A.R.); (O.A.K.); (G.A.A.); (O.Y.S.); (I.A.T.)
| | - Olga A. Kulaeva
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia; (E.A.Z.); (A.S.S.); (A.I.Z.); (D.O.K.); (M.S.K.); (D.A.R.); (O.A.K.); (G.A.A.); (O.Y.S.); (I.A.T.)
| | - Gulnar A. Akhtemova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia; (E.A.Z.); (A.S.S.); (A.I.Z.); (D.O.K.); (M.S.K.); (D.A.R.); (O.A.K.); (G.A.A.); (O.Y.S.); (I.A.T.)
| | - Oksana Y. Shtark
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia; (E.A.Z.); (A.S.S.); (A.I.Z.); (D.O.K.); (M.S.K.); (D.A.R.); (O.A.K.); (G.A.A.); (O.Y.S.); (I.A.T.)
| | - Igor A. Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia; (E.A.Z.); (A.S.S.); (A.I.Z.); (D.O.K.); (M.S.K.); (D.A.R.); (O.A.K.); (G.A.A.); (O.Y.S.); (I.A.T.)
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius 354340, Russia;
| | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia; (E.A.Z.); (A.S.S.); (A.I.Z.); (D.O.K.); (M.S.K.); (D.A.R.); (O.A.K.); (G.A.A.); (O.Y.S.); (I.A.T.)
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius 354340, Russia;
| |
Collapse
|
4
|
Million CR, Wijeratne S, Karhoff S, Cassone BJ, McHale LK, Dorrance AE. Molecular mechanisms underpinning quantitative resistance to Phytophthora sojae in Glycine max using a systems genomics approach. FRONTIERS IN PLANT SCIENCE 2023; 14:1277585. [PMID: 38023885 PMCID: PMC10662313 DOI: 10.3389/fpls.2023.1277585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Expression of quantitative disease resistance in many host-pathogen systems is controlled by genes at multiple loci, each contributing a small effect to the overall response. We used a systems genomics approach to study the molecular underpinnings of quantitative disease resistance in the soybean-Phytophthora sojae pathosystem, incorporating expression quantitative trait loci (eQTL) mapping and gene co-expression network analysis to identify the genes putatively regulating transcriptional changes in response to inoculation. These findings were compared to previously mapped phenotypic (phQTL) to identify the molecular mechanisms contributing to the expression of this resistance. A subset of 93 recombinant inbred lines (RILs) from a Conrad × Sloan population were inoculated with P. sojae isolate 1.S.1.1 using the tray-test method; RNA was extracted, sequenced, and the normalized read counts were genetically mapped from tissue collected at the inoculation site 24 h after inoculation from both mock and inoculated samples. In total, more than 100,000 eQTLs were mapped. There was a switch from predominantly cis-eQTLs in the mock treatment to an almost entirely nonoverlapping set of predominantly trans-eQTLs in the inoculated treatment, where greater than 100-fold more eQTLs were mapped relative to mock, indicating vast transcriptional reprogramming due to P. sojae infection occurred. The eQTLs were organized into 36 hotspots, with the four largest hotspots from the inoculated treatment corresponding to more than 70% of the eQTLs, each enriched for genes within plant-pathogen interaction pathways. Genetic regulation of trans-eQTLs in response to the pathogen was predicted to occur through transcription factors and signaling molecules involved in plant-pathogen interactions, plant hormone signal transduction, and MAPK pathways. Network analysis identified three co-expression modules that were correlated with susceptibility to P. sojae and associated with three eQTL hotspots. Among the eQTLs co-localized with phQTLs, two cis-eQTLs with putative functions in the regulation of root architecture or jasmonic acid, as well as the putative master regulators of an eQTL hotspot nearby a phQTL, represent candidates potentially underpinning the molecular control of these phQTLs for resistance.
Collapse
Affiliation(s)
- Cassidy R. Million
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
| | - Saranga Wijeratne
- Molecular and Cellular Imaging Center, The Ohio State University, Wooster, OH, United States
| | - Stephanie Karhoff
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Translational Plant Sciences Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Bryan J. Cassone
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Department of Biology, Brandon University, Brandon, Manitoba, MB, Canada
| | - Leah K. McHale
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| | - Anne E. Dorrance
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
5
|
Hu F, Ye Z, Dong K, Zhang W, Fang D, Cao J. Divergent structures and functions of the Cupin proteins in plants. Int J Biol Macromol 2023; 242:124791. [PMID: 37164139 DOI: 10.1016/j.ijbiomac.2023.124791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Cupin superfamily proteins have extensive functions. Their members are not only involved in the development of plants but also responded to various stresses. Whereas, the research on the Cupin members has not attracted enough attention. In this article, we summarized the research progress on these family genes in recent years and explored their evolution, structural characteristics, and biological functions. The significance of members of the Cupin family in the development of plant cell walls, roots, leaves, flowers, fruits, and seeds and their role in stress response are highlighted. Simultaneously, the prospective application of Cupin protein in crop enhancement was introduced. Some members can enhance plant growth, development, and resistance to adversity, thereby increasing crop yield. It will be as a foundation for future effective crop research and breeding.
Collapse
Affiliation(s)
- Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Weimeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Da Fang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
6
|
Sun B, Li W, Ma Y, Yu T, Huang W, Ding J, Yu H, Jiang L, Zhang J, Lv S, Yang J, Yan S, Liu B, Liu Q. OsGLP3-7 positively regulates rice immune response by activating hydrogen peroxide, jasmonic acid, and phytoalexin metabolic pathways. MOLECULAR PLANT PATHOLOGY 2023; 24:248-261. [PMID: 36626582 PMCID: PMC9923394 DOI: 10.1111/mpp.13294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 05/26/2023]
Abstract
Although germin-like proteins (GLPs) have been demonstrated to participate in plant biotic stress responses, their specific functions in rice disease resistance are still largely unknown. Here, we report the identification and characterization of OsGLP3-7, a member of the GLP family in rice. Expression of OsGLP3-7 was significantly induced by pathogen infection, jasmonic acid (JA) treatment, and hydrogen peroxide (H2 O2 ) treatment. OsGLP3-7 was highly expressed in leaves and sublocalized in the cytoplasm. Overexpression of OsGLP3-7 increased plant resistance to leaf blast, panicle blast, and bacterial blight, whereas disease resistance in OsGLP3-7 RNAi silenced plants was remarkably compromised, suggesting this gene is a positive regulator of disease resistance in rice. Further analysis showed that OsGLP3-7 has superoxide dismutase (SOD) activity and can influence the accumulation of H2 O2 in transgenic plants. Many genes involved in JA and phytoalexin biosynthesis were strongly induced, accompanied with elevated levels of JA and phytoalexins in OsGLP3-7-overexpressing plants, while expression of these genes was significantly suppressed and the levels of JA and phytoalexins were reduced in OsGLP3-7 RNAi plants compared with control plants, both before and after pathogen inoculation. Moreover, we showed that OsGLP3-7-dependent phytoalexin accumulation may, at least partially, be attributed to the elevated JA levels observed after pathogen infection. Taken together, our results indicate that OsGLP3-7 positively regulates rice disease resistance by activating JA and phytoalexin metabolic pathways, thus providing novel insights into the disease resistance mechanisms conferred by GLPs in rice.
Collapse
Affiliation(s)
- Bingrui Sun
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering LaboratoryRice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Wenyan Li
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and UtilizationAgro‐Biological Gene Research Center, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Yamei Ma
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering LaboratoryRice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Ting Yu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and UtilizationAgro‐Biological Gene Research Center, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and UtilizationAgro‐Biological Gene Research Center, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Jierong Ding
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering LaboratoryRice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Hang Yu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering LaboratoryRice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Liqun Jiang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering LaboratoryRice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Jing Zhang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering LaboratoryRice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Shuwei Lv
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering LaboratoryRice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Jianyuan Yang
- Guangdong Key Laboratory of New Technology in Plant ProtectionPlant Protection Research Institute, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and UtilizationAgro‐Biological Gene Research Center, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Bin Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering LaboratoryRice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Qing Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering LaboratoryRice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhouChina
| |
Collapse
|
7
|
A Germin-Like Protein GLP1 of Legumes Mediates Symbiotic Nodulation by Interacting with an Outer Membrane Protein of Rhizobia. Microbiol Spectr 2023; 11:e0335022. [PMID: 36633436 PMCID: PMC9927233 DOI: 10.1128/spectrum.03350-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rhizobia can infect legumes and induce the coordinated expression of symbiosis and defense genes for the establishment of mutualistic symbiosis. Numerous studies have elucidated the molecular interactions between rhizobia and host plants, which are associated with Nod factor, exopolysaccharide, and T3SS effector proteins. However, there have been relatively few reports about how the host plant recognizes the outer membrane proteins (OMPs) of rhizobia to mediate symbiotic nodulation. In our previous work, a gene (Mhopa22) encoding an OMP was identified in Mesorhizobium huakuii 7653R, whose homologous genes are widely distributed in Rhizobiales. In this study, a germin-like protein GLP1 interacting with Mhopa22 was identified in Astragalus sinicus. RNA interference of AsGLP1 resulted in a decrease in nodule number, whereas overexpression of AsGLP1 increased the number of nodules in the hairy roots of A. sinicus. Consistent symbiotic phenotypes were identified in Medicago truncatula with MtGLPx (refer to medtr7g111240.1, the isogeny of AsGLP1) overexpression or Tnt1 mutant (glpx-1) in symbiosis with Sinorhizobium meliloti 1021. The glpx-1 mutant displayed hyperinfection and the formation of more infection threads but a decrease in root nodules. RNA sequencing analysis showed that many differentially expressed genes were involved in hormone signaling and symbiosis. Taken together, AsGLP1 and its homology play an essential role in mediating the early symbiotic process through interacting with the OMPs of rhizobia. IMPORTANCE This study is the first report to characterize a legume host plant protein to sense and interact with an outer membrane protein (OMP) of rhizobia. It can be speculated that GLP1 plays an essential role to mediate early symbiotic process through interacting with OMPs of rhizobia. The results provide deeper understanding and novel insights into the molecular interactive mechanism of a legume symbiosis signaling pathway in recognition with rhizobial OMPs. Our findings may also provide a new perspective to improve the symbiotic compatibility and nodulation of legume.
Collapse
|
8
|
Yang Q, Sharif Y, Zhuang Y, Chen H, Zhang C, Fu H, Wang S, Cai T, Chen K, Raza A, Wang L, Zhuang W. Genome-wide identification of germin-like proteins in peanut ( Arachis hypogea L.) and expression analysis under different abiotic stresses. FRONTIERS IN PLANT SCIENCE 2023; 13:1044144. [PMID: 36756235 PMCID: PMC9901545 DOI: 10.3389/fpls.2022.1044144] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Peanut is an important food and feed crop, providing oil and protein nutrients. Germins and germin-like proteins (GLPs) are ubiquitously present in plants playing numerous roles in defense, growth and development, and different signaling pathways. However, the GLP members have not been comprehensively studied in peanut at the genome-wide scale. We carried out a genome-wide identification of the GLP genes in peanut genome. GLP members were identified comprehensively, and gene structure, genomic positions, motifs/domains distribution patterns, and phylogenetic history were studied in detail. Promoter Cis-elements, gene duplication, collinearity, miRNAs, protein-protein interactions, and expression were determined. A total of 84 GLPs (AhGLPs ) were found in the genome of cultivated peanut. These GLP genes were clustered into six groups. Segmental duplication events played a key role in the evolution of AhGLPs, and purifying selection pressure was underlying the duplication process. Most AhGLPs possessed a well-maintained gene structure and motif organization within the same group. The promoter regions of AhGLPs contained several key cis-elements responsive to 'phytohormones', 'growth and development', defense, and 'light induction'. Seven microRNAs (miRNAs) from six families were found targeting 25 AhGLPs. Gene Ontology (GO) enrichment analysis showed that AhGLPs are highly enriched in nutrient reservoir activity, aleurone grain, external encapsulating structure, multicellular organismal reproductive process, and response to acid chemicals, indicating their important biological roles. AhGLP14, AhGLP38, AhGLP54, and AhGLP76 were expressed in most tissues, while AhGLP26, AhGLP29, and AhGLP62 showed abundant expression in the pericarp. AhGLP7, AhGLP20, and AhGLP21, etc., showed specifically high expression in embryo, while AhGLP12, AhGLP18, AhGLP40, AhGLP78, and AhGLP82 were highly expressed under different hormones, water, and temperature stress. The qRT-PCR results were in accordance with the transcriptome expression data. In short, these findings provided a foundation for future functional investigations on the AhGLPs for peanut breeding programs.
Collapse
Affiliation(s)
- Qiang Yang
- Center of Legume Plant Genetics and System Biology, College of Agronomy, College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Yasir Sharif
- Center of Legume Plant Genetics and System Biology, College of Agronomy, College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Yuhui Zhuang
- Center of Legume Plant Genetics and System Biology, College of Agronomy, College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Hua Chen
- Center of Legume Plant Genetics and System Biology, College of Agronomy, College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Chong Zhang
- Center of Legume Plant Genetics and System Biology, College of Agronomy, College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Huiwen Fu
- College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Shanshan Wang
- College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Tiecheng Cai
- Center of Legume Plant Genetics and System Biology, College of Agronomy, College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Kun Chen
- College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Ali Raza
- Center of Legume Plant Genetics and System Biology, College of Agronomy, College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Lihui Wang
- College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Weijian Zhuang
- Center of Legume Plant Genetics and System Biology, College of Agronomy, College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
- College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| |
Collapse
|
9
|
ShangGuan X, Qi Y, Wang A, Ren Y, Wang Y, Xiao T, Shen Z, Wang Q, Xia Y. OsGLP participates in the regulation of lignin synthesis and deposition in rice against copper and cadmium toxicity. FRONTIERS IN PLANT SCIENCE 2023; 13:1078113. [PMID: 36714698 PMCID: PMC9878301 DOI: 10.3389/fpls.2022.1078113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/19/2022] [Indexed: 05/26/2023]
Abstract
Copper (Cu) and cadmium (Cd) are common heavy metal pollutants. When Cd and excessive Cu accumulate in plants, plant growth is reduced. Our previous study showed that Germin-like proteins (GLPs), which exist in tandem on chromosomes, are a class of soluble glycoproteins that respond to Cu stress. In this study, hydroponic cultures were carried out to investigate the effect of GLP on Cd and Cu tolerance and accumulation in rice. The results showed that knockout of a single OsGLP8-2 gene or ten OsGLP genes (OsGLP8-2 to OsGLP8-11) resulted in a similar sensitivity to Cd and Cu toxicity. When subjected to Cu and Cd stress, the glp8-2 and glp8-(2-11) mutants displayed a more sensitive phenotype based on the plant height, root length, and dry biomass of the rice seedlings. Correspondingly, Cu and Cd concentrations in the glp8-2 and glp8-(2-11) mutants were significantly higher than those in the wild-type (WT) and OsGLP8-2-overexpressing line. However, Cu and Cd accumulation in the cell wall was the opposite. Furthermore, we determined lignin accumulation. The overexpressing-OsGLP8-2 line had a higher lignin accumulation in the shoot and root cell walls than those of the WT, glp8-2, and glp8-(2-11). The expression of lignin synthesis genes in the OsGLP8-2-overexpressing line was significantly higher than that in the WT, glp8-2, and glp8-(2-11). The SOD activity of OsGLP8-2, Diaminobe-nzidine (DAB), propidium iodide (PI) staining, and Malondialdehyde (MDA) content determination suggested that OsGLP8-2 is involved in heavy metal-induced antioxidant defense in rice. Our findings clearly suggest that OsGLPs participate in responses to heavy metal stress by lignin deposition and antioxidant defense capacity in rice, and OsGLP8-2 may play a major role in the tandem repeat gene clusters of chromosome 8 under heavy metal stress conditions.
Collapse
Affiliation(s)
- Xiangchao ShangGuan
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, China
| | - Ying Qi
- College of Agronomy, Yunnan Research Center of Urban Agricultural Engineering and Technology, Kunming University, Kunming, China
| | - Aiguo Wang
- Key Laboratory of Ecological Environment and Tobacco Quality in Tobacco Industry, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Yingnan Ren
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, China
| | - Yu Wang
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, China
| | - Tengwei Xiao
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, China
| | - Zhenguo Shen
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, China
| | - Qi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Xia
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Genome-Wide Identification, Characterization, and Expression Analysis Related to Low-Temperature Stress of the CmGLP Gene Family in Cucumis melo L. Int J Mol Sci 2022; 23:ijms23158190. [PMID: 35897766 PMCID: PMC9330424 DOI: 10.3390/ijms23158190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 01/25/2023] Open
Abstract
Germin-like protein (GLP) participates in plant growth and development and plays an important role in plant stress. In the present study, 22 CmGLPs belonging to five classes were identified in the melon genome. Each member of the CmGLPs family contains a typical Cupin_1 domain. We conducted a genome-wide analysis of the melon GLP gene family characterization. CmGLPs were randomly distributed in the melon chromosomes, with the largest number on chromosome 8, having eight family members. Gene duplication events drive the evolution and expansion of the melon GLP gene family. Based on the phylogenetic tree analysis of GLP proteins in melon, rice, Arabidopsis, and cucumber, it was found that the GLP gene families of different species have diverged in evolution. Based on qRT-PCR results, all members of the CmGLP gene family could be expressed in different tissues of melon. Most CmGLP genes were up-regulated after low-temperature stress. The relative expression of CmGLP2-5 increased by 157.13 times at 48 h after low-temperature treatment. This finding suggests that the CmGLP2-5 might play an important role in low-temperature stress in melon. Furthermore, quantitative dual LUC assays indicated that CmMYB23 and CmWRKY33 can bind the promoter fragment of the CmGLP2-5. These results were helpful in understanding the functional succession and evolution of the melon GLP gene family and further revealed the response of CmGLPs to low-temperature stress in melon.
Collapse
|
11
|
San Clemente H, Kolkas H, Canut H, Jamet E. Plant Cell Wall Proteomes: The Core of Conserved Protein Families and the Case of Non-Canonical Proteins. Int J Mol Sci 2022; 23:4273. [PMID: 35457091 PMCID: PMC9029284 DOI: 10.3390/ijms23084273] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 12/25/2022] Open
Abstract
Plant cell wall proteins (CWPs) play critical roles during plant development and in response to stresses. Proteomics has revealed their great diversity. With nearly 1000 identified CWPs, the Arabidopsis thaliana cell wall proteome is the best described to date and it covers the main plant organs and cell suspension cultures. Other monocot and dicot plants have been studied as well as bryophytes, such as Physcomitrella patens and Marchantia polymorpha. Although these proteomes were obtained using various flowcharts, they can be searched for the presence of members of a given protein family. Thereby, a core cell wall proteome which does not pretend to be exhaustive, yet could be defined. It comprises: (i) glycoside hydrolases and pectin methyl esterases, (ii) class III peroxidases, (iii) Asp, Ser and Cys proteases, (iv) non-specific lipid transfer proteins, (v) fasciclin arabinogalactan proteins, (vi) purple acid phosphatases and (vii) thaumatins. All the conserved CWP families could represent a set of house-keeping CWPs critical for either the maintenance of the basic cell wall functions, allowing immediate response to environmental stresses or both. Besides, the presence of non-canonical proteins devoid of a predicted signal peptide in cell wall proteomes is discussed in relation to the possible existence of alternative secretion pathways.
Collapse
Affiliation(s)
| | | | | | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France; (H.S.C.); (H.K.); (H.C.)
| |
Collapse
|
12
|
Germin like protein genes exhibit modular expression during salt and drought stress in elite rice cultivars. Mol Biol Rep 2021; 49:293-302. [PMID: 34725746 DOI: 10.1007/s11033-021-06871-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/21/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Germin-like proteins (GLPs) are ubiquitous plant proteins, which play significant role in plant responses against various abiotic stresses. However, the potential functions of GLPs in rice (Oryza sativa) against salt and drought stress are still unclear. METHODS AND RESULTS In this study, transcriptional variation of eight OsGLP genes (OsGLP3-6, OsGLP4-1, OsGLP8-4, OsGLP8-7, OsGLP8-10, OsGLP8-11 and OsGLP8-12) was analyzed in leaves and roots of two economically important Indica rice cultivars, KS282 and Super Basmati, under salt and drought stress at early seedling stage. The relative expression analysis from qRT-PCR indicated the highest increase in expression of OsGLP3-6 in leaves and roots of both rice varieties with a significantly higher expression in KS282. Moreover, relative change in expression of OsGLP8-7, OsGLP8-10 and OsGLP8-11 under salt stress and OsGLP8-7 under drought stress was also commonly higher in leaves and roots of KS282 as compared to Super Basmati. Whereas, OsGLP3-7 and OsGLP8-12 after salt stress and OsGLP8-4 and OsGLP8-12 after drought stress were observed with higher relative expression in roots of Super Basmati than KS282. Importantly, the OsGLP3-6 and OsGLP4-1 from chromosome 3 and 4 respectively showed higher expression in leaves whereas most of the OsGLP genes from chromosome 8 exhibited higher expression in roots. CONCLUSION Overall, as a result of this comparative analysis, OsGLP genes showed both general and specific expression profiles depending upon a specific rice variety, stress condition as well as tissue type. These results will increase our understanding of role of OsGLP genes in rice crop and provide useful information for the further in-depth research on their regulatory mechanisms in response to these stress conditions.
Collapse
|
13
|
Characterization of Germin-like Proteins (GLPs) and Their Expression in Response to Abiotic and Biotic Stresses in Cucumber. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7100412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Germins and germin-like proteins (GLPs) are glycoproteins closely associated with plant development and stress response in the plant kingdom. Here, we carried out genome-wide identification and expression analysis of the GLP gene family in cucumber to study their possible functions. A total of 38 GLP genes were identified in cucumber, which could be mapped to six out of the seven cucumber chromosomes. A phylogenetic analysis of the GLP members from cucumber, Arabidopsis and rice showed that these GLPs could be divided into six groups, and cucumber GLPs in the same group had highly similar conserved motif distribution and gene structure. Gene duplication analysis revealed that six cucumber GLP genes were located in the segmental duplication regions of cucumber chromosomes, while 14 genes were associated with tandem duplications. Tissue expression profiles of cucumber GLP genes showed that many genes were preferentially expressed in specific tissues. In addition, some cucumber GLP genes were differentially expressed under salt, drought and ABA treatments, as well as under DM inoculation. Our results provide important information for the functional identification of GLP genes in the growth, development and stress response of cucumber.
Collapse
|
14
|
Dong J, Zhou L, Feng A, Zhang S, Fu H, Chen L, Zhao J, Yang T, Yang W, Ma Y, Wang J, Zhu X, Liu Q, Liu B. The OsOXO2, OsOXO3 and OsOXO4 Positively Regulate Panicle Blast Resistance in Rice. RICE (NEW YORK, N.Y.) 2021; 14:51. [PMID: 34091752 PMCID: PMC8179873 DOI: 10.1186/s12284-021-00494-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/17/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Although panicle blast is more destructive to yield loss than leaf blast in rice, the cloned genes that function in panicle blast resistance are still very limited and the molecular mechanisms underlying panicle blast resistance remain largely unknown. RESULTS In the present study, we have confirmed that the three Oxalate oxidase (OXO) genes, OsOXO2, OsOXO3 and OsOXO4 from a blast-resistant cultivar BC10 function in panicle blast resistance in rice. The expression of OsOXO2, OsOXO3 and OsOXO4 were induced by panicle blast inoculation. Subcellular localization analysis revealed that the three OXO proteins are all localized in the nucleus and cytoplasm. Simultaneous silencing of OsOXO2, OsOXO3 and OsOXO4 decreased rice resistance to panicle blast, whereas the OsOXO2, OsOXO3 and OsOXO4 overexpression rice plants individually showed enhanced panicle blast resistance. More H2O2 and higher expression levels of PR genes were observed in the overexpressing plants than in the control plants, while the silencing plants exhibited less H2O2 and lower expression levels of PR genes compared to the control plants. Moreover, phytohormone treatment and the phytohormone signaling related gene expression analysis showed that panicle blast resistance mediated by the three OXO genes was associated with the activation of JA and ABA signaling pathways but suppression of SA signaling pathway. CONCLUSION OsOXO2, OsOXO3 and OsOXO4 positively regulate panicle blast resistance in rice. The OXO genes could modulate the accumulation of H2O2 and expression levels of PR gene in plants. Moreover, the OXO genes mediated panicle blast resistance could be regulated by ABA, SA and JA, and may be associated with the activation of JA and ABA signaling pathways but suppression of the SA signaling pathway.
Collapse
Affiliation(s)
- Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Lian Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Aiqing Feng
- Guangdong Key Laboratory of New Technology in Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Hua Fu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Luo Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Tifeng Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Wu Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Xiaoyuan Zhu
- Guangdong Key Laboratory of New Technology in Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Qing Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Bin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| |
Collapse
|
15
|
Ding LN, Li T, Guo XJ, Li M, Liu XY, Cao J, Tan XL. Sclerotinia Stem Rot Resistance in Rapeseed: Recent Progress and Future Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2965-2978. [PMID: 33667087 DOI: 10.1021/acs.jafc.0c07351] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Sclerotinia stem rot (SSR) of rapeseed (Brassica napus), caused by the soil-borne fungus Sclerotinia sclerotiorum, is one of the main diseases seriously affecting the yield and oil quality of infected rapeseed crops. The complexity of the inheritance of resistance and of the interaction mechanisms between rapeseed and S. sclerotiorum limits resistance gene identification and molecular breeding. In this review, the latest progress of research into resistance to SSR in B. napus is summarized from the following three directions: the pathogenesis mechanisms of S. sclerotiorum, the resistance mechanisms of B. napus toward S. sclerotiorum, and rapeseed breeding for resistance to SSR. This review aims to provide a theoretical basis and useful reference for analyzing the mechanism of the interaction between B. napus and S. sclerotiorum, searching for gene loci associated with the resistance response, and for achieving disease-resistance genetic manipulation and molecular design breeding in rapeseed.
Collapse
Affiliation(s)
- Li-Na Ding
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Teng Li
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Juan Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ming Li
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Yan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Tan
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
16
|
Wheat germin-like protein: Studies on chitin/chitosan matrix for tissue engineering applications. J Biosci Bioeng 2021; 131:549-556. [PMID: 33558135 DOI: 10.1016/j.jbiosc.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/17/2020] [Accepted: 01/12/2021] [Indexed: 11/20/2022]
Abstract
Advances in tissue engineering require the development of new biomaterials with adequate properties of cell attachment and growth. The properties of biomaterials can be improved by incorporation of bioactive molecules to enhance in vitro and/or in vivo functions. In this work, we study the role of a wheat germin-like protease inhibitor (GLPI), free or immobilized in biocompatible matrices to improve cell-attachment ability on different mammalian cell lines. The phylogenetic relationships and functional diversity of the GLPI were analyzed among diverse genera to get insights into sequence motif conservations. The cytocompatibility effect of free GLPI on C2C12 premyoblastic cells and B16 cells as tumoral model has been tested. GLPI promoted proliferation and metabolic activity of both cell types on in vitro models, not showing cytotoxic effects. Furthermore, GLPI was immobilized in chitin microparticles and in chitosan films; we demonstrated an accelerated cell adhesion process in both biomaterials.
Collapse
|
17
|
Zaynab M, Peng J, Sharif Y, Fatima M, Albaqami M, Al-Yahyai R, Khan KA, Alotaibi SS, Alaraidh IA, Shaikhaldein HO, Li S. Genome-Wide Identification and Expression Profiling of Germin-Like Proteins Reveal Their Role in Regulating Abiotic Stress Response in Potato. FRONTIERS IN PLANT SCIENCE 2021; 12:831140. [PMID: 35251067 PMCID: PMC8891383 DOI: 10.3389/fpls.2021.831140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/31/2021] [Indexed: 05/05/2023]
Abstract
Germin and germin-like proteins (GLPs) perform a significant role in plants against biotic and abiotic stress. To understand the role of GLPs in potato, a comprehensive genome-wide analysis was performed in the potato genome. This study identified a total of 70 StGLPs genes in the potato genome, distributed among 11 chromosomes. Phylogenetic analysis exhibited that StGLPs were categorized into six groups with high bootstrap values. StGLPs gene structure and motifs analysis showed a relatively well-maintained intron-exon and motif formation within the cognate group. Additionally, several cis-elements in the promoter regions of GLPs were hormones, and stress-responsive and different families of miRNAs target StGLPs. Gene duplication under selection pressure also exhibited positive and purifying selections in StGLPs. In our results, the StGLP5 gene showed the highest expression in response to salt stress among all expressed StGLPs. Totally 19 StGLPs genes were expressed in response to heat stress. Moreover, three genes, StGLP30, StGLP17, and StGLP14, exhibited a relatively higher expression level in the potato after heat treatment. In total, 22 genes expressed in response to abscisic acid (ABA) treatment indicated that ABA performed an essential role in the plant defense or tolerance mechanism to environmental stress. RNA-Seq data validated by RT-qPCR also confirm that the StGLP5 gene showed maximum expression among selected genes under salt stress. Concisely, our results provide a platform for further functional exploration of the StGLPs against salt and heat stress conditions.
Collapse
Affiliation(s)
- Madiha Zaynab
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiaofeng Peng
- Instrument Analysis Center, Shenzhen University, Shenzhen, China
| | - Yasir Sharif
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mahpara Fatima
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rashid Al-Yahyai
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ibrahim A. Alaraidh
- Botany and Microbiology Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Hassan O. Shaikhaldein
- Botany and Microbiology Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- *Correspondence: Shuangfei Li,
| |
Collapse
|
18
|
Giarola V, Chen P, Dulitz SJ, König M, Manduzio S, Bartels D. The dehydration- and ABA-inducible germin-like protein CpGLP1 from Craterostigma plantagineum has SOD activity and may contribute to cell wall integrity during desiccation. PLANTA 2020; 252:84. [PMID: 33044571 PMCID: PMC7550295 DOI: 10.1007/s00425-020-03485-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/01/2020] [Indexed: 05/09/2023]
Abstract
MAIN CONCLUSION CpGLP1 belongs to the large group of germin-like proteins and comprises a cell wall-localized protein which has superoxide dismutase activity and may contribute towards ROS metabolism and cell wall folding during desiccation. The plant cell wall is a dynamic matrix and its plasticity is essential for cell growth and processing of environmental signals to cope with stresses. A few so-called resurrection plants like Craterostigma plantagineum survive desiccation by implementing protection mechanisms. In C. plantagineum, the cell wall shrinks and folds upon desiccation to avoid mechanical and oxidative damage which contributes to cell integrity. Despite the high toxic potential, ROS are important molecules for cell wall remodeling processes as they participate in enzymatic reactions and act as signaling molecules. Here we analyzed the C. plantagineum germin-like protein 1 (CpGLP1) to understand its contribution to cell wall folding and desiccation tolerance. The analysis of the CpGLP1 sequence showed that this protein does not fit into the current GLP classification and forms a new group within the Linderniaceae. CpGLP1 transcripts accumulate in leaves in response to dehydration and ABA, and mannitol treatments transiently induce CpGLP1 transcript accumulation supporting the participation of CpGLP1 in desiccation-related processes. CpGLP1 protein from cell wall protein extracts followed transcript accumulation and protein preparations from bacteria overexpressing CpGLP1 showed SOD activity. In agreement with cell wall localization, CpGLP1 interacts with pectins which have not been reported for GLP proteins. Our data support a role for CpGLP1 in the ROS metabolism related to the control of cell wall plasticity during desiccation in C. plantagineum.
Collapse
Affiliation(s)
- Valentino Giarola
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
- Present Address: Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Peilei Chen
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
- Present Address: College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Sarah Jane Dulitz
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
- Present Address: IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Maurice König
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
- Present Address: Institute of Botany, University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
| | - Stefano Manduzio
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
- Present Address: Department of Applied Biology, Chonnam National University, Buk-gu, Gwangju, South Korea
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| |
Collapse
|
19
|
Zhang X, Campbell R, Ducreux LJM, Morris J, Hedley PE, Mellado‐Ortega E, Roberts AG, Stephens J, Bryan GJ, Torrance L, Chapman SN, Prat S, Taylor MA. TERMINAL FLOWER-1/CENTRORADIALIS inhibits tuberisation via protein interaction with the tuberigen activation complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2263-2278. [PMID: 32593210 PMCID: PMC7540344 DOI: 10.1111/tpj.14898] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/18/2020] [Accepted: 06/12/2020] [Indexed: 05/04/2023]
Abstract
Potato tuber formation is a secondary developmental programme by which cells in the subapical stolon region divide and radially expand to further differentiate into starch-accumulating parenchyma. Although some details of the molecular pathway that signals tuberisation are known, important gaps in our knowledge persist. Here, the role of a member of the TERMINAL FLOWER 1/CENTRORADIALIS gene family (termed StCEN) in the negative control of tuberisation is demonstrated for what is thought to be the first time. It is shown that reduced expression of StCEN accelerates tuber formation whereas transgenic lines overexpressing this gene display delayed tuberisation and reduced tuber yield. Protein-protein interaction studies (yeast two-hybrid and bimolecular fluorescence complementation) demonstrate that StCEN binds components of the recently described tuberigen activation complex. Using transient transactivation assays, we show that the StSP6A tuberisation signal is an activation target of the tuberigen activation complex, and that co-expression of StCEN blocks activation of the StSP6A gene by StFD-Like-1. Transcriptomic analysis of transgenic lines misexpressing StCEN identifies early transcriptional events in tuber formation. These results demonstrate that StCEN suppresses tuberisation by directly antagonising the function of StSP6A in stolons, identifying StCEN as a breeding marker to improve tuber initiation and yield through the selection of genotypes with reduced StCEN expression.
Collapse
Affiliation(s)
- Xing Zhang
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Raymond Campbell
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | | | - Jennifer Morris
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Pete E. Hedley
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Elena Mellado‐Ortega
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Alison G. Roberts
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Jennifer Stephens
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Glenn J. Bryan
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Lesley Torrance
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
- School of BiologyBiomolecular Sciences BuildingUniversity of St AndrewsNorth HaughSt AndrewsFifeY16 9STUK
| | - Sean N. Chapman
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Salomé Prat
- Centro Nacional de BiotecnologíaC/Darwin no. 3, Campus de CantoblancoMadrid28049Spain
| | - Mark A. Taylor
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| |
Collapse
|
20
|
Filippi CV, Zubrzycki JE, Di Rienzo JA, Quiroz FJ, Puebla AF, Alvarez D, Maringolo CA, Escande AR, Hopp HE, Heinz RA, Paniego NB, Lia VV. Unveiling the genetic basis of Sclerotinia head rot resistance in sunflower. BMC PLANT BIOLOGY 2020; 20:322. [PMID: 32641108 PMCID: PMC7346337 DOI: 10.1186/s12870-020-02529-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/26/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Sclerotinia sclerotiorum is a necrotrophic fungus that causes Sclerotinia head rot (SHR) in sunflower, with epidemics leading to severe yield losses. In this work, we present an association mapping (AM) approach to investigate the genetic basis of natural resistance to SHR in cultivated sunflower, the fourth most widely grown oilseed crop in the world. RESULTS Our association mapping population (AMP), which comprises 135 inbred breeding lines (ILs), was genotyped using 27 candidate genes, a panel of 9 Simple Sequence Repeat (SSR) markers previously associated with SHR resistance via bi-parental mapping, and a set of 384 SNPs located in genes with molecular functions related to stress responses. Moreover, given the complexity of the trait, we evaluated four disease descriptors (i.e, disease incidence, disease severity, area under the disease progress curve for disease incidence, and incubation period). As a result, this work constitutes the most exhaustive AM study of disease resistance in sunflower performed to date. Mixed linear models accounting for population structure and kinship relatedness were used for the statistical analysis of phenotype-genotype associations, allowing the identification of 13 markers associated with disease reduction. The number of favourable alleles was negatively correlated to disease incidence, disease severity and area under the disease progress curve for disease incidence, whereas it was positevily correlated to the incubation period. CONCLUSIONS Four of the markers identified here as associated with SHR resistance (HA1848, HaCOI_1, G33 and G34) validate previous research, while other four novel markers (SNP117, SNP136, SNP44, SNP128) were consistently associated with SHR resistance, emerging as promising candidates for marker-assisted breeding. From the germplasm point of view, the five ILs carrying the largest combination of resistance alleles provide a valuable resource for sunflower breeding programs worldwide.
Collapse
Affiliation(s)
- C V Filippi
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA); Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET Nicolas Repetto y Los Reseros s/n (1686), Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - J E Zubrzycki
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA); Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET Nicolas Repetto y Los Reseros s/n (1686), Hurlingham, Buenos Aires, Argentina
- Present address: Biocódices, San Martín, Buenos Aires, Argentina
| | - J A Di Rienzo
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Ing Agr. Felix Aldo Marrone 746 (5000), Córdoba, Argentina
| | - F J Quiroz
- Estación Experimental Agropecuaria INTA Balcarce, Ruta 226 Km 73.5 (7620), Balcarce, Buenos Aires, Argentina
| | - A F Puebla
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA); Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET Nicolas Repetto y Los Reseros s/n (1686), Hurlingham, Buenos Aires, Argentina
| | - D Alvarez
- Estación Experimental Agropecuaria INTA Manfredi, Ruta 9 Km 636 (5988), Manfredi, Córdoba, Argentina
| | - C A Maringolo
- Estación Experimental Agropecuaria INTA Balcarce, Ruta 226 Km 73.5 (7620), Balcarce, Buenos Aires, Argentina
| | - A R Escande
- Estación Experimental Agropecuaria INTA Balcarce, Ruta 226 Km 73.5 (7620), Balcarce, Buenos Aires, Argentina
| | - H E Hopp
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA); Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET Nicolas Repetto y Los Reseros s/n (1686), Hurlingham, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Intendente Güiraldes 2160, (1428), Ciudad Autónoma de Buenos Aires, Argentina
| | - R A Heinz
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA); Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET Nicolas Repetto y Los Reseros s/n (1686), Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Intendente Güiraldes 2160, (1428), Ciudad Autónoma de Buenos Aires, Argentina
| | - N B Paniego
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA); Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET Nicolas Repetto y Los Reseros s/n (1686), Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - V V Lia
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA); Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET Nicolas Repetto y Los Reseros s/n (1686), Hurlingham, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET, Ciudad Autónoma de Buenos Aires, Argentina.
- Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Intendente Güiraldes 2160, (1428), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
21
|
Structural and enzymatic characterization of Peruvianin‑I, the first germin-like protein with proteolytic activity. Int J Biol Macromol 2019; 126:1167-1176. [DOI: 10.1016/j.ijbiomac.2019.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 11/21/2022]
|
22
|
Carlson KD, Bhogale S, Anderson D, Tomanek L, Madlung A. Phytochrome A Regulates Carbon Flux in Dark Grown Tomato Seedlings. FRONTIERS IN PLANT SCIENCE 2019; 10:152. [PMID: 30873186 PMCID: PMC6400891 DOI: 10.3389/fpls.2019.00152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Phytochromes comprise a small family of photoreceptors with which plants gather environmental information that they use to make developmental decisions, from germination to photomorphogenesis to fruit development. Most phytochromes are activated by red light and de-activated by far-red light, but phytochrome A (phyA) is responsive to both and plays an important role during the well-studied transition of seedlings from dark to light growth. The role of phytochromes during skotomorphogenesis (dark development) prior to reaching light, however, has received considerably less attention although previous studies have suggested that phytochrome must play a role even in the dark. We profiled proteomic and transcriptomic seedling responses in tomato during the transition from dark to light growth and found that phyA participates in the regulation of carbon flux through major primary metabolic pathways, such as glycolysis, beta-oxidation, and the tricarboxylic acid (TCA) cycle. Additionally, phyA is involved in the attenuation of root growth soon after reaching light, possibly via control of sucrose allocation throughout the seedling by fine-tuning the expression levels of several sucrose transporters of the SWEET gene family even before the seedling reaches the light. Presumably, by participating in the control of major metabolic pathways, phyA sets the stage for photomorphogenesis for the dark grown seedling in anticipation of light.
Collapse
Affiliation(s)
- Keisha D. Carlson
- Department of Biology, University of Puget Sound, Tacoma, WA, United States
| | - Sneha Bhogale
- Department of Biology, University of Puget Sound, Tacoma, WA, United States
| | - Drew Anderson
- Department of Biology, University of Puget Sound, Tacoma, WA, United States
| | - Lars Tomanek
- Department of Biology, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Andreas Madlung
- Department of Biology, University of Puget Sound, Tacoma, WA, United States
| |
Collapse
|
23
|
In-silico study of biotic and abiotic stress-related transcription factor binding sites in the promoter regions of rice germin-like protein genes. PLoS One 2019; 14:e0211887. [PMID: 30763346 PMCID: PMC6375593 DOI: 10.1371/journal.pone.0211887] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/23/2019] [Indexed: 12/16/2022] Open
Abstract
Germin-like proteins (GLPs) are involved in biotic and abiotic stress tolerance in different plant species. Rice (Oryza sativa L.) genome contains about 40 GLP family member proteins in nine chromosomes. Although some of the rice GLP (OsGLP) promoters have been studied through in silico analysis as well as experimentally, studies regarding the distribution pattern of the biotic and abiotic stress associated transcription factor binding sites (TFbs) in the promoter regions of OsGLP genes have not been attempted thoroughly. Several transcription factors (TFs) namely NAC, WRKY, bHLH, bZIP, MYB and AP2/ERF act as major TFs concerned with biotic as well as abiotic stress responses across various plant species. In the present study the in silico analysis was carried out using the 1.5 kilobases (kb) promoter regions from 40 different OsGLP genes for the presence of NAC, WRKY, bHLH, bZIP, MYB and AP2/ERF TFbs in it. Among various OsGLP gene promoters, OsGLP8-11 was found to contain highest number of tested TFbs in the promoter region whereas the promoter region of OsGLP5-1 depicted least amount of TFbs. Phylogenetic study of promoter regions of different OsGLP genes revealed four different clades. Our analyses could reveal the evolutionary significance of different OsGLP gene promoters. It can be presumed from the present findings as well as previous reports that OsGLP gene duplications and subsequent variations in the TFbs in OsGLP gene promoter regions might be the consequences of neofunctionalization of OsGLP genes and their promoters for biotic and abiotic stress tolerance in rice.
Collapse
|
24
|
Roomi S, Masi A, Conselvan GB, Trevisan S, Quaggiotti S, Pivato M, Arrigoni G, Yasmin T, Carletti P. Protein Profiling of Arabidopsis Roots Treated With Humic Substances: Insights Into the Metabolic and Interactome Networks. FRONTIERS IN PLANT SCIENCE 2018; 9:1812. [PMID: 30619394 PMCID: PMC6299182 DOI: 10.3389/fpls.2018.01812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/21/2018] [Indexed: 05/06/2023]
Abstract
Background and Aim: Humic substances (HSs) influence the chemical and physical properties of the soil, and are also known to affect plant physiology and nutrient uptake. This study aimed to elucidate plant metabolic pathways and physiological processes influenced by HS activity. Methods: Arabidopsis roots were treated with HS for 8 h. Quantitative mass spectrometry-based proteomics analysis of root proteins was performed using the iTRAQ (Isobaric Tag for Relative and Absolute Quantification) technique. Out of 902 protein families identified and quantified for HS treated vs. untreated roots, 92 proteins had different relative content. Bioinformatic tools such as STRING, KEGG, IIS and Cytoscape were used to interpret the biological function, pathway analysis and visualization of network amongst the identified proteins. Results: From this analysis it was possible to evaluate that all of the identified proteins were functionally classified into several categories, mainly redox homeostasis, response to inorganic substances, energy metabolism, protein synthesis, cell trafficking, and division. Conclusion: In the present study an overview of the metabolic pathways most modified by HS biological activity is provided. Activation of enzymes of the glycolytic pathway and up regulation of ribosomal protein indicated a stimulation in energy metabolism and protein synthesis. Regulation of the enzymes involved in redox homeostasis suggest a pivotal role of reactive oxygen species in the signaling and modulation of HS-induced responses.
Collapse
Affiliation(s)
- Sohaib Roomi
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | | | - Sara Trevisan
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | - Silvia Quaggiotti
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | - Micaela Pivato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | - Giorgio Arrigoni
- Proteomics Center, University of Padua and Azienda Ospedaliera di Padova, Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Tayyaba Yasmin
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Paolo Carletti
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| |
Collapse
|
25
|
Shan J, Cai Z, Zhang Y, Xu H, Rao J, Fan Y, Yang J. The underlying pathway involved in inter-subspecific hybrid male sterility in rice. Genomics 2018; 111:1447-1455. [PMID: 30336276 DOI: 10.1016/j.ygeno.2018.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 09/14/2018] [Accepted: 09/28/2018] [Indexed: 11/24/2022]
Abstract
f5 locus in rice (Oryza sativa L.) confers significant effects on hybrid male sterility and segregation distortion. BC14F2 plants with f5-i/i, f5-j/j and f5-i/j genotypes were used to dissect the underlying pathway of f5-caused hybrid male sterility via comparative transcriptome analysis. A total of 350, 421, and 480 differentially expressed genes (DEGs) were identified from f5-i/j vs f5-j/j, f5-j/j vs f5-i/i, and f5-i/j vs f5-i/i, respectively. 145 DEGs were identified simultaneously in f5-i/j vs f5-j/j and f5-i/j vs f5-i/i. Enrichment analysis indicated that stress and cell control related processes were enriched. The expression of ascorbate peroxidase (APX) and most of the heat shock proteins (HSPs) were decreased, which might result in higher sensitivity to various stresses in pollen cells. A model was proposed to summarize the underlying process for f5-caused hybrid male sterility. These results would provide significant clues to further dissecting the molecular mechanism of f5-caused inter-subspecific reproductive isolation.
Collapse
Affiliation(s)
- Jianwei Shan
- College of Life Science and Technology; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China
| | - Zhongquan Cai
- College of Life Science and Technology; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China; College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Yu Zhang
- College of Life Science and Technology; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China
| | - Hannan Xu
- College of Life Science and Technology; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China
| | - Jianglei Rao
- College of Life Science and Technology; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China
| | - Yourong Fan
- College of Life Science and Technology; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China.
| | - Jiangyi Yang
- College of Life Science and Technology; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
26
|
Proteomic approach to understand the molecular physiology of symbiotic interaction between Piriformospora indica and Brassica napus. Sci Rep 2018; 8:5773. [PMID: 29636503 PMCID: PMC5893561 DOI: 10.1038/s41598-018-23994-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/15/2018] [Indexed: 01/18/2023] Open
Abstract
Many studies have been now focused on the promising approach of fungal endophytes to protect the plant from nutrient deficiency and environmental stresses along with better development and productivity. Quantitative and qualitative protein characteristics are regulated at genomic, transcriptomic, and posttranscriptional levels. Here, we used integrated in-depth proteome analyses to characterize the relationship between endophyte Piriformospora indica and Brassica napus plant highlighting its potential involvement in symbiosis and overall growth and development of the plant. An LC-MS/MS based label-free quantitative technique was used to evaluate the differential proteomics under P. indica treatment vs. control plants. In this study, 8,123 proteins were assessed, of which 46 showed significant abundance (34 downregulated and 12 upregulated) under high confidence conditions (p-value ≤ 0.05, fold change ≥2, confidence level 95%). Mapping of identified differentially expressed proteins with bioinformatics tools such as GO and KEGG pathway analysis showed significant enrichment of gene sets involves in metabolic processes, symbiotic signaling, stress/defense responses, energy production, nutrient acquisition, biosynthesis of essential metabolites. These proteins are responsible for root's architectural modification, cell remodeling, and cellular homeostasis during the symbiotic growth phase of plant's life. We tried to enhance our knowledge that how the biological pathways modulate during symbiosis?
Collapse
|
27
|
Freitas CDT, Freitas DC, Cruz WT, Porfírio CTMN, Silva MZR, Oliveira JS, Carvalho CPS, Ramos MV. Identification and characterization of two germin-like proteins with oxalate oxidase activity from Calotropis procera latex. Int J Biol Macromol 2017; 105:1051-1061. [PMID: 28754622 DOI: 10.1016/j.ijbiomac.2017.07.133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 01/15/2023]
Abstract
Germin-like proteins (GLPs) have been identified in several plant tissues. However, only one work describes GLP in latex fluids. Therefore, the goal of this study was to investigate GLPs in latex and get new insights concerning the structural and functional aspects of these proteins. Two complete sequences with high identity (>50%) with other GLPs, termed CpGLP1 and CpGLP2, were obtained and consecutively presented 216 and 206 amino acid residues, corresponding to molecular masses of 22.7 and 21.7kDa, pI 6.8 and 6.5. The three-dimensional models revealed overall folding similar to those reported for other plant GLPs. Both deduced sequences were grouped into the GER 2 subfamily. Molecular docking studies indicated a putative binding site consisting of three highly conserved histidines and a glutamate residue, which interacted with oxalate. This interaction was later supported by enzymatic assays. Superoxide dismutase (common activity in GLPs) was not detected for CpGLP1 and CpGLP2 by zymogram. The two proteins were detected in the latex, but not in non-germinated or germinated seeds and calli. These results give additional support that germin-like proteins are broadly distributed in plants and they are tissue-specific. This particularity deserves further studies to better understand their functions in latex.
Collapse
Affiliation(s)
- Cleverson D T Freitas
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, Fortaleza, Ceará, CEP 60440-554, Brazil.
| | - Deborah C Freitas
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, Fortaleza, Ceará, CEP 60440-554, Brazil
| | - Wallace T Cruz
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, Fortaleza, Ceará, CEP 60440-554, Brazil
| | - Camila T M N Porfírio
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, Fortaleza, Ceará, CEP 60440-554, Brazil
| | - Maria Z R Silva
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, Fortaleza, Ceará, CEP 60440-554, Brazil
| | - Jefferson S Oliveira
- Universidade Federal do Piauí, Campus Ministro Reis Velloso, Departamento de Biomedicina, Parnaíba, Piauí, CEP 64202-020, Brazil
| | - Cristina Paiva S Carvalho
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, Fortaleza, Ceará, CEP 60440-554, Brazil
| | - Márcio V Ramos
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, Fortaleza, Ceará, CEP 60440-554, Brazil
| |
Collapse
|
28
|
Jimenez-Lopez JC, Melser S, DeBoer K, Thatcher LF, Kamphuis LG, Foley RC, Singh KB. Narrow-Leafed Lupin ( Lupinus angustifolius) β1- and β6-Conglutin Proteins Exhibit Antifungal Activity, Protecting Plants against Necrotrophic Pathogen Induced Damage from Sclerotinia sclerotiorum and Phytophthora nicotianae. FRONTIERS IN PLANT SCIENCE 2016; 7:1856. [PMID: 28018392 PMCID: PMC5161055 DOI: 10.3389/fpls.2016.01856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/24/2016] [Indexed: 05/27/2023]
Abstract
Vicilins (7S globulins) are seed storage proteins and constitute the main protein family in legume seeds, particularly in narrow-leafed lupin (Lupinus angustifolius L.; NLL), where seven vicilin genes, called β1- to β7-conglutin have been identified. Vicilins are involved in germination processes supplying amino acids for seedling growth and plant development, as well as in some cases roles in plant defense and protection against pathogens. The roles of NLL β-conglutins in plant defense are unknown. Here the potential role of five NLL β-conglutin family members in protection against necrotrophic fungal pathogens was investigated and it was demonstrated that recombinant purified 6xHis-tagged β1- and β6-conglutin proteins exhibited the strongest in vitro growth inhibitory activity against a range of necrotrophic fungal pathogens compared to β2, β3, and β4 conglutins. To examine activity in vivo, two representative necrotrophic pathogens, the fungus Sclerotinia sclerotiorum and oomycete Phytophthora nicotianae were used. Transient expression of β1- and β6-conglutin proteins in Nicotiana benthamiana leaves demonstrated in vivo growth suppression of both of these pathogens, resulting in low percentages of hyphal growth and elongation in comparison to control treated leaves. Cellular studies using β1- and β6-GFP fusion proteins showed these conglutins localized to the cell surface including plasmodesmata. Analysis of cellular death following S. sclerotiorum or P. nicotianae revealed both β1- and β6-conglutins suppressed pathogen induced cell death in planta and prevented pathogen induced suppression of the plant oxidative burst as determined by protein oxidation in infected compared to mock-inoculated leaves.
Collapse
Affiliation(s)
- Jose C. Jimenez-Lopez
- The Institute of Agriculture, The University of Western Australia, PerthWA, Australia
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estacion Experimental del Zaidin, Spanish National Research CouncilGranada, Spain
| | - Su Melser
- Centre for Environment and Life Sciences, Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, FloreatWA, Australia
| | - Kathleen DeBoer
- The Institute of Agriculture, The University of Western Australia, PerthWA, Australia
- Centre for Environment and Life Sciences, Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, FloreatWA, Australia
| | - Louise F. Thatcher
- Centre for Environment and Life Sciences, Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, FloreatWA, Australia
| | - Lars G. Kamphuis
- The Institute of Agriculture, The University of Western Australia, PerthWA, Australia
- Centre for Environment and Life Sciences, Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, FloreatWA, Australia
| | - Rhonda C. Foley
- Centre for Environment and Life Sciences, Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, FloreatWA, Australia
| | - Karam B. Singh
- The Institute of Agriculture, The University of Western Australia, PerthWA, Australia
- Centre for Environment and Life Sciences, Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, FloreatWA, Australia
| |
Collapse
|
29
|
QTL and candidate genes associated with common bacterial blight resistance in the common bean cultivar Longyundou 5 from China. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.cj.2016.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Functional characterization of germin and germin-like protein genes in various plant species using transgenic approaches. Biotechnol Lett 2016; 38:1405-21. [DOI: 10.1007/s10529-016-2129-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/18/2016] [Indexed: 12/24/2022]
|