1
|
Hayford RK, Haley OC, Cannon EK, Portwood JL, Gardiner JM, Andorf CM, Woodhouse MR. Functional annotation and meta-analysis of maize transcriptomes reveal genes involved in biotic and abiotic stress. BMC Genomics 2024; 25:533. [PMID: 38816789 PMCID: PMC11137889 DOI: 10.1186/s12864-024-10443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Environmental stress factors, such as biotic and abiotic stress, are becoming more common due to climate variability, significantly affecting global maize yield. Transcriptome profiling studies provide insights into the molecular mechanisms underlying stress response in maize, though the functions of many genes are still unknown. To enhance the functional annotation of maize-specific genes, MaizeGDB has outlined a data-driven approach with an emphasis on identifying genes and traits related to biotic and abiotic stress. RESULTS We mapped high-quality RNA-Seq expression reads from 24 different publicly available datasets (17 abiotic and seven biotic studies) generated from the B73 cultivar to the recent version of the reference genome B73 (B73v5) and deduced stress-related functional annotation of maize gene models. We conducted a robust meta-analysis of the transcriptome profiles from the datasets to identify maize loci responsive to stress, identifying 3,230 differentially expressed genes (DEGs): 2,555 DEGs regulated in response to abiotic stress, 408 DEGs regulated during biotic stress, and 267 common DEGs (co-DEGs) that overlap between abiotic and biotic stress. We discovered hub genes from network analyses, and among the hub genes of the co-DEGs we identified a putative NAC domain transcription factor superfamily protein (Zm00001eb369060) IDP275, which previously responded to herbivory and drought stress. IDP275 was up-regulated in our analysis in response to eight different abiotic and four different biotic stresses. A gene set enrichment and pathway analysis of hub genes of the co-DEGs revealed hormone-mediated signaling processes and phenylpropanoid biosynthesis pathways, respectively. Using phylostratigraphic analysis, we also demonstrated how abiotic and biotic stress genes differentially evolve to adapt to changing environments. CONCLUSIONS These results will help facilitate the functional annotation of multiple stress response gene models and annotation in maize. Data can be accessed and downloaded at the Maize Genetics and Genomics Database (MaizeGDB).
Collapse
Affiliation(s)
- Rita K Hayford
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA.
| | - Olivia C Haley
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA
| | - Ethalinda K Cannon
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA
| | - John L Portwood
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA
| | - Jack M Gardiner
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Carson M Andorf
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA.
- Department of Computer Science, Iowa State University, Ames, IA, 50011, USA.
| | | |
Collapse
|
2
|
Daldoul S, Gargouri M, Weinert C, Jarrar A, Egert B, Mliki A, Nick P. A Tunisian wild grape leads to metabolic fingerprints of salt tolerance. PLANT PHYSIOLOGY 2023; 193:371-388. [PMID: 37226320 DOI: 10.1093/plphys/kiad304] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Soil salinity is progressively impacting agriculture, including viticulture. Identification of genetic factors rendering grapevine (Vitis vinifera L.) resilience that can be introgressed into commercial varieties is necessary for safeguarding viticulture against the consequences of global climate change. To gain insight into the physiological and metabolic responses enabling salt tolerance, we compared a salt-tolerant accession of Vitis sylvestris from Tunisia, "Tebaba", with "1103 Paulsen" rootstock widely used in the Mediterranean. Salt stress was slowly increased, simulating the situation of an irrigated vineyard. We determined that "Tebaba" does not sequester sodium in the root but can cope with salinity through robust redox homeostasis. This is linked with rechanneling of metabolic pathways toward antioxidants and compatible osmolytes, buffering photosynthesis, such that cell-wall breakdown can be avoided. We propose that salt tolerance of this wild grapevine cannot be attributed to a single genetic factor but emerges from favorable metabolic fluxes that are mutually supportive. We suggest that introgression of "Tebaba" into commercial varieties is preferred over the use of "Tebaba" as a rootstock for improving salt tolerance in grapevine.
Collapse
Affiliation(s)
- Samia Daldoul
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cedria, Borj-Cedria PC5G+PV6, Tunisia
| | - Mahmoud Gargouri
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cedria, Borj-Cedria PC5G+PV6, Tunisia
| | - Christoph Weinert
- Institute for Safety and Quality in Fruits and Vegetables, Max-Rubner Institute for Nutrition, Karlsruhe 76131, Germany
| | - Ali Jarrar
- Molecular Cell Biology, Joseph Gottlied Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Björn Egert
- Institute for Safety and Quality in Fruits and Vegetables, Max-Rubner Institute for Nutrition, Karlsruhe 76131, Germany
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cedria, Borj-Cedria PC5G+PV6, Tunisia
| | - Peter Nick
- Molecular Cell Biology, Joseph Gottlied Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| |
Collapse
|
3
|
Wei L, Du Y, Xiang J, Zheng T, Cheng J, Wu J. Integrated mRNA and miRNA transcriptome analysis of grape in responses to salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1173857. [PMID: 37223813 PMCID: PMC10200882 DOI: 10.3389/fpls.2023.1173857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/07/2023] [Indexed: 05/25/2023]
Abstract
Salt stress is an important factor which may negatively affect plant growth and development. High concentrations of Na+ ions can destroy the ion balance in plant somatic cells, as well as destroying cell membranes and forming a large number of reactive oxygen species (ROS) and other damage mechanisms. However, plants have evolved numerous defense mechanisms in response to the damages caused by salt stress conditions. Grape (Vitis vinifera L.), a type of economic crop, is widely planted throughout the world. It has been found that salt stress is an important factor affecting the quality and growth of grape crops. In this study, a high-throughput sequencing method was used to identify the differentially expressed miRNAs and mRNAs in grapes as responses to salt stress. A total of 7,856 differentially expressed genes under the salt stress conditions were successfully identified, of which 3,504 genes were observed to have up-regulated expressions and 4,352 genes had down-regulated expressions. In addition, this study also identified 3,027 miRNAs from the sequencing data using bowtie and mireap software. Among those, 174 were found to be highly conserved, and the remaining miRNAs were less conserved. In order to analyze the expression levels of those miRNAs under salt stress conditions, a TPM algorithm and DESeq software were utilized to screen the differentially expressed miRNAs among different treatments. Subsequently, a total of thirty-nine differentially expressed miRNAs were identified, of which fourteen were observed to be up-regulated miRNAs and twenty-five were down-regulated under the salt stress conditions. A regulatory network was built in order to examine the responses of grape plants to salt stress, with the goal of laying a solid foundation for revealing the molecular mechanism of grape in responses to salt stress.
Collapse
Affiliation(s)
- Lingzhu Wei
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yuanpeng Du
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Jiang Xiang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Ting Zheng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jianhui Cheng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jiang Wu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Çelik H, Arıkan B, Kara NT, Uçarlı C, Çakır Ö. Transcriptomic analysis of salt stress induced chlorophyll biosynthesis-related genes in photoheterotrophic Arabidopsis thaliana calli. Funct Integr Genomics 2023; 23:146. [PMID: 37133632 DOI: 10.1007/s10142-023-01076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/14/2023] [Accepted: 04/26/2023] [Indexed: 05/04/2023]
Abstract
In order to investigate the salt stress induced chlorophyll biosynthesis-related genes in photoheterotrophic cultures, we performed RNA-Seq analysis on A. thaliana calli exposed to 100 mM NaCl on MS medium containing 0.5 mg/L 2,4-D 30 days. Four different conditions of samples were sequenced on Illumina HiSeq Platform in total and generated about 4.49 Gb per sample. The average genome and gene mapping rates were 93.52% and 90.78%, respectively. According to expression profile analysis, some DEGs demonstrated altered related to chlorophyll pigment metabolism. According to analysis, green callus color of photoheterotrophic calli were mainly connected with the induction of LHCB4.3 light harvesting complex photosystem II (Gene ID:818599), AT1G49975 photosystem I reaction center subunit N (Gene ID: 841421), PAM68 PAM68-like protein (DUF3464) (Gene ID: 2745715) and AT3G63540 thylakoid lumenal protein (Mog1/PsbP/DUF1795-like photosystem II reaction center PsbP family protein)(Gene ID: 7922413) genes. Furthermore, 8 DEGs were randomly selected to validate the transcriptome profiles via qPCR. These results will provide a foundation for further studies aimed at giving photosynthetic properties to in vitro plant cultures.
Collapse
Affiliation(s)
- Haluk Çelik
- Istanbul University, Institute of Science, Program of Molecular Biology and Genetics, Istanbul, Türkiye
| | - Burcu Arıkan
- Istanbul University, Faculty of Science, Department of Molecular Biology and Genetics, Vezneciler, 34134, Istanbul, Türkiye
| | - Neslihan Turgut Kara
- Istanbul University, Faculty of Science, Department of Molecular Biology and Genetics, Vezneciler, 34134, Istanbul, Türkiye
| | - Cüneyt Uçarlı
- Istanbul University, Faculty of Science, Department of Molecular Biology and Genetics, Vezneciler, 34134, Istanbul, Türkiye
| | - Özgür Çakır
- Istanbul University, Faculty of Science, Department of Molecular Biology and Genetics, Vezneciler, 34134, Istanbul, Türkiye.
| |
Collapse
|
5
|
Wang XL, Peng L, Wang J, Liu JL, Jia JJ, Tang LP. Transcriptome analyses reveal the effects of mixed saline-alkali stress on indoleacetic acid and cytokinins in Malus hupehensis Rehd. leaves. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:11-22. [PMID: 36733836 PMCID: PMC9886786 DOI: 10.1007/s12298-022-01275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Saline-alkali stress is a universal abiotic stress factor limiting fruit tree cultivation worldwide. Apple (Malus×domestica Borkh.) is one of the fruits with the largest yields worldwide. Tea crabapple (Malus hupehensis Rehd. var. pingyiensis Jiang) is a type of common apple rootstock in China. Because facultative apomixis occurs in this species, it is often used in molecular research. The present study investigated the molecular mechanism of the response of indoleacetic acid (IAA) and cytokinins [zeatin, trans-zeatin riboside (tZR), isopentenyladenine (iP), and isopentenyladenosine (iPA)] to mixed saline-alkali stress (MSAS) in tea crabapple leaves. The endogenous hormone content of tea crabapple leaves under MSAS was measured, and the expression of stress response-related genes was analyzed by RNA sequencing. The results showed that the concentration of IAA was initially higher and then lower than that in the control, whereas the concentration of zeatin, tZR, iP, and iPA was higher than that in the control. A total of 1262 differentially expressed genes were identified in the three comparison groups. Further analyses suggested that IAA and cytokinin biosynthetic genes were mostly upregulated in tea crabapple leaves, indicating that auxin and cytokinin signaling pathway regulation occurred in response to MSAS. These findings suggest that IAA and cytokinins play an important role in the response of tea crabapple to MSAS. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01275-4.
Collapse
Affiliation(s)
- Xin-Liang Wang
- Editorial Department of Journal of Binzhou University, Binzhou University, 391 Huanghe 5th Road, Binzhou, 256603 Shandong People’s Republic of China
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, 391 Huanghe 5th Road, Binzhou, 256603 Shandong People’s Republic of China
- Binzhou University, 391 Huanghe 5th Road, Binzhou, 256603 Shandong People’s Republic of China
| | - Ling Peng
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, 391 Huanghe 5th Road, Binzhou, 256603 Shandong People’s Republic of China
| | - Jian Wang
- Editorial Department of Journal of Binzhou University, Binzhou University, 391 Huanghe 5th Road, Binzhou, 256603 Shandong People’s Republic of China
| | - Jing-Lei Liu
- Editorial Department of Journal of Binzhou University, Binzhou University, 391 Huanghe 5th Road, Binzhou, 256603 Shandong People’s Republic of China
| | - Jing-Jing Jia
- Editorial Department of Journal of Binzhou University, Binzhou University, 391 Huanghe 5th Road, Binzhou, 256603 Shandong People’s Republic of China
| | - Li-Ping Tang
- Editorial Department of Journal of Binzhou University, Binzhou University, 391 Huanghe 5th Road, Binzhou, 256603 Shandong People’s Republic of China
| |
Collapse
|
6
|
Perveen N, Dinesh MR, Sankaran M, Ravishankar KV, Krishnajee HG, Hanur VS, Alamri S, Kesawat MS, Irfan M. Comparative transcriptome analysis provides novel insights into molecular response of salt-tolerant and sensitive polyembryonic mango genotypes to salinity stress at seedling stage. FRONTIERS IN PLANT SCIENCE 2023; 14:1152485. [PMID: 37123820 PMCID: PMC10141464 DOI: 10.3389/fpls.2023.1152485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Introduction Increased soil salinity in the recent years has adversely affected the productivity of mango globally. Extending the cultivation of mango in salt affected regions warrants the use of salinity tolerant/resistant rootstocks. However, the lack of sufficient genomic and transcriptomic information impedes comprehensive research at the molecular level. Method We employed RNA sequencing-based transcriptome analysis to gain insight into molecular response to salt stress by using two polyembryonic mango genotypes with contrasting response to salt stress viz., salt tolerant Turpentine and salt susceptible Mylepelian. Results RNA sequencing by Novaseq6000 resulted in a total of 2795088, 17535948, 7813704 and 5544894 clean reads in Mylepelian treated (MT), Mylepelian control (MC), Turpentine treated (TT) and Turpentine control (TC) respectively. In total, 7169 unigenes annotated against all the five public databases, including NR, NT, PFAM, KOG, Swissport, KEGG and GO. Further, maximum number of differentially expressed genes were found between MT and MC (2106) followed by MT vs TT (1158) and TT and TC (587). The differentially expressed genes under different treatment levels included transcription factors (bZIP, NAC, bHLH), genes involved in Calcium-dependent protein kinases (CDPKs), ABA biosynthesis, Photosynthesis etc. Expression of few of these genes was experimentally validated through quantitative real-time PCR (qRT-PCR) and contrasting expression pattern of Auxin Response Factor 2 (ARF2), Late Embryogenesis Abundant (LEA) and CDPK genes were observed between Turpentine and Mylepelian. Discussion The results of this study will be useful in understanding the molecular mechanism underlying salt tolerance in mango which can serve as valuable baseline information to generate new targets in mango breeding for salt tolerance.
Collapse
Affiliation(s)
- Nusrat Perveen
- Division of Fruit Crops, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lakepost, Bengaluru, Karnataka, India
- *Correspondence: Nusrat Perveen, ; K. V. Ravishankar,
| | - M. R. Dinesh
- Division of Fruit Crops, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lakepost, Bengaluru, Karnataka, India
| | - M. Sankaran
- Division of Fruit Crops, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lakepost, Bengaluru, Karnataka, India
| | - K. V. Ravishankar
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lakepost, Bengaluru, Karnataka, India
- *Correspondence: Nusrat Perveen, ; K. V. Ravishankar,
| | - Hara Gopal Krishnajee
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lakepost, Bengaluru, Karnataka, India
| | - Vageeshbabu S. Hanur
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lakepost, Bengaluru, Karnataka, India
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Mohammad Irfan
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Carrasco D, Zhou-Tsang A, Rodriguez-Izquierdo A, Ocete R, Revilla MA, Arroyo-García R. Coastal Wild Grapevine Accession ( Vitis vinifera L. ssp. sylvestris) Shows Distinct Late and Early Transcriptome Changes under Salt Stress in Comparison to Commercial Rootstock Richter 110. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202688. [PMID: 36297712 PMCID: PMC9610063 DOI: 10.3390/plants11202688] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 06/01/2023]
Abstract
Increase in soil salinity, driven by climate change, is a widespread constrain for viticulture across several regions, including the Mediterranean basin. The implementation of salt-tolerant varieties is sought after to reduce the negative impact of salinity in grape production. An accession of wild grapevine (Vitis vinifera L. ssp. sylvestris), named AS1B, found on the coastline of Asturias (Spain), could be of interest toward the achievement of salt-tolerant varieties, as it demonstrated the ability to survive and grow under high levels of salinity. In the present study, AS1B is compared against widely cultivated commercial rootstock Richter 110, regarding their survival capabilities, and transcriptomic profiles analysis allowed us to identify the genes by employing RNA-seq and gene ontology analyses under increasing salinity and validate (via RT-qPCR) seven salinity-stress-induced genes. The results suggest contrasting transcriptomic responses between AS1B and Richter 110. AS1B is more responsive to a milder increase in salinity and builds up specific mechanisms of tolerance over a sustained salt stress, while Richter 110 maintains a constitutive expression until high and prolonged saline inputs, when it mainly shows responses to osmotic stress. The genetic basis of AS1B's strategy to confront salinity could be valuable in cultivar breeding programs, to expand the current range of salt-tolerant rootstocks, aiming to improve the adaptation of viticulture against climate change.
Collapse
Affiliation(s)
- David Carrasco
- CSIC-INIA(CBGP) Centro de Biotecnología y Genómica de Plantas, UPM-INIA, Parque Científico y Tecnológico de la UPM Campus de Montegancedo, CtraM-40, Km 38, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Andres Zhou-Tsang
- CSIC-INIA(CBGP) Centro de Biotecnología y Genómica de Plantas, UPM-INIA, Parque Científico y Tecnológico de la UPM Campus de Montegancedo, CtraM-40, Km 38, Pozuelo de Alarcón, 28223 Madrid, Spain
- Waite Research Institute, The School of Agriculture, Food and Wine, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Glen Osmond, SA 5064, Australia
- ARC Industrial Transformation Training Centre for Innovative Wine Production, Waite Research Institute, Glen Osmond, SA 5064, Australia
| | - Alberto Rodriguez-Izquierdo
- CSIC-INIA(CBGP) Centro de Biotecnología y Genómica de Plantas, UPM-INIA, Parque Científico y Tecnológico de la UPM Campus de Montegancedo, CtraM-40, Km 38, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Rafael Ocete
- Laboratorio Entomología Aplicada, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain
| | - María Angeles Revilla
- Departamento Biología de Organismos y Sistemas, Facultad de Biología, Universidad de Oviedo, 33071 Oviedo, Spain
| | - Rosa Arroyo-García
- CSIC-INIA(CBGP) Centro de Biotecnología y Genómica de Plantas, UPM-INIA, Parque Científico y Tecnológico de la UPM Campus de Montegancedo, CtraM-40, Km 38, Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
8
|
Buesa I, Pérez-Pérez JG, Visconti F, Strah R, Intrigliolo DS, Bonet L, Gruden K, Pompe-Novak M, de Paz JM. Physiological and Transcriptional Responses to Saline Irrigation of Young 'Tempranillo' Vines Grafted Onto Different Rootstocks. FRONTIERS IN PLANT SCIENCE 2022; 13:866053. [PMID: 35734259 PMCID: PMC9207310 DOI: 10.3389/fpls.2022.866053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/25/2022] [Indexed: 06/02/2023]
Abstract
The use of more salt stress-tolerant vine rootstocks can be a sustainable strategy for adapting traditional grapevine cultivars to future conditions. However, how the new M1 and M4 rootstocks perform against salinity compared to conventional ones, such as the 1103-Paulsen, had not been previously assessed under real field conditions. Therefore, a field trial was carried out in a young 'Tempranillo' (Vitis vinifera L.) vineyard grafted onto all three rootstocks under a semi-arid and hot-summer Mediterranean climate. The vines were irrigated with two kinds of water: a non-saline Control with EC of 0.8 dS m-1 and a Saline treatment with 3.5 dS m-1. Then, various physiological parameters were assessed in the scion, and, additionally, gene expression was studied by high throughput sequencing in leaf and berry tissues. Plant water relations evidenced the osmotic effect of water quality, but not that of the rootstock. Accordingly, leaf-level gas exchange rates were also reduced in all three rootstocks, with M1 inducing significantly lower net photosynthesis rates than 1103-Paulsen. Nevertheless, the expression of groups of genes involved in photosynthesis and amino acid metabolism pathways were not significantly and differentially expressed. The irrigation with saline water significantly increased leaf chloride contents in the scion onto the M-rootstocks, but not onto the 1103P. The limitation for leaf Cl- and Na+ accumulation on the scion was conferred by rootstock. Few processes were differentially regulated in the scion in response to the saline treatment, mainly, in the groups of genes involved in the flavonoids and phenylpropanoids metabolic pathways. However, these transcriptomic effects were not fully reflected in grape phenolic ripeness, with M4 being the only one that did not cause reductions in these compounds in response to salinity, and 1103-Paulsen having the highest overall concentrations. These results suggest that all three rootstocks confer short-term salinity tolerance to the scion. The lower transcriptomic changes and the lower accumulation of potentially phytotoxic ions in the scion grafted onto 1103-Paulsen compared to M-rootstocks point to the former being able to maintain this physiological response in the longer term. Further agronomic trials should be conducted to confirm these effects on vine physiology and transcriptomics in mature vineyards.
Collapse
Affiliation(s)
- Ignacio Buesa
- Instituto Valenciano de Investigaciones Agrarias, Centro para el Desarrollo de la Agricultura Sostenible, Unidad Asociada al CSIC “Riego en la Agricultura Mediterránea”, Valencia, Spain
- Ecophysiologie et Génomique Fonctionnelle de la Vigne, Institut National de la Recherche Agronomique, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France
- Research Group on Plant Biology Under Mediterranean Conditions, Department of Biology, University of the Balearic Islands, Palma, Spain
| | - Juan G. Pérez-Pérez
- Instituto Valenciano de Investigaciones Agrarias, Centro para el Desarrollo de la Agricultura Sostenible, Unidad Asociada al CSIC “Riego en la Agricultura Mediterránea”, Valencia, Spain
| | - Fernando Visconti
- Instituto Valenciano de Investigaciones Agrarias, Centro para el Desarrollo de la Agricultura Sostenible, Unidad Asociada al CSIC “Riego en la Agricultura Mediterránea”, Valencia, Spain
- Centro de Investigaciones sobre Desertificación, Departmento de Ecología (CSIC, UV, GV), Valencia, Spain
| | - Rebeka Strah
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School Ljubljana, Ljubljana, Slovenia
| | - Diego S. Intrigliolo
- Centro de Investigaciones sobre Desertificación, Departmento de Ecología (CSIC, UV, GV), Valencia, Spain
| | - Luis Bonet
- Instituto Valenciano de Investigaciones Agrarias, Centro para el Desarrollo de la Agricultura Sostenible, Unidad Asociada al CSIC “Riego en la Agricultura Mediterránea”, Valencia, Spain
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Maruša Pompe-Novak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- School for Viticulture and Enology, University of Nova Gorica, Vipava, Slovenia
| | - Jose M. de Paz
- Instituto Valenciano de Investigaciones Agrarias, Centro para el Desarrollo de la Agricultura Sostenible, Unidad Asociada al CSIC “Riego en la Agricultura Mediterránea”, Valencia, Spain
| |
Collapse
|
9
|
Mansour MMF, Hassan FAS. How salt stress-responsive proteins regulate plant adaptation to saline conditions. PLANT MOLECULAR BIOLOGY 2022; 108:175-224. [PMID: 34964081 DOI: 10.1007/s11103-021-01232-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/06/2021] [Indexed: 05/20/2023]
Abstract
An overview is presented of recent advances in our knowledge of candidate proteins that regulate various physiological and biochemical processes underpinning plant adaptation to saline conditions. Salt stress is one of the environmental constraints that restrict plant distribution, growth and yield in many parts of the world. Increased world population surely elevates food demands all over the globe, which anticipates to add a great challenge to humanity. These concerns have necessitated the scientists to understand and unmask the puzzle of plant salt tolerance mechanisms in order to utilize various strategies to develop salt tolerant crop plants. Salt tolerance is a complex trait involving alterations in physiological, biochemical, and molecular processes. These alterations are a result of genomic and proteomic complement readjustments that lead to tolerance mechanisms. Proteomics is a crucial molecular tool that indicates proteins expressed by the genome, and also identifies the functions of proteins accumulated in response to salt stress. Recently, proteomic studies have shed more light on a range of promising candidate proteins that regulate various processes rendering salt tolerance to plants. These proteins have been shown to be involved in photosynthesis and energy metabolism, ion homeostasis, gene transcription and protein biosynthesis, compatible solute production, hormone modulation, cell wall structure modification, cellular detoxification, membrane stabilization, and signal transduction. These candidate salt responsive proteins can be therefore used in biotechnological approaches to improve tolerance of crop plants to salt conditions. In this review, we provided comprehensive updated information on the proteomic data of plants/genotypes contrasting in salt tolerance in response to salt stress. The roles of salt responsive proteins that are potential determinants for plant salt adaptation are discussed. The relationship between changes in proteome composition and abundance, and alterations observed in physiological and biochemical features associated with salt tolerance are also addressed.
Collapse
Affiliation(s)
| | - Fahmy A S Hassan
- Department of Horticulture, Faculty of Agriculture, Tanta University, Tanta, Egypt
| |
Collapse
|
10
|
Bohra A, Prasad G, Rathore A, Saxena RK, Naik Sj S, Pareek S, Jha R, Pazhamala L, Datta D, Pandey G, Tiwari A, Maurya AK, Soren KR, Akram M, Varshney RK, Singh NP. Global gene expression analysis of pigeonpea with male sterility conditioned by A 2 cytoplasm. THE PLANT GENOME 2021; 14:e20132. [PMID: 34494714 DOI: 10.1002/tpg2.20132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Cytoplasmic male sterility(CMS), a maternally inherited trait, provides a promising means to harness yield gains associated with hybrid vigor. In pigeonpea [Cajanus cajan (L.) Huth], nine types of sterility-inducing cytoplasm have been reported, of which A2 and A4 have been successfully deployed in hybrid breeding. Unfortunately, molecular mechanism of the CMS trait is poorly understood because of limited research invested. More recently, an association between a mitochondrial gene (nad7) and A4 -CMS has been demonstrated in pigeonpea; however, the mechanism underlying A2 -CMS still remains obscure. The current investigation aimed to analyze the differences in A2 -CMS line (ICPL 88039A) and its isogenic maintainer line (ICPL 88039B) at transcriptome level using next-generation sequencing. Gene expression profiling uncovered a set of 505 genes that showed altered expression in response to CMS, of which, 412 genes were upregulated while 93 were downregulated in the fertile maintainer line vs. the CMS line. Further, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) network analyses revealed association of CMS in pigeonpea with four major pathways: glucose and lipid metabolism, ATP production, pollen development and pollen tube growth, and reactive oxygen species (ROS) scavenging. Patterns of digital gene expression were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) of six candidate genes. This study elucidates candidate genes and metabolic pathways having potential associations with pollen development and male sterility in pigeonpea A2 -CMS. New insights on molecular mechanism of CMS trait in pigeonpea will be helpful to accelerate heterosis utilization for enhancing productivity gains in pigeonpea.
Collapse
Affiliation(s)
- Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Gandam Prasad
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Satheesh Naik Sj
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Shalini Pareek
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Rintu Jha
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Lekha Pazhamala
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Dibendu Datta
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Gaurav Pandey
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Abha Tiwari
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | | | - Khela Ram Soren
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Mohd Akram
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Australia
| | - Narendra P Singh
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| |
Collapse
|
11
|
Burbidge CA, Ford CM, Melino VJ, Wong DCJ, Jia Y, Jenkins CLD, Soole KL, Castellarin SD, Darriet P, Rienth M, Bonghi C, Walker RP, Famiani F, Sweetman C. Biosynthesis and Cellular Functions of Tartaric Acid in Grapevines. FRONTIERS IN PLANT SCIENCE 2021; 12:643024. [PMID: 33747023 PMCID: PMC7970118 DOI: 10.3389/fpls.2021.643024] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/09/2021] [Indexed: 05/29/2023]
Abstract
Tartaric acid (TA) is an obscure end point to the catabolism of ascorbic acid (Asc). Here, it is proposed as a "specialized primary metabolite", originating from carbohydrate metabolism but with restricted distribution within the plant kingdom and lack of known function in primary metabolic pathways. Grapes fall into the list of high TA-accumulators, with biosynthesis occurring in both leaf and berry. Very little is known of the TA biosynthetic pathway enzymes in any plant species, although recently some progress has been made in this space. New technologies in grapevine research such as the development of global co-expression network analysis tools and genome-wide association studies, should enable more rapid progress. There is also a lack of information regarding roles for this organic acid in plant metabolism. Therefore this review aims to briefly summarize current knowledge about the key intermediates and enzymes of TA biosynthesis in grapes and the regulation of its precursor, ascorbate, followed by speculative discussion around the potential roles of TA based on current knowledge of Asc metabolism, TA biosynthetic enzymes and other aspects of fruit metabolism.
Collapse
Affiliation(s)
| | | | | | - Darren Chern Jan Wong
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Yong Jia
- Western Barley Genetic Alliance, Murdoch University, Perth, WA, Australia
| | | | - Kathleen Lydia Soole
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Simone Diego Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Philippe Darriet
- Université Bordeaux, Unité de recherche OEnologie, EA 4577, USC 1366 INRAE, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France
| | - Markus Rienth
- University of Sciences and Art Western Switzerland, Changins College for Viticulture and Oenology, Nyon, Switzerland
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Robert Peter Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Crystal Sweetman
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
12
|
Patil S, Shinde M, Prashant R, Kadoo N, Upadhyay A, Gupta V. Comparative Proteomics Unravels the Differences in Salt Stress Response of Own-Rooted and 110R-Grafted Thompson Seedless Grapevines. J Proteome Res 2019; 19:583-599. [PMID: 31808345 DOI: 10.1021/acs.jproteome.9b00420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Thompson Seedless, a commonly grown table grape variety, is sensitive to salinity when grown on its own roots, and therefore, it is frequently grafted onto salinity-tolerant wild grapevine rootstocks. Rising soil salinity is a growing concern in irrigated agricultural systems. The accumulation of salts near the root zone severely hampers plant growth, leading to a decrease in the productive lifespan of grapevine and causing heavy yield losses to the farmer. In the present study, we investigated the differences in response to salinity between own-rooted Thompson Seedless (TSOR) and 110R-grafted Thompson Seedless (TS110R) grapevines, wherein 110R is reported to be a salt-tolerant rootstock. The grapevines were subjected to salt stress by treating them with a 150 mM NaCl solution. The stress-induced changes in protein abundance were investigated using a label-free shotgun proteomics approach at three time-points viz. 6 h, 48 h, and 7 days of salt treatment. A total of 2793 proteins were identified, of which 246 were differentially abundant at various time-points in TSOR and TS110R vines. The abundance of proteins involved in several biological processes such as photosynthesis, amino acid metabolism, translation, chlorophyll biosynthesis, and generation of precursor metabolites was significantly affected by salt stress in both the vines but at different stages of stress. The results revealed that TSOR vines responded fervently to salt stress, while TS110R vines adopted a preventive approach. The findings of this study add to the knowledge of salinity response in woody and grafted plants and hence open the scope for further studies on salt stress-specific differences induced by grafting.
Collapse
Affiliation(s)
- Sucheta Patil
- Biochemical Sciences Division , CSIR-National Chemical Laboratory , Pune 411008 , India.,Academy of Scientific and Innovative Research , Ghaziabad 201002 , India
| | - Manisha Shinde
- ICAR-National Research Centre for Grapes , Pune 412307 , India
| | - Ramya Prashant
- Biochemical Sciences Division , CSIR-National Chemical Laboratory , Pune 411008 , India
| | - Narendra Kadoo
- Biochemical Sciences Division , CSIR-National Chemical Laboratory , Pune 411008 , India.,Academy of Scientific and Innovative Research , Ghaziabad 201002 , India
| | | | - Vidya Gupta
- Biochemical Sciences Division , CSIR-National Chemical Laboratory , Pune 411008 , India.,Academy of Scientific and Innovative Research , Ghaziabad 201002 , India
| |
Collapse
|
13
|
Dos Santos CP, Batista MC, da Cruz Saraiva KD, Roque ALM, de Souza Miranda R, Alexandre E Silva LM, Moura CFH, Alves Filho EG, Canuto KM, Costa JH. Transcriptome analysis of acerola fruit ripening: insights into ascorbate, ethylene, respiration, and softening metabolisms. PLANT MOLECULAR BIOLOGY 2019; 101:269-296. [PMID: 31338671 DOI: 10.1007/s11103-019-00903-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The first transcriptome coupled to metabolite analyses reveals major trends during acerola fruit ripening and shed lights on ascorbate, ethylene signalling, cellular respiration, sugar accumulation, and softening key regulatory genes. Acerola is a fast growing and ripening fruit that exhibits high amounts of ascorbate. During ripening, the fruit experience high respiratory rates leading to ascorbate depletion and a quickly fragile and perishable state. Despite its growing economic importance, understanding of its developmental metabolism remains obscure due to the absence of genomic and transcriptomic data. We performed an acerola transcriptome sequencing that generated over 600 million reads, 40,830 contigs, and provided the annotation of 25,298 unique transcripts. Overall, this study revealed the main metabolic changes that occur in the acerola ripening. This transcriptional profile linked to metabolite measurements, allowed us to focus on ascorbate, ethylene, respiration, sugar, and firmness, the major metabolism indicators for acerola quality. Our results suggest a cooperative role of several genes involved in AsA biosynthesis (PMM, GMP1 and 3, GME1 and 2, GGP1 and 2), translocation (NAT3, 4, 6 and 6-like) and recycling (MDHAR2 and DHAR1) pathways for AsA accumulation in unripe fruits. Moreover, the association of metabolites with transcript profiles provided a comprehensive understanding of ethylene signalling, respiration, sugar accumulation and softening of acerola, shedding light on promising key regulatory genes. Overall, this study provides a foundation for further examination of the functional significance of these genes to improve fruit quality traits.
Collapse
Affiliation(s)
- Clesivan Pereira Dos Santos
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | - Mathias Coelho Batista
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | - Kátia Daniella da Cruz Saraiva
- Federal Institute of Education, Science and Technology of Paraíba, Campus Princesa Isabel, Princesa Isabel, Paraíba, Brazil
| | - André Luiz Maia Roque
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | | | | | | | | | | | - José Hélio Costa
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil.
| |
Collapse
|
14
|
Transcriptome analysis provides insights into the stress response crosstalk in apple (Malus × domestica) subjected to drought, cold and high salinity. Sci Rep 2019; 9:9071. [PMID: 31227734 PMCID: PMC6588687 DOI: 10.1038/s41598-019-45266-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023] Open
Abstract
Drought, cold, and high salinity are three major abiotic stresses effecting apple tree growth and fruit production. Understanding the genetic mechanisms of crosstalk between stress responses signalling networks and identifying the genes involved in apple has potential importance for crop improvement and breeding strategies. Here, the transcriptome profiling analysis of in vitro-grown apple plants subjected to drought, cold and high salinity stress, showed a total of 377 upregulated and 211 downregulated common differentially expressed genes (DEGs) to all 3 stress treatments compared with the control. Gene Ontology (GO) analysis indicated that these common DEGs were enriched in ‘metabolic process’ under the ‘biological process’ category, as well as in ‘binding’ and ‘catalytic activity’ under the ‘molecular function’ category. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that common DEGs were mainly belong to the ‘biological functions’ category and 17 DEGs were identified in ‘environmental information processing’ sub-category which may act as signal transduction components in response crosstalk regulation. Overexpression of 5 upregulated genes individually, out of these 17 common DEGs in apple calli promoted the consistent upregulation of DREB6, CBF1 and ZAT10 and increased the mass weight and antioxidase ability, implying these five common DEGs involved in multiple pathways and improved comprehensive resistance to stress.
Collapse
|