1
|
Tyagi K, Chandan RK, Sahoo D, Ghosh S, Gupta S, Jha G. The host and pathogen myo-inositol-1-phosphate synthases are required for Rhizoctonia solani AG1-IA infection in tomato. MOLECULAR PLANT PATHOLOGY 2024; 25:e13470. [PMID: 39376048 PMCID: PMC11458890 DOI: 10.1111/mpp.13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 10/09/2024]
Abstract
The myo-inositol-1-phosphate synthase (MIPS) catalyses the biosynthesis of myo-inositol, an important sugar that regulates various physiological and biochemical processes in plants. Here, we provide evidence that host (SlMIPS1) and pathogen (Rs_MIPS) myo-inositol-1-phosphate synthase (MIPS) genes are required for successful infection of Rhizoctonia solani, a devastating necrotrophic fungal pathogen, in tomato. Silencing of either SlMIPS1 or Rs_MIPS prevented disease, whereas an exogenous spray of myo-inositol enhanced disease severity. SlMIPS1 was upregulated upon R. solani infection, and potentially promoted source-to-sink transition, induced SWEET gene expression, and facilitated sugar availability in the infected tissues. In addition, salicylic acid (SA)-jasmonic acid homeostasis was altered and SA-mediated defence was suppressed; therefore, disease was promoted. On the other hand, silencing of SlMIPS1 limited sugar availability and induced SA-mediated defence to prevent R. solani infection. Virus-induced gene silencing of NPR1, a key gene in SA signalling, rendered SlMIPS1-silenced tomato lines susceptible to infection. These analyses suggest that induction of SA-mediated defence imparts disease tolerance in SlMIPS1-silenced tomato lines. In addition, we present evidence that SlMIPS1 and SA negatively regulate each other to modulate the defence response. SA treatment reduced SlMIPS1 expression and myo-inositol content in tomato, whereas myo-inositol treatment prevented SA-mediated defence. We emphasize that downregulation of host/pathogen MIPS can be an important strategy for controlling diseases caused by R. solani in agriculturally important crops.
Collapse
Affiliation(s)
- Kriti Tyagi
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| | - Ravindra K. Chandan
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| | - Debashis Sahoo
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| | - Srayan Ghosh
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| | - Santosh Kumar Gupta
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| | - Gopaljee Jha
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| |
Collapse
|
2
|
Jesudoss D, Ponnurangan V, Kumar MPR, Kumar KK, Mannu J, Sankarasubramanian H, Duraialagaraja S, Eswaran K, Loganathan A, Shanmugam V. Advances in breeding, biotechnology, and nanotechnological approaches to combat sheath blight disease in rice. Mol Biol Rep 2024; 51:958. [PMID: 39230778 DOI: 10.1007/s11033-024-09889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
Sheath blight, caused by the fungus Rhizoctonia solani, is a major problem that significantly impacts rice production and can lead to substantial yield losses. The disease has become increasingly problematic in recent years due to the widespread use of high-yielding semi-dwarf rice cultivars, dense planting, and heavy application of nitrogenous fertilizers. The disease has become more challenging to manage due to its diverse host range and the lack of resistant cultivars. Despite utilizing traditional methods, the problem persists without a satisfactory solution. Therefore, modern approaches, including advanced breeding, transgenic methods, genome editing using CRISPR/Cas9 technology, and nanotechnological interventions, are being explored to develop rice plants resistant to sheath blight disease. This review primarily focuses on these recent advancements in combating the sheath blight disease.
Collapse
Affiliation(s)
- David Jesudoss
- Department of Plant Biotechnology, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Vignesh Ponnurangan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Mohana Pradeep Rangaraj Kumar
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Krish K Kumar
- Department of Plant Biotechnology, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Jayakanthan Mannu
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Harish Sankarasubramanian
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Sudhakar Duraialagaraja
- Department of Plant Biotechnology, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Kokiladevi Eswaran
- Department of Plant Biotechnology, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Arul Loganathan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Varanavasiappan Shanmugam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| |
Collapse
|
3
|
Das J, Ghosh S, Tyagi K, Sahoo D, Jha G. Methionine biosynthetic genes and methionine sulfoxide reductase A are required for Rhizoctonia solani AG1-IA to cause sheath blight disease in rice. Microb Biotechnol 2024; 17:e14441. [PMID: 38568774 PMCID: PMC10990046 DOI: 10.1111/1751-7915.14441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024] Open
Abstract
Rhizoctonia solani is a polyphagous necrotrophic fungal pathogen that causes sheath blight disease in rice. It deploys effector molecules as well as carbohydrate-active enzymes and enhances the production of reactive oxygen species for killing host tissues. Understanding R. solani ability to sustain growth under an oxidative-stress-enriched environment is important for developing disease control strategies. Here, we demonstrate that R. solani upregulates methionine biosynthetic genes, including Rs_MET13 during infection in rice, and double-stranded RNA-mediated silencing of these genes impairs the pathogen's ability to cause disease. Exogenous treatment with methionine restores the disease-causing ability of Rs_MET13-silenced R. solani and facilitates its growth on 10 mM H2O2-containing minimal-media. Notably, the Rs_MsrA gene that encodes methionine sulfoxide reductase A, an antioxidant enzyme involved in the repair of oxidative damage of methionine, is upregulated upon H2O2 treatment and also during infection in rice. Rs_MsrA-silenced R. solani is unable to cause disease, suggesting that it is important for the repair of oxidative damage in methionine during host colonization. We propose that spray-induced gene silencing of Rs_MsrA and designing of antagonistic molecules that block MsrA activity can be exploited as a drug target for effective control of sheath blight disease in rice.
Collapse
Affiliation(s)
- Joyati Das
- National Institute of Plant Genome Research, Aruna Asaf Ali MargNew DelhiIndia
| | - Srayan Ghosh
- National Institute of Plant Genome Research, Aruna Asaf Ali MargNew DelhiIndia
- Department of BiosciencesDurham UniversityDurhamUK
| | - Kriti Tyagi
- National Institute of Plant Genome Research, Aruna Asaf Ali MargNew DelhiIndia
| | - Debashis Sahoo
- National Institute of Plant Genome Research, Aruna Asaf Ali MargNew DelhiIndia
| | - Gopaljee Jha
- National Institute of Plant Genome Research, Aruna Asaf Ali MargNew DelhiIndia
| |
Collapse
|
4
|
Francis A, Ghosh S, Tyagi K, Prakasam V, Rani M, Singh NP, Pradhan A, Sundaram RM, Priyanka C, Laha GS, Kannan C, Prasad MS, Chattopadhyay D, Jha G. Evolution of pathogenicity-associated genes in Rhizoctonia solani AG1-IA by genome duplication and transposon-mediated gene function alterations. BMC Biol 2023; 21:15. [PMID: 36721195 PMCID: PMC9890813 DOI: 10.1186/s12915-023-01526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Rhizoctonia solani is a polyphagous fungal pathogen that causes diseases in crops. The fungal strains are classified into anastomosis groups (AGs); however, genomic complexity, diversification into the AGs and the evolution of pathogenicity-associated genes remain poorly understood. RESULTS We report a recent whole-genome duplication and sequential segmental duplications in AG1-IA strains of R. solani. Transposable element (TE) clusters have caused loss of synteny in the duplicated blocks and introduced differential structural alterations in the functional domains of several pathogenicity-associated paralogous gene pairs. We demonstrate that the TE-mediated structural variations in a glycosyl hydrolase domain and a GMC oxidoreductase domain in two paralogous pairs affect the pathogenicity of R. solani. Furthermore, to investigate the association of TEs with the natural selection and evolution of pathogenicity, we sequenced the genomes of forty-two rice field isolates of R. solani AG1-IA. The genomic regions with high population mutation rates and with the lowest nucleotide diversity are enriched with TEs. Genetic diversity analysis predicted the genes that are most likely under diversifying and purifying selections. We present evidence that a smaller variant of a glucosamine phosphate N-acetyltransferase (GNAT) protein, predicted to be under purifying selection, and an LPMP_AA9 domain-containing protein, predicted to be under diversifying selection, are important for the successful pathogenesis of R. solani in rice as well as tomato. CONCLUSIONS Our study has unravelled whole-genome duplication, TE-mediated neofunctionalization of genes and evolution of pathogenicity traits in R. solani AG1-IA. The pathogenicity-associated genes identified during the study can serve as novel targets for disease control.
Collapse
Affiliation(s)
- Aleena Francis
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Srayan Ghosh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Present address: Department of Biosciences, Durham University, Durham, UK
| | - Kriti Tyagi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - V Prakasam
- ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500 030, India
| | - Mamta Rani
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nagendra Pratap Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Amrita Pradhan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - R M Sundaram
- ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500 030, India
| | - C Priyanka
- ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500 030, India
| | - G S Laha
- ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500 030, India
| | - C Kannan
- ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500 030, India
| | - M S Prasad
- ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500 030, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Gopaljee Jha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
5
|
Kaushik A, Roberts DP, Ramaprasad A, Mfarrej S, Nair M, Lakshman DK, Pain A. Pangenome Analysis of the Soilborne Fungal Phytopathogen Rhizoctonia solani and Development of a Comprehensive Web Resource: RsolaniDB. Front Microbiol 2022; 13:839524. [PMID: 35401459 PMCID: PMC8992008 DOI: 10.3389/fmicb.2022.839524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Rhizoctonia solani is a collective group of genetically and pathologically diverse basidiomycetous fungi that damage economically important crops. Its isolates are classified into 13 Anastomosis Groups (AGs) and subgroups having distinctive morphology and host ranges. The genetic factors driving the unique features of R. solani pathology are not well characterized due to the limited availability of its annotated genomes. Therefore, we performed genome sequencing, assembly, annotation and functional analysis of 12 R. solani isolates covering 7 AGs and select subgroups (AG1-IA; AG1-IB; AG1-IC; AG2-2IIIB; AG3-PT, isolates Rhs 1AP and the hypovirulent Rhs1A1; AG3-TB; AG4-HG-I, isolates Rs23 and R118-11; AG5; AG6; and AG8), in which six genomes are reported for the first time. Using a pangenome comparative analysis of 12 R. solani isolates and 15 other Basidiomycetes, we defined the unique and shared secretomes, CAZymes, and effectors across the AGs. We have also elucidated the R. solani-derived factors potentially involved in determining AG-specific host preference, and the attributes distinguishing them from other Basidiomycetes. Finally, we present the largest repertoire of R. solani genomes and their annotated components as a comprehensive database, viz. RsolaniDB, with tools for large-scale data mining, functional enrichment and sequence analysis not available with other state-of-the-art platforms.
Collapse
Affiliation(s)
- Abhinav Kaushik
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Daniel P Roberts
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Beltsville, MD, United States
| | - Abhinay Ramaprasad
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sara Mfarrej
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mridul Nair
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Dilip K Lakshman
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Beltsville, MD, United States
| | - Arnab Pain
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Rani M, Jha G. Host Gamma-Aminobutyric Acid Metabolic Pathway Is Involved in Resistance Against Rhizoctonia solani. PHYTOPATHOLOGY 2021; 111:1207-1218. [PMID: 33320020 DOI: 10.1094/phyto-08-20-0356-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rhizoctonia solani is a highly destructive necrotrophic fungal pathogen having a diverse host range, including rice and tomato. Previously R. solani infection has been found to cause large-scale readjustment in host primary metabolism and accumulation of various stress-associated metabolites such as gamma-aminobutyric acid (GABA) in rice. In this study, we report upregulation of GABA pathway genes during pathogenesis of R. solani in rice and tomato. The exogenous application of GABA provided partial resistance against R. solani infection in both the hosts. Furthermore, by using the virus-induced gene silencing approach, we knocked down the expression of some of the tomato genes involved in GABA biosynthesis (glutamate decarboxylase) and GABA catabolism (GABA-transaminase and succinic semialdehyde dehydrogenase) to study their role in host defense against R. solani infection. The silencing of each of these genes increased disease susceptibility in tomato. Overall the results from gene expression analysis, exogenous chemical application, and gene silencing studies suggest that the GABA pathway plays a positive role in plant defense against necrotrophic pathogen R. solani.
Collapse
Affiliation(s)
- Mamta Rani
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Gopaljee Jha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
7
|
Li D, Li S, Wei S, Sun W. Strategies to Manage Rice Sheath Blight: Lessons from Interactions between Rice and Rhizoctonia solani. RICE (NEW YORK, N.Y.) 2021; 14:21. [PMID: 33630178 PMCID: PMC7907341 DOI: 10.1186/s12284-021-00466-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Rhizoctonia solani is an important phytopathogenic fungus with a wide host range and worldwide distribution. The anastomosis group AG1 IA of R. solani has been identified as the predominant causal agent of rice sheath blight, one of the most devastating diseases of crop plants. As a necrotrophic pathogen, R. solani exhibits many characteristics different from biotrophic and hemi-biotrophic pathogens during co-evolutionary interaction with host plants. Various types of secondary metabolites, carbohydrate-active enzymes, secreted proteins and effectors have been revealed to be essential pathogenicity factors in R. solani. Meanwhile, reactive oxygen species, phytohormone signaling, transcription factors and many other defense-associated genes have been identified to contribute to sheath blight resistance in rice. Here, we summarize the recent advances in studies on molecular interactions between rice and R. solani. Based on knowledge of rice-R. solani interactions and sheath blight resistance QTLs, multiple effective strategies have been developed to generate rice cultivars with enhanced sheath blight resistance.
Collapse
Affiliation(s)
- Dayong Li
- College of Plant Protection, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Shuai Li
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, 110866, Shenyang, Liaoning, China
| | - Songhong Wei
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, 110866, Shenyang, Liaoning, China
| | - Wenxian Sun
- College of Plant Protection, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China.
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
8
|
Ghosh S, Kant R, Pradhan A, Jha G. RS_CRZ1, a C2H2-Type Transcription Factor Is Required for Pathogenesis of Rhizoctonia solani AG1-IA in Tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:26-38. [PMID: 33030394 DOI: 10.1094/mpmi-05-20-0121-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Rhizoctonia solani is a necrotrophic fungal pathogen that causes disease in diverse plant species. In recent years, the genomic and transcriptomic studies have identified several candidate pathogenicity determinants of R. solani; however, most of them remain to be validated. In this study, we report a viral vector-based host-induced gene silencing (HIGS) as well as a dsRNA (double-stranded RNA)-based approach to effectively downregulate genes of R. solani AG1-IA (BRS1 strain) during pathogenesis in tomato. We tested a few of the in-planta upregulated R. solani genes and observed that silencing of one of them, i.e., RS_CRZ1 (a C2H2 type zinc finger transcription factor) significantly compromises the pathogenesis of R. solani in tomato. The RS_CRZ1-silenced plants not only exhibited significant reduction in disease symptoms, but the depth of pathogen colonization was also compromised. Furthermore, we identified the R. solani genes that were coregulated with RS_CRZ1 during the pathogenicity process. The HIGS-mediated silencing of a few of them [CL1756Contig1; subtilisin-like protease and CL1817Contig2; 2OG-Fe(II) oxygenase] compromised the pathogenesis of R. solani in tomato. The ectopic expression of RS_CRZ1 complemented the crz1 mutant of yeast and restored tolerance against various metal ion stress. Overall, our study reveals the importance of RS_CRZ1 in managing the hostile environment encountered during host colonization. Also, it emphasizes the relevance of the HIGS and dsRNA-based gene silencing approach toward functional characterization of pathogenicity determinants of R. solani.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Srayan Ghosh
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Ravi Kant
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Amrita Pradhan
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
9
|
Pradhan A, Ghosh S, Sahoo D, Jha G. Fungal effectors, the double edge sword of phytopathogens. Curr Genet 2020; 67:27-40. [PMID: 33146780 DOI: 10.1007/s00294-020-01118-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/24/2020] [Accepted: 10/13/2020] [Indexed: 12/17/2022]
Abstract
Phyto-pathogenic fungi can cause huge damage to crop production. During millions of years of coexistence, fungi have evolved diverse life-style to obtain nutrients from the host and to colonize upon them. They deploy various proteinaceous as well as non-proteinaceous secreted molecules commonly referred as effectors to sabotage host machinery during the infection process. The effectors are important virulence determinants of pathogenic fungi and play important role in successful pathogenesis, predominantly by avoiding host-surveillance system. However, besides being important for pathogenesis, the fungal effectors end-up being recognized by the resistant cultivars of the host, which mount a strong immune response to ward-off pathogens. Various recent studies involving different pathosystem have revealed the virulence/avirulence functions of fungal effectors and their involvement in governing the outcome of host-pathogen interactions. However, the effectors and their cognate resistance gene in the host remain elusive for several economically important fungal pathogens. In this review, using examples from some of the biotrophic, hemi-biotrophic and necrotrophic pathogens, we elaborate the double-edged functions of fungal effectors. We emphasize that knowledge of effector functions can be helpful in effective management of fungal diseases in crop plants.
Collapse
Affiliation(s)
- Amrita Pradhan
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Srayan Ghosh
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Debashis Sahoo
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
10
|
Molla KA, Karmakar S, Molla J, Bajaj P, Varshney RK, Datta SK, Datta K. Understanding sheath blight resistance in rice: the road behind and the road ahead. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:895-915. [PMID: 31811745 PMCID: PMC7061877 DOI: 10.1111/pbi.13312] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 05/03/2023]
Abstract
Rice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani, became one of the major threats to the rice cultivation worldwide, especially after the adoption of high-yielding varieties. The pathogen is challenging to manage because of its extensively broad host range and high genetic variability and also due to the inability to find any satisfactory level of natural resistance from the available rice germplasm. It is high time to find remedies to combat the pathogen for reducing rice yield losses and subsequently to minimize the threat to global food security. The development of genetic resistance is one of the alternative means to avoid the use of hazardous chemical fungicides. This review mainly focuses on the effort of better understanding the host-pathogen relationship, finding the gene loci/markers imparting resistance response and modifying the host genome through transgenic development. The latest development and trend in the R. solani-rice pathosystem research with gap analysis are provided.
Collapse
Affiliation(s)
- Kutubuddin A. Molla
- ICAR‐National Rice Research InstituteCuttackIndia
- Laboratory of Translational Research on Transgenic CropsDepartment of BotanyUniversity of CalcuttaKolkataIndia
- The Huck Institute of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPAUSA
- Department of Plant Pathology and Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPAUSA
| | - Subhasis Karmakar
- Laboratory of Translational Research on Transgenic CropsDepartment of BotanyUniversity of CalcuttaKolkataIndia
| | - Johiruddin Molla
- Center of Excellence in Genomics & Systems Biology (CEGSB)International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Prasad Bajaj
- Center of Excellence in Genomics & Systems Biology (CEGSB)International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB)International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Swapan K. Datta
- Laboratory of Translational Research on Transgenic CropsDepartment of BotanyUniversity of CalcuttaKolkataIndia
| | - Karabi Datta
- Laboratory of Translational Research on Transgenic CropsDepartment of BotanyUniversity of CalcuttaKolkataIndia
| |
Collapse
|
11
|
Singh P, Mazumdar P, Harikrishna JA, Babu S. Sheath blight of rice: a review and identification of priorities for future research. PLANTA 2019; 250:1387-1407. [PMID: 31346804 DOI: 10.1007/s00425-019-03246-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/20/2019] [Indexed: 05/04/2023]
Abstract
Rice sheath blight research should prioritise optimising biological control approaches, identification of resistance gene mechanisms and application in genetic improvement and smart farming for early disease detection. Rice sheath blight, caused by Rhizoctonia solani AG1-1A, is one of the most devasting diseases of the crop. To move forward with effective crop protection against sheath blight, it is important to review the published information related to pathogenicity and disease management and to determine areas of research that require deeper study. While progress has been made in the identification of pathogenesis-related genes both in rice and in the pathogen, the mechanisms remain unclear. Research related to disease management practices has addressed the use of agronomic practices, chemical control, biological control and genetic improvement: Optimising nitrogen fertiliser use in conjunction with plant spacing can reduce spread of infection while smart agriculture technologies such as crop monitoring with Unmanned Aerial Systems assist in early detection and management of sheath blight disease. Replacing older fungicides with natural fungicides and use of biological agents can provide effective sheath blight control, also minimising environmental impact. Genetic approaches that show promise for the control of sheath blight include treatment with exogenous dsRNA to silence pathogen gene expression, genome editing to develop rice lines with lower susceptibility to sheath blight and development of transgenic rice lines overexpressing or silencing pathogenesis related genes. The main challenges that were identified for effective crop protection against sheath blight are the adaptive flexibility of the pathogen, lack of resistant rice varieties, abscence of single resistance genes for use in breeding and low access of farmers to awareness programmes for optimal management practices.
Collapse
Affiliation(s)
- Pooja Singh
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Purabi Mazumdar
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jennifer Ann Harikrishna
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Faculty of Science, Institute of Biological Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Subramanian Babu
- VIT School of Agricultural Innovations and Advanced Learning, VIT University, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
12
|
Kant R, Tyagi K, Ghosh S, Jha G. Host Alternative NADH:Ubiquinone Oxidoreductase Serves as a Susceptibility Factor to Promote Pathogenesis of Rhizoctonia solani in Plants. PHYTOPATHOLOGY 2019; 109:1741-1750. [PMID: 31179856 DOI: 10.1094/phyto-02-19-0055-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Phytopathogens have evolved mechanisms to utilize host genes (commonly known as susceptibility factors) to promote their pathogenesis. Rhizoctonia solani is a highly destructive fungal pathogen of various plants, including rice. We previously reported rice genes that were differentially regulated during R. solani pathogenesis. In this study, we analyzed the role of tomato homologs of two rice genes, isoflavone reductase (IFR) and alternative NADH:ubiquinone oxidoreductase (NUOR), as potential susceptibility factors for R. solani. Virus-induced gene silencing of NUOR in tomato resulted in compromised susceptibility against R. solani, whereas IFR-silenced plants demonstrated susceptibility similar to that of control plants. NUOR silencing in tomato led to homogenous accumulation of reactive oxygen species (optimum range) upon R. solani infection. In addition, the expression and enzyme activity of some host defense and antioxidant genes was enhanced, whereas H2O2 content, lipid peroxidation, and electrolyte leakage were reduced in NUOR-silenced plants. Similarly, transient silencing of OsNUOR provided tolerance against R. solani infection in rice. Overall, the data presented in this study suggest that NUOR serves as a host susceptibility factor to promote R. solani pathogenesis.
Collapse
Affiliation(s)
- Ravi Kant
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kriti Tyagi
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Srayan Ghosh
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|