1
|
Li D, Li H, Feng H, Qi P, Wu Z. Unveiling kiwifruit TCP genes: evolution, functions, and expression insights. PLANT SIGNALING & BEHAVIOR 2024; 19:2338985. [PMID: 38597293 PMCID: PMC11008546 DOI: 10.1080/15592324.2024.2338985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
The TEOSINTE-BRANCHED1/CYCLOIDEA/PROLEFERATING-CELL-FACTORS (TCP) gene family is a plant-specific transcriptional factor family involved in leaf morphogenesis and senescence, lateral branching, hormone crosstalk, and stress responses. To date, a systematic study on the identification and characterization of the TCP gene family in kiwifruit has not been reported. Additionally, the function of kiwifruit TCPs in regulating kiwifruit responses to the ethylene treatment and bacterial canker disease pathogen (Pseudomonas syringae pv. actinidiae, Psa) has not been investigated. Here, we identified 40 and 26 TCP genes in Actinidia chinensis (Ac) and A. eriantha (Ae) genomes, respectively. The synteny analysis of AcTCPs illustrated that whole-genome duplication accounted for the expansion of the TCP family in Ac. Phylogenetic, conserved domain, and selection pressure analysis indicated that TCP family genes in Ac and Ae had undergone different evolutionary patterns after whole-genome duplication (WGD) events, causing differences in TCP gene number and distribution. Our results also suggested that protein structure and cis-element architecture in promoter regions of TCP genes have driven the function divergence of duplicated gene pairs. Three and four AcTCP genes significantly affected kiwifruit responses to the ethylene treatment and Psa invasion, respectively. Our results provided insight into general characters, evolutionary patterns, and functional diversity of kiwifruit TCPs.
Collapse
Affiliation(s)
- Donglin Li
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Haibo Li
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Huimin Feng
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Ping Qi
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Zhicheng Wu
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| |
Collapse
|
2
|
Liu Z, Zhao J, Xiao Y, Li C, Miao R, Chen S, Zhang D, Zhou X, Li M. Comprehensive Analysis of the GiTCP Gene Family and Its Expression Under UV-B Radiation in Glycyrrhiza inflata Bat. Int J Mol Sci 2024; 26:159. [PMID: 39796017 PMCID: PMC11719519 DOI: 10.3390/ijms26010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
TCP is a plant-specific transcription factor that plays an important role in plant growth and development. In this study, we used bioinformatics to identify the entire genome of the TCP gene family in Glycyrrhiza inflata Bat, and we analyzed the expression characteristics of GiTCP genes under UV-B radiation using qRT-PCR. The results were as follows: (1) 24 members of the TCP gene family were identified in G. inflata, evenly distributed on its 24 chromosomes. (2) The GiTCP genes contained 0-4 introns and 0-5 exons. (3) The GiTCP genes were phylogenetically divided into three subfamilies-PCF, CIN, and CYC/TB1, with 14, 9, and 1 GiTCP proteins, respectively. (4) A covariance analysis showed that two pairs of GiTCP genes underwent a fragmentary duplication event. (5) A cis-element analysis showed that the cis-responsive elements of the GiTCP genes' promoter regions were mainly comprised of light-responsive, stress-responsive, hormone-regulated, growth and development, and metabolic-regulated elements. (6) A protein network interaction analysis revealed a total of 14 functional molecules of TCPs and 8 potential interacting proteins directly related to GiTCP proteins. (7) GO annotation showed that the GiTCP genes were mainly enriched in BP, CC, and MF groups and had corresponding functions. (8) RNA-seq and qRT-PCR further indicated that GiTCP3, 6, 7, 8, 12, 14, 17, 23, and 24 were up- or down-regulated in G. inflata after UV-B radiation, demonstrating that these genes responded to UV-B radiation in G. inflata. (9) Subcellular localization analysis showed that the GiTCP8 protein was localized in the nucleus. The results of this study provide a basis for further exploration of the function of the GiTCP gene family in the growth and development of G. inflata.
Collapse
Affiliation(s)
- Ziliang Liu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (J.Z.); (Y.X.); (C.L.); (R.M.); (S.C.)
| | - Jiaang Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (J.Z.); (Y.X.); (C.L.); (R.M.); (S.C.)
| | - Ying Xiao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (J.Z.); (Y.X.); (C.L.); (R.M.); (S.C.)
| | - Caijuan Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (J.Z.); (Y.X.); (C.L.); (R.M.); (S.C.)
| | - Rong Miao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (J.Z.); (Y.X.); (C.L.); (R.M.); (S.C.)
| | - Sijin Chen
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (J.Z.); (Y.X.); (C.L.); (R.M.); (S.C.)
| | - Dan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xiangyan Zhou
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (J.Z.); (Y.X.); (C.L.); (R.M.); (S.C.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Mengfei Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Zhi QQ, Chen Y, Hu H, Huang WQ, Bao GG, Wan XR. Physiological and transcriptome analyses reveal tissue-specific responses of Leucaena plants to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108926. [PMID: 38996715 DOI: 10.1016/j.plaphy.2024.108926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Leucaena leucocephala (Leucaena) is a leguminous tree widely cultivated in tropical and subtropical regions due to its strong environmental suitability for abiotic stresses, especially drought. However, the molecular mechanisms and key pathways involved in Leucaena's drought response require further elucidation. Here, we comparatively analyzed the physiological and early transcriptional responses of Leucaena leaves and roots under drought stress simulated by polyethylene glycol (PEG) treatments. Drought stress induced physiological changes in Leucaena seedlings, including decreases in relative water content (RWC) and increases in relative electrolyte leakage (REL), malondialdehyde (MDA), proline contents as well as antioxidant enzyme activities. In response to drought stress, 6461 and 8295 differentially expressed genes (DEGs) were identified in the leaves and roots, respectively. In both tissues, the signaling transduction pathway of plant hormones was notably the most enriched. Specifically, abscisic acid (ABA) biosynthesis and signaling related genes (NCED, PP2C, SnRK2 and ABF) were strongly upregulated particularly in leaves. The circadian rhythm, DNA replication, alpha-linolenic acid metabolism, and secondary metabolites biosynthesis related pathways were repressed in leaves, while the glycolysis/gluconeogenesis and alpha-linolenic acid metabolism and amino acid biosynthesis processes were promoted in roots. Furthermore, heterologous overexpression of Leucaena drought-inducible genes (PYL5, PP2CA, bHLH130, HSP70 and AUX22D) individually in yeast increased the tolerance to drought and heat stresses. Overall, these results deepen our understanding of the tissue-specific mechanisms of Leucaena in response to drought and provide target genes for future drought-tolerance breeding engineering in crops.
Collapse
Affiliation(s)
- Qing-Qing Zhi
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ying Chen
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Han Hu
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wen-Qi Huang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ge-Gen Bao
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Xiao-Rong Wan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
4
|
Ponce TP, Bugança MDS, da Silva VS, de Souza RF, Moda-Cirino V, Tomaz JP. Differential Gene Expression in Contrasting Common Bean Cultivars for Drought Tolerance during an Extended Dry Period. Genes (Basel) 2024; 15:935. [PMID: 39062714 PMCID: PMC11276061 DOI: 10.3390/genes15070935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 07/28/2024] Open
Abstract
Common beans (Phaseolus vulgaris L.), besides being an important source of nutrients such as iron, magnesium, and protein, are crucial for food security, especially in developing countries. Common bean cultivation areas commonly face production challenges due to drought occurrences, mainly during the reproductive period. Dry spells last approximately 20 days, enough time to compromise production. Hence, it is crucial to understand the genetic and molecular mechanisms that confer drought tolerance to improve common bean cultivars' adaptation to drought. Sixty six RNASeq libraries, generated from tolerant and sensitive cultivars in drought time sourced from the R5 phenological stage at 0 to 20 days of water deficit were sequenced, generated over 1.5 billion reads, that aligned to 62,524 transcripts originating from a reference transcriptome, as well as 6673 transcripts obtained via de novo assembly. Differentially expressed transcripts were functionally annotated, revealing a variety of genes associated with molecular functions such as oxidoreductase and transferase activity, as well as biological processes related to stress response and signaling. The presence of regulatory genes involved in signaling cascades and transcriptional control was also highlighted, for example, LEA proteins and dehydrins associated with dehydration protection, and transcription factors such as WRKY, MYB, and NAC, which modulate plant response to water deficit. Additionally, genes related to membrane and protein protection, as well as water and ion uptake and transport, were identified, including aquaporins, RING-type E3 ubiquitin transferases, antioxidant enzymes such as GSTs and CYPs, and thioredoxins. This study highlights the complexity of plant response to water scarcity, focusing on the functional diversity of the genes involved and their participation in the biological processes essential for plant adaptation to water stress. The identification of regulatory and cell protection genes offers promising prospects for genetic improvement aiming at the production of common bean varieties more resistant to drought. These findings have the potential to drive sustainable agriculture, providing valuable insights to ensure food security in a context of climate change.
Collapse
Affiliation(s)
- Talita Pijus Ponce
- Curso de Pós-Graduação em Agricultura Conservacionista, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
- Laboratório de Biotecnologia Vegetal, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
| | - Michely da Silva Bugança
- Laboratório de Biotecnologia Vegetal, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
- Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| | - Victória Stern da Silva
- Laboratório de Biotecnologia Vegetal, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
- Centro de Ciências Agrárias, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| | - Rogério Fernandes de Souza
- Laboratório de Bioinformática, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| | - Vânia Moda-Cirino
- Curso de Pós-Graduação em Agricultura Conservacionista, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
| | - Juarez Pires Tomaz
- Curso de Pós-Graduação em Agricultura Conservacionista, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
- Laboratório de Biotecnologia Vegetal, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
| |
Collapse
|
5
|
Panzade KP, Vishwakarma H, Kharate PS, Azameti MK. Genome-wide analysis and expression profile of TCP gene family under drought and salinity stress condition in cowpea ( Vigna unguiculata (L.) Walp.). 3 Biotech 2024; 14:138. [PMID: 38682097 PMCID: PMC11052985 DOI: 10.1007/s13205-024-03976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/13/2024] [Indexed: 05/01/2024] Open
Abstract
TCP transcription factors are known to regulate abiotic stress condition, but their role in V. unguiculata remains unexplored. So, in silico analysis and expression profile of the TCP gene family were performed in V. unguiculata to understand its role in response to heat and drought stress. A genome-wide search detected 28 TCPs (designated as VuTCPs) that were grouped into three subclasses by phylogenetic analysis. Gene structure, synteny, and phylogeny analyses of VuTCPs have shown a typical evolutionary path. One tandem and eight segmental duplication events were identified. Furthermore, identified duplicated, and orthologous VuTCP genes were under strong purifying selection pressure. A total of 15 SSRs were identified in the 12 VuTCPs, while 10 VuTCP genes were regulated by different miRNAs having a major role in abiotic stress tolerance. Analysed physicochemical properties, cis-acting elements, and gene ontology suggested that VuTCPs play various roles, including salinity and drought stress tolerance. qRT-PCR analysis showed that 11 and 15 VuTCPs were upregulated under drought and salinity stress conditions, respectively. Our findings provide comprehensive insights into the genomic characterization of the VuTCPs gene family in V. unguiculata, offering a foundation for understanding their structure, evolution, and role in abiotic stress tolerance. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03976-x.
Collapse
Affiliation(s)
- Kishor Prabhakar Panzade
- Department of Plant Biotechnology, SDMVM College of Agricultural Biotechnology, Georai Tanda, Chh. Sambhaji Nagar (Aurangabad), Maharashtra, 431002 India
| | - Harinder Vishwakarma
- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012 India
| | - Pawankumar S. Kharate
- Department of Plant Biotechnology, SDMVM College of Agricultural Biotechnology, Georai Tanda, Chh. Sambhaji Nagar (Aurangabad), Maharashtra, 431002 India
| | - Mawuli K. Azameti
- Department of Applied Biology, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Upper East Region Ghana
| |
Collapse
|
6
|
Wu X, Li J, Wen X, Zhang Q, Dai S. Genome-wide identification of the TCP gene family in Chrysanthemum lavandulifolium and its homologs expression patterns during flower development in different Chrysanthemum species. FRONTIERS IN PLANT SCIENCE 2023; 14:1276123. [PMID: 37841609 PMCID: PMC10570465 DOI: 10.3389/fpls.2023.1276123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
TCP proteins, part of the transcription factors specific to plants, are recognized for their involvement in various aspects of plant growth and development. Nevertheless, a thorough investigation of TCPs in Chrysanthemum lavandulifolium, a prominent ancestral species of cultivated chrysanthemum and an excellent model material for investigating ray floret (RF) and disc floret (DF) development in Chrysanthemum, remains unexplored yet. Herein, a comprehensive study was performed to analyze the genome-wide distribution of TCPs in C. lavandulifolium. In total, 39 TCPs in C. lavandulifolium were identified, showing uneven distribution on 8 chromosomes. Phylogenetic and gene structural analyses revealed that ClTCPs were grouped into classes I and II. The class II genes were subdivided into two subclades, the CIN and CYC/TB1 subclades, with members of each clade having similar conserved motifs and gene structures. Four CIN subclade genes (ClTCP24, ClTCP25, ClTCP26, and ClTCP27) contained the potential miR319 target sites. Promoter analysis revealed that ClTCPs had numerous cis-regulatory elements associated with phytohormone responses, stress responses, and plant growth/development. The expression patterns of ClTCPs during capitulum development and in two different florets were determined using RNA-seq and qRT-PCR. The expression levels of TCPs varied in six development stages of capitula; 25 out of the 36 TCPs genes were specifically expressed in flowers. Additionally, we identified six key ClCYC2 genes, which belong to the class II TCP subclade, with markedly upregulated expression in RFs compared with DFs, and these genes exhibited similar expression patterns in the two florets of Chrysanthemum species. It is speculated that they may be responsible for RFs and DFs development. Subcellular localization and transactivation activity analyses of six candidate genes demonstrated that all of them were localized in the nucleus, while three exhibited self-activation activities. This research provided a better understanding of TCPs in C. lavandulifolium and laid a foundation for unraveling the mechanism by which important TCPs involved in the capitulum development.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Junzhuo Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xiaohui Wen
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qiuling Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
7
|
Li Y, Li L, Yang J, Niu Z, Liu W, Lin Y, Xue Q, Ding X. Genome-Wide Identification and Analysis of TCP Gene Family among Three Dendrobium Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:3201. [PMID: 37765364 PMCID: PMC10538224 DOI: 10.3390/plants12183201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Dendrobium orchids, which are among the most well-known species of orchids, are appreciated for their aesthetic appeal across the globe. Furthermore, due to their strict living conditions, they have accumulated high levels of active ingredients, resulting not only in their medicinal value but also in their strong ability to respond to harsh environments. The TCP gene family plays an important role in plant growth and development, and signal transduction. However, these genes have not been systematically investigated in Dendrobium species. In this study, we detected a total of 24, 23, and 14 candidate TCP members in the genome sequences of D. officinale, D. nobile, and D. chrysotoxum, respectively. These genes were classified into three clades on the basis of a phylogenetic analysis. The TCP gene numbers among Dendrobium species were still highly variable due to the independent loss of genes in the CIN clade. However, only three gene duplication events were detected, with only one tandem duplication event (DcTCP9/DcTCP10) in D. chrysotoxum and two pairs of paralogous DoTCP gene duplication events (DoTCP1/DoTCP23 and DoTCP16/DoTCP24) in D. officinale. A total of 25 cis-acting elements of TCPs related to hormone/stress and light responses were detected. Among them, the proportions of hormone response, light response, and stress response elements in D. officinale (100/421, 127/421, and 171/421) were similar to those in D. nobile (83/352, 87/352, and 161/352). Using qRT-PCR to determine their expression patterns under MeJA treatment, four DoTCPs (DoTCP2, DoTCP4, DoTCP6, and DoTCP14) were significantly upregulated under MeJA treatment, which indicates that TCP genes may play important roles in responding to stress. Under ABA treatment, seven DoTCPs (DoTCP3, DoTCP7, DoTCP9, DoTCP11, DoTCP14, DoTCP15, and DoTCP21) were significantly upregulated, indicating that TCP genes may also play an important role in hormone response. Therefore, these results can provide useful information for studying the evolution and function of TCP genes in Dendrobium species.
Collapse
Affiliation(s)
- Yaoting Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (Y.L.); (Y.L.)
- School of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China
| | - Lingli Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.L.); (J.Y.); (Z.N.); (W.L.)
| | - Jiapeng Yang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.L.); (J.Y.); (Z.N.); (W.L.)
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.L.); (J.Y.); (Z.N.); (W.L.)
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.L.); (J.Y.); (Z.N.); (W.L.)
| | - Yi Lin
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (Y.L.); (Y.L.)
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.L.); (J.Y.); (Z.N.); (W.L.)
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.L.); (J.Y.); (Z.N.); (W.L.)
| |
Collapse
|
8
|
Kim Y, Wang J, Ma C, Jong C, Jin M, Cha J, Wang J, Peng Y, Ni H, Li H, Yang M, Chen Q, Xin D. GmTCP and GmNLP Underlying Nodulation Character in Soybean Depending on Nitrogen. Int J Mol Sci 2023; 24:ijms24097750. [PMID: 37175456 PMCID: PMC10178161 DOI: 10.3390/ijms24097750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Soybean is a cereal crop with high protein and oil content which serves as the main source of plant-based protein and oil for human consumption. The symbiotic relationship between legumes and rhizobia contributes significantly to soybean yield and quality, but the underlying molecular mechanisms remain poorly understood, hindering efforts to improve soybean productivity. In this study, we conducted a transcriptome analysis and identified 22 differentially expressed genes (DEGs) from nodule-related quantitative trait loci (QTL) located in chromosomes 12 and 19. Subsequently, we performed functional characterisation and haplotype analysis to identify key candidate genes among the 22 DEGs that are responsive to nitrate. Our findings identified GmTCP (TEOSINTE-BRANCHED1/CYCLOIDEA/PCF) and GmNLP (NIN-LIKE PROTEIN) as the key candidate genes that regulate the soybean nodule phenotype in response to nitrogen concentration. We conducted homologous gene mutant analysis in Arabidopsis thaliana, which revealed that the homologous genes of GmTCP and GmNLP play a vital role in regulating root development in response to nitrogen concentration. We further performed overexpression and gene knockout of GmTCP and GmNLP through hairy root transformation in soybeans and analysed the effects of GmTCP and GmNLP on nodulation under different nitrogen concentrations using transgenic lines. Overexpressing GmTCP and GmNLP resulted in significant differences in soybean hairy root nodulation phenotypes, such as nodule number (NN) and nodule dry weight (NDW), under varying nitrate conditions. Our results demonstrate that GmTCP and GmNLP are involved in regulating soybean nodulation in response to nitrogen concentration, providing new insights into the mechanism of soybean symbiosis establishment underlying different nitrogen concentrations.
Collapse
Affiliation(s)
- Yunchol Kim
- College of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Jinhui Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Chao Ma
- College of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Cholnam Jong
- College of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Myongil Jin
- College of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Jinmyong Cha
- College of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Jing Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Yang Peng
- College of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Hejia Ni
- College of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Haibo Li
- College of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Mingliang Yang
- College of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Dawei Xin
- College of Agriculture, Northeast Agricultural University, Harbin 150036, China
| |
Collapse
|
9
|
Identification of CNGCs in Glycine max and Screening of Related Resistance Genes after Fusarium solani Infection. BIOLOGY 2023; 12:biology12030439. [PMID: 36979131 PMCID: PMC10045575 DOI: 10.3390/biology12030439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
Cyclic nucleotide-gated channels (CNGCs), non-selective cation channels localised on the plasmalemma, are involved in growth, development, and regulatory mechanisms in plants during adverse stress. To date, CNGC gene families in multiple crops have been identified and analysed. However, there have been no systematic studies on the evolution and development of CNGC gene families in legumes. Therefore, in the present study, via transcriptome analysis, we identified 143 CNGC genes in legumes, and thereafter, classified and named them according to the grouping method used for Arabidopsis thaliana. Functional verification for disease stress showed that four GmCNGCs were specifically expressed in the plasmalemma during the stress process. Further, functional enrichment analysis showed that their mode of participation and coordination included inorganic ion concentration regulation inside and outside the membrane via the transmembrane ion channel and participation in stress regulation via signal transduction. The CNGC family genes in G. max involved in disease stress were also identified and physiological stress response and omics analyses were also performed. Our preliminary results revealed the basic laws governing the involvement of CNGCs in disease resistance in G. max, providing important gene resources and a theoretical reference for the breeding of resistant soybean.
Collapse
|
10
|
Chang Y, Peng L, Ji L, Wang S, Wang L, Wu J. Genome-wise association study identified genomic regions associated with drought tolerance in mungbean (Vigna radiata (L.) R. Wilczek). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:40. [PMID: 36897414 DOI: 10.1007/s00122-023-04303-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
A total of 282 mungbean accessions were resequenced to identify genome-wide variants and construct a highly precise variant map, and drought tolerance-related loci and superior alleles were identified by GWAS. Mungbean (Vigna radiata (L.) R. Wilczek) is an important food legume crop that is highly adapted to drought environments, but severe drought significantly curtails mungbean production. Here, we resequenced 282 mungbean accessions to identify genome-wide variants and constructed a highly precise map of mungbean variants. A genome-wide association study was performed to identify genomic regions for 14 drought tolerance-related traits in plants grown under stress and well-watered conditions over three years. One hundred forty-six SNPs associated with drought tolerance were detected, and 26 candidate loci associated with more than two traits were subsequently selected. Two hundred fifteen candidate genes were identified at these loci, including eleven transcription factor genes, seven protein kinase genes and other protein coding genes that may respond to drought stress. Furthermore, we identified superior alleles that were associated with drought tolerance and positively selected during the breeding process. These results provide valuable genomic resources for molecular breeding and will accelerate future efforts aimed at mungbean improvement.
Collapse
Affiliation(s)
- Yujie Chang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lin Peng
- Institute of Food Crop, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Liang Ji
- Institute of Food Crop, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Shumin Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lanfen Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jing Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
11
|
Ling L, Li M, Chen N, Ren G, Qu L, Yue H, Wu X, Zhao J. Genome-Wide Analysis and Expression of the GRAS Transcription Factor Family in Avena sativa. Genes (Basel) 2023; 14:genes14010164. [PMID: 36672905 PMCID: PMC9858933 DOI: 10.3390/genes14010164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The GRAS transcription factor is an important transcription factor in plants. In recent years, more GRAS genes have been identified in many plant species. However, the GRAS gene family has not yet been studied in Avena sativa. We identified 100 members of the GRAS gene family in A. sativa (Avena sativa), named them AsGRAS1~AsGRAS100 according to the positions of 21 chromosomes, and classified them into 9 subfamilies. In this study, the motif and gene structures were also relatively conserved in the same subfamilies. At the same time, we found a great deal related to the stress of cis-acting promoter regulatory elements (MBS, ABRE, and TC-rich repeat elements). qRT-PCR suggested that the AsGRAS gene family (GRAS gene family in A. sativa) can regulate the response to salt, saline-alkali, and cold and freezing abiotic stresses. The current study provides original and detailed information about the AsGRAS gene family, which contributes to the functional characterization of GRAS proteins in other plants.
Collapse
|
12
|
Xiong W, Zhao Y, Gao H, Li Y, Tang W, Ma L, Yang G, Sun J. Genomic characterization and expression analysis of TCP transcription factors in Setaria italica and Setaria viridis. PLANT SIGNALING & BEHAVIOR 2022; 17:2075158. [PMID: 35616063 PMCID: PMC9154779 DOI: 10.1080/15592324.2022.2075158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The plant-specific TCP transcription factor plays important roles in plant development and environment adaptation. Setaria italica and Setaria viridis, the C4 model plants, can grow on drought or arid soils. However, there is no systematic information about the genomic dissection and the expression of Setaria TCP genes. A total of 22 TCP genes were both identified from S. italica and S. viridis genomes. They all contained bHLH domain and were grouped into three main clades (PCF, CIN, and CYC/TB1). The TCP genes in the same clades shared similar gene structures. Cis-element in the TCP promoter regions were analyzed and associated with hormones and stress responsiveness. Ten TCP genes were predicted to be targets of miRNA319. Moreover, gene ontology analysis indicated three SiTCP and three SvTCP genes were involved in the regulation of shoot development, and SiTCP16/SvTCP16 were clustered together with tillering controlling gene TB1. The TCP genes were differentially expressed in the organs, but SiTCP/SvTCP orthologs shared similar expression patterns. Ten SiTCP members were downregulated under drought or salinity stresses, indicating they may play regulatory roles in abiotic stresses. The study provides detailed information regarding Setaria TCP genes, providing the theoretical basis for agricultural applications.
Collapse
Affiliation(s)
- Wangdan Xiong
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yiran Zhao
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hanchi Gao
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yinghui Li
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wei Tang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Lichao Ma
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Guofeng Yang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Juan Sun
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
13
|
Zhou H, Hwarari D, Ma H, Xu H, Yang L, Luo Y. Genomic survey of TCP transcription factors in plants: Phylogenomics, evolution and their biology. Front Genet 2022; 13:1060546. [PMID: 36437962 PMCID: PMC9682074 DOI: 10.3389/fgene.2022.1060546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
The TEOSINTE BRANCHED1 (TBI1), CYCLOIDEA (CYC), and PROLIFERATING CELL NUCLEAR ANTIGEN FACTORS (PCF1 and PCF2) proteins truncated as TCP transcription factors carry conserved basic-helix-loop-helix (bHLH) structure, related to DNA binding functions. Evolutionary history of the TCP genes has shown their presence in early land plants. In this paper, we performed a comparative discussion on the current knowledge of the TCP Transcription Factors in lower and higher plants: their evolutionary history based on the phylogenetics of 849 TCP proteins from 37 plant species, duplication events, and biochemical roles in some of the plants species. Phylogenetics investigations confirmed the classification of TCP TFs into Class I (the PCF1/2), and Class II (the C- clade) factors; the Class II factors were further divided into the CIN- and CYC/TB1- subclade. A trace in the evolution of the TCP Factors revealed an absence of the CYC/TB1subclade in lower plants, and an independent evolution of the CYC/TB1subclade in both eudicot and monocot species. 54% of the total duplication events analyzed were biased towards the dispersed duplication, and we concluded that dispersed duplication events contributed to the expansion of the TCP gene family. Analysis in the TCP factors functional roles confirmed their involvement in various biochemical processes which mainly included promoting cell proliferation in leaves in Class I TCPs, and cell division during plant development in Class II TCP Factors. Apart from growth and development, the TCP Factors were also shown to regulate hormonal and stress response pathways. Although this paper does not exhaust the present knowledge of the TCP Transcription Factors, it provides a base for further exploration of the gene family.
Collapse
Affiliation(s)
- Haiying Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Collaborative In-novation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Delight Hwarari
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Hongyu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Haibin Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Liming Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Yuming Luo
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Collaborative In-novation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
14
|
Liu YJ, An JP, Gao N, Wang X, Chen XX, Wang XF, Zhang S, You CX. MdTCP46 interacts with MdABI5 to negatively regulate ABA signalling and drought response in apple. PLANT, CELL & ENVIRONMENT 2022; 45:3233-3248. [PMID: 36043225 DOI: 10.1111/pce.14429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) transcription factors play crucial roles in plant abiotic stresses. However, little is known about the role of TCP genes in the drought stress tolerance of apple. Here, we found that abscisic acid (ABA) and drought treatment reduced the expression of MdTCP46, and overexpression of MdTCP46 reduced ABA sensitivity and drought stress resistance. MdTCP46 was found to interact with MdABI5 both in vitro and in vivo, and this interaction was essential for drought resistance via the ABA-dependent pathway. Overexpression of MdABI5 enhanced ABA sensitivity and drought stress resistance by directly activating the expression of MdEM6 and MdRD29A. MdTCP46 significantly suppressed the transcriptional activity of MdABI5, thereby negatively regulating MdABI5-mediated ABA signalling and drought response. Overall, our results demonstrate that the MdTCP46-MdABI5-MdEM6/MdRD29A regulatory module plays a key role in the modulation of ABA signalling and the drought stress response. These findings provide new insight into the role of MdTCP46 in ABA signalling and abiotic stress responses.
Collapse
Affiliation(s)
- Ya-Jing Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Jian-Ping An
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Ning Gao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xun Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xi-Xia Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Shuai Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| |
Collapse
|
15
|
Willig J, Guarneri N, van Steenbrugge JJM, de Jong W, Chen J, Goverse A, Lozano Torres JL, Sterken MG, Bakker J, Smant G. The Arabidopsis transcription factor TCP9 modulates root architectural plasticity, reactive oxygen species-mediated processes, and tolerance to cyst nematode infections. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1070-1083. [PMID: 36181710 PMCID: PMC9828446 DOI: 10.1111/tpj.15996] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/06/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Infections by root-feeding nematodes have profound effects on root system architecture and consequently shoot growth of host plants. Plants harbor intraspecific variation in their growth responses to belowground biotic stresses by nematodes, but the underlying mechanisms are not well understood. Here, we show that the transcription factor TEOSINTE BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTOR-9 (TCP9) modulates root system architectural plasticity in Arabidopsis thaliana in response to infections by the endoparasitic cyst nematode Heterodera schachtii. Young seedlings of tcp9 knock-out mutants display a significantly weaker primary root growth inhibition response to cyst nematodes than wild-type Arabidopsis. In older plants, tcp9 reduces the impact of nematode infections on the emergence and growth of secondary roots. Importantly, the altered growth responses by tcp9 are most likely not caused by less biotic stress on the root system, because TCP9 does not affect the number of infections, nematode development, and size of the nematode-induced feeding structures. RNA-sequencing of nematode-infected roots of the tcp9 mutants revealed differential regulation of enzymes involved in reactive oxygen species (ROS) homeostasis and responses to oxidative stress. We also found that root and shoot growth of tcp9 mutants is less sensitive to exogenous hydrogen peroxide and that ROS accumulation in nematode infection sites in these mutants is reduced. Altogether, these observations demonstrate that TCP9 modulates the root system architectural plasticity to nematode infections via ROS-mediated processes. Our study further points at a novel regulatory mechanism contributing to the tolerance of plants to root-feeding nematodes by mitigating the impact of belowground biotic stresses.
Collapse
Affiliation(s)
- Jaap‐Jan Willig
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| | - Nina Guarneri
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| | | | - Willem de Jong
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| | - Jingrong Chen
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| | - Aska Goverse
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| | - José L. Lozano Torres
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| | - Mark G. Sterken
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| | - Jaap Bakker
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| | - Geert Smant
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| |
Collapse
|
16
|
Genome-Wide Analysis of the WOX Transcription Factor Genes in Dendrobium catenatum Lindl. Genes (Basel) 2022; 13:genes13081481. [PMID: 36011392 PMCID: PMC9408443 DOI: 10.3390/genes13081481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
The WUSCHEL-related homeobox (WOX) proteins are a class of transcription factors exclusive to plants. They can promote cell division or inhibit stem cell differentiation to regulate plant growth and development. However, the WOX transcription factor genes in the monocotyledon Dendrobium catenatum Lindl. remain relatively uncharacterized. Specifically, the effects of phytohormones on their expression levels are unclear. In this study, we identified and analyzed 10 candidate DcaWOX transcription factor genes in D. catenatum. The DcaWOX family was divided into the modern/WUS, intermediate, and ancient clades. The subcellular localization analysis detected DcaWOX-GFP fusion proteins in the tobacco epidermal leaf cell nucleus. In DcaWOX, members of the WUS clade with the WUS-box motif can significantly activate the expression of TPL in vivo, while members of the intermediate and ancient clades cannot. The expression of the DcaWOX genes varied among the examined tissues. Moreover, the DcaWOX expression patterns were differentially affected by the phytohormone treatments, with differences detected even between homologs of the same gene. Furthermore, the gene expression patterns were consistent with the predicted cis-acting elements in the promoters. The above results suggest that DcaWOX may have an important role in its growth and development and resistance to stress. The results of this comprehensive investigation of the DcaWOX gene family provide the basis for future studies on the roles of WOX genes in D. catenatum.
Collapse
|
17
|
Shang X, Han Z, Zhang D, Wang Y, Qin H, Zou Z, Zhou L, Zhu X, Fang W, Ma Y. Genome-Wide Analysis of the TCP Gene Family and Their Expression Pattern Analysis in Tea Plant ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:840350. [PMID: 35845692 PMCID: PMC9284231 DOI: 10.3389/fpls.2022.840350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors TEOSINTE BRANCHED1/CYCLOIDEA/PCF have been suggested to control the cell growth and proliferation in meristems and lateral organs. A total of 37 CsTCP genes were identified and divided into two classes, class I (PCF, group 1) and class II (CIN CYC/TB1, groups 2, and 3). The residues of TEOSINTE BRANCHED1/CYCLOIDEA/PCF of Camellia sinensis (Tea plant) (CsTCP) proteins between class I and class II were definitely different in the loop, helix I, and helix II regions; however, eighteen conserved tandem was found in bHLH. There are a large number of CsTCP homologous gene pairs in three groups. Additionally, most CsTCP proteins have obvious differences in motif composition. The results illuminated that CsTCP proteins in different groups are supposed to have complementary functions, whereas those in the same class seem to display function redundancies. There is no relationship between the number of CsTCP gene members and genome size, and the CsTCP gene family has only expanded since the divergence of monocots and eudicots. WGD/segmental duplication played a vital role in the expansion of the CsTCP gene family in tea plant, and the CsTCP gene family has expanded a lot. Most CsTCP genes of group 1 are more widely and non-specifically expressed, and the CsTCP genes of group 2 are mainly expressed in buds, flowers, and leaves. Most genes of group 1 and some genes of group 2 were up-/downregulated in varying degrees under different stress, CsTCP genes of group 3 basically do not respond to stress. TCP genes involved in abiotic stress response mostly belong to PCF group. Some CsTCP genes may have the same function as the homologous genes in Arabidopsis, but there is functional differentiation.
Collapse
Affiliation(s)
- Xiaowen Shang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhaolan Han
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Dayan Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ya Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Hao Qin
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Agricultural and Forestry Service Center, Suzhou, China
| | - Zhongwei Zou
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Lin Zhou
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Huang F, Shi C, Zhang Y, Hou X. Genome-Wide Identification and Characterization of TCP Family Genes in Pak-Choi [ Brassica campestris (syn. Brassica rapa) ssp. chinensis var. communis]. FRONTIERS IN PLANT SCIENCE 2022; 13:854171. [PMID: 35615139 PMCID: PMC9125175 DOI: 10.3389/fpls.2022.854171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) gene family, a kind of plant specific transcription factor, is essential for stress response, cell growth, and cell proliferation. However, the characterization of TCP family is still not clear in Pak-choi [Brassica campestris (syn. Brassica rapa) ssp. chinensis var. communis]. In this study, genome-wide analysis of TCP gene family was performed and 26 TCP genes were identified in Pak-choi. Phylogenetic analysis demonstrated that the 26 BcTCPs were divided into two classes: Class I and Class II. Class II was further classified into two subclasses, CIN and CYC/TB1. The qPCR results suggested that most BcTCPs respond to abiotic stresses. The expressions of BcTCP3, BcTCP12, BcTCP21, and BcTCP22 were significantly changed under ABA and cold treatment. BcTCP3 and BcTCP12 were also up-regulated under osmotic treatment. Subcellular localization showed that BcTCP3 and BcTCP21 were located in the nucleus. Our results will facilitate revealing the functions and regulatory mechanisms of BcTCPs.
Collapse
|
19
|
Nie YM, Han FX, Ma JJ, Chen X, Song YT, Niu SH, Wu HX. Genome-wide TCP transcription factors analysis provides insight into their new functions in seasonal and diurnal growth rhythm in Pinus tabuliformis. BMC PLANT BIOLOGY 2022; 22:167. [PMID: 35366809 PMCID: PMC8976390 DOI: 10.1186/s12870-022-03554-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/23/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Pinus tabuliformis adapts to cold climate with dry winter in northern China, serving as important commercial tree species. The TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTOR family(TCP)transcription factors were found to play a role in the circadian clock system in Arabidopsis. However, the role of TCP transcription factors in P. tabuliformis remains little understood. RESULTS In the present study, 43 TCP genes were identified from P. tabuliformis genome database. Based on the phylogeny tree and sequence similarity, the 43 TCP genes were classified into four groups. The motif results showed that different subfamilies indeed contained different motifs. Clade II genes contain motif 1, clade I genes contain motif 1, 8, 10 and clade III and IV contain more motifs, which is consistent with our grouping results. The structural analysis of PtTCP genes showed that most PtTCPs lacked introns. The distribution of clade I and clade II on the chromosome is relatively scattered, while clade III and clade IV is relatively concentrated. Co-expression network indicated that PtTCP2, PtTCP12, PtTCP36, PtTCP37, PtTCP38, PtTCP41 and PtTCP43 were co-expressed with clock genes in annual cycle and their annual cycle expression profiles both showed obvious seasonal oscillations. PtTCP2, PtTCP12, PtTCP37, PtTCP38, PtTCP40, PtTCP41, PtTCP42 and PtTCP43 were co-expressed with clock genes in diurnal cycle. Only the expression of PtTCP42 showed diurnal oscillation. CONCLUSIONS The TCP gene family, especially clade II, may play an important role in the regulation of the season and circadian rhythm of P. tabuliformis. In addition, the low temperature in winter may affect the diurnal oscillations.
Collapse
Affiliation(s)
- Yu-meng Nie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - Fang-xu Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - Jing-jing Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - Xi Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - Yi-tong Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - Shi-Hui Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - Harry X. Wu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus väg 6, SE-901 83 Umeå, Sweden
| |
Collapse
|
20
|
Su Y, Peng X, Shen S. Identification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in paper mulberry and their potential roles in response to cold stress. Comput Biol Chem 2022; 97:107622. [DOI: 10.1016/j.compbiolchem.2022.107622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 11/03/2022]
|
21
|
Tian C, Zhai L, Zhu W, Qi X, Yu Z, Wang H, Chen F, Wang L, Chen S. Characterization of the TCP Gene Family in Chrysanthemum nankingense and the Role of CnTCP4 in Cold Tolerance. PLANTS (BASEL, SWITZERLAND) 2022; 11:936. [PMID: 35406918 PMCID: PMC9002959 DOI: 10.3390/plants11070936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Plant-specific TCP transcription factors play a key role in plant development and stress responses. Chrysanthemum nankingense shows higher cold tolerance than its ornamental polyploid counterpart. However, whether the TCP gene family plays a role in conferring cold tolerance upon C. nankingense remains unknown. Here, we identified 23 CnTCP genes in C. nankingense, systematically analyzed their phylogenetic relationships and synteny with TCPs from other species, and evaluated their expression profiles at low temperature. Phylogenetic analysis of the protein sequences suggested that CnTCP proteins fall into two classes and three clades, with a typical bHLH domain. However, differences between C. nankingense and Arabidopsis in predicted protein structure and binding sites suggested a unique function of CnTCPs in C. nankingense. Furthermore, expression profiles showed that expression of most CnTCPs were downregulated under cold conditions, suggesting their importance in plant responses to cold stress. Notably, expression of miR319 and of its predicted target genes, CnTCP2/4/14, led to fast responses to cold. Overexpression of Arabidopsis CnTCP4 led to hypersensitivity to cold, suggesting that CnTCP4 might play a negative role in C. nankingense responses to cold stress. Our results provide a foundation for future functional genomic studies on this gene family in chrysanthemum.
Collapse
Affiliation(s)
- Chang Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.T.); (L.Z.); (W.Z.); (X.Q.); (Z.Y.); (H.W.); (F.C.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lisheng Zhai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.T.); (L.Z.); (W.Z.); (X.Q.); (Z.Y.); (H.W.); (F.C.)
| | - Wenjing Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.T.); (L.Z.); (W.Z.); (X.Q.); (Z.Y.); (H.W.); (F.C.)
| | - Xiangyu Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.T.); (L.Z.); (W.Z.); (X.Q.); (Z.Y.); (H.W.); (F.C.)
| | - Zhongyu Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.T.); (L.Z.); (W.Z.); (X.Q.); (Z.Y.); (H.W.); (F.C.)
| | - Haibin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.T.); (L.Z.); (W.Z.); (X.Q.); (Z.Y.); (H.W.); (F.C.)
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.T.); (L.Z.); (W.Z.); (X.Q.); (Z.Y.); (H.W.); (F.C.)
| | - Likai Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.T.); (L.Z.); (W.Z.); (X.Q.); (Z.Y.); (H.W.); (F.C.)
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.T.); (L.Z.); (W.Z.); (X.Q.); (Z.Y.); (H.W.); (F.C.)
| |
Collapse
|
22
|
Gain H, Nandi D, Kumari D, Das A, Dasgupta SB, Banerjee J. Genome‑wide identification of CAMTA gene family members in rice (Oryza sativa L.) and in silico study on their versatility in respect to gene expression and promoter structure. Funct Integr Genomics 2022; 22:193-214. [PMID: 35169940 DOI: 10.1007/s10142-022-00828-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 11/29/2021] [Accepted: 01/29/2022] [Indexed: 12/20/2022]
Abstract
The calmodulin-binding transcription activator (CAMTA) is a family of transcriptional factors containing a cluster of calmodulin-binding proteins that can activate gene regulation in response to stresses. The presence of this family of genes has been reported earlier, though, the comprehensive analyses of rice CAMTA (OsCAMTA) genes, their promoter regions, and the proteins were not deliberated till date. The present report revealed the existence of seven CAMTA genes along with their alternate transcripts in five chromosomes of rice (Oryza sativa) genome. Phylogenetic trees classified seven CAMTA genes into three clades indicating the evolutionary conservation in gene structure and their association with other plant species. The in silico study was carried out considering 2 kilobases (kb) promoter regions of seven OsCAMTA genes regarding the distribution of transcription factor binding sites (TFbs) of major and plant-specific transcription factors whereas OsCAMTA7a was identified with highest number of TFbs, while OsCAMTA4 had the lowest. Comparative modelling, i.e., homology modelling, and molecular docking of the CAMTA proteins contributed the thoughtful comprehension of protein 3D structures and protein-protein interaction with probable partners. Gene ontology annotation identified the involvement of the proteins in biological processes, molecular functions, and localization in cellular components. Differential gene expression study gave an insight on functional multiplicity to showcase OsCAMTA3b as most upregulated stress-responsive gene. Summarization of the present findings can be interpreted that OsCAMTA gene duplication, variation in TFbs available in the promoters, and interactions of OsCAMTA proteins with their binding partners might be linked to tolerance against multiple biotic and abiotic cues.
Collapse
Affiliation(s)
- Hena Gain
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Debarati Nandi
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Deepika Kumari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Arpita Das
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India
| | - Somdeb Bose Dasgupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Joydeep Banerjee
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
23
|
Mishra S, Sahu G, Shaw BP. Insight into the cellular and physiological regulatory modulations of Class-I TCP9 to enhance drought and salinity stress tolerance in cowpea. PHYSIOLOGIA PLANTARUM 2022; 174:e13542. [PMID: 34459503 DOI: 10.1111/ppl.13542] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/01/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The Teosinte branched 1/Cycloidea/Proliferating cell factor (TCP) transcription factors are potent growth and developmental regulators in plants, also responsive to various hormonal and environmental stimuli. In this study, we primarily focused on the functional role of TCP9, a nuclear-localised Class-I TCP transcription factor in a drought and heat-tolerant legume crop, cowpea (Vigna unguiculata). Under drought stress, a higher protein expression level of TCP9 was observed in the leaves of the drought-tolerant cowpea cultivar Pusa Komal as compared to the drought-sensitive cultivar TVu-7778. Further, overexpression of VuTCP9 resulted in reduced cell and stomata size, aperture length and width while cell and overall stomatal density in the 35S::VuTCP9 transgenic cowpea lines increased. Phenotypic alterations, such as reduced leaf size and vigour, altered seed coats displaying extension pattern similar to the 'Watson pattern' and delayed senescence were prominent in the transgenic lines. Under normal conditions, the gas exchange and fluorescence measurements indicated reduction in transpiration rate (E), stomatal conductance (gs ) and photosynthetic efficiency (Φ PSII). However, water usage efficiency (WUE) remained unaltered in the transgenic lines as compared to the wild-type (WT) plants. Furthermore, the transgenic lines displayed higher tolerance to oxidative, drought and salinity stress, maintained relatively higher relative water content and lower occurrence of H2 O2 , as compared to the WT plants. Genes related to the jasmonic acid biosynthesis, stomatal development and abiotic stress responsiveness, such as TTG1, NAC25, SPCH and GRP1, increased and LOX2 decreased significantly in the transgenic lines.
Collapse
Affiliation(s)
- Sagarika Mishra
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Gyanasri Sahu
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Birendra Prasad Shaw
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
24
|
Menéndez AB, Ruiz OA. Stress-regulated elements in Lotus spp., as a possible starting point to understand signalling networks and stress adaptation in legumes. PeerJ 2021; 9:e12110. [PMID: 34909267 PMCID: PMC8641479 DOI: 10.7717/peerj.12110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/14/2021] [Indexed: 11/20/2022] Open
Abstract
Although legumes are of primary economic importance for human and livestock consumption, the information regarding signalling networks during plant stress response in this group is very scarce. Lotus japonicus is a major experimental model within the Leguminosae family, whereas L. corniculatus and L. tenuis are frequent components of natural and agricultural ecosystems worldwide. These species display differences in their perception and response to diverse stresses, even at the genotype level, whereby they have been used in many studies aimed at achieving a better understanding of the plant stress-response mechanisms. However, we are far from the identification of key components of their stress-response signalling network, a previous step for implementing transgenic and editing tools to develop legume stress-resilient genotypes, with higher crop yield and quality. In this review we scope a body of literature, highlighting what is currently known on the stress-regulated signalling elements so far reported in Lotus spp. Our work includes a comprehensive review of transcription factors chaperones, redox signals and proteins of unknown function. In addition, we revised strigolactones and genes regulating phytochelatins and hormone metabolism, due to their involvement as intermediates in several physiological signalling networks. This work was intended for a broad readership in the fields of physiology, metabolism, plant nutrition, genetics and signal transduction. Our results suggest that Lotus species provide a valuable information platform for the study of specific protein-protein (PPI) interactions, as a starting point to unravel signalling networks underlying plant acclimatation to bacterial and abiotic stressors in legumes. Furthermore, some Lotus species may be a source of genes whose regulation improves stress tolerance and growth when introduced ectopically in other plant species.
Collapse
Affiliation(s)
- Ana B Menéndez
- Departamento de Biodiversidad y Biología Experimental. Facultad de Ciencias Exactas y Naturales., Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Overseas, Argentina.,Instituto de Micología y Botánica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Overseas, Argentina
| | - Oscar Adolfo Ruiz
- Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Buenos Aires, Argentina
| |
Collapse
|
25
|
Zhang L, Li C, Yang D, Wang Y, Yang Y, Sun X. Genome-Wide Analysis of the TCP Transcription Factor Genes in Dendrobium catenatum Lindl. Int J Mol Sci 2021; 22:ijms221910269. [PMID: 34638610 PMCID: PMC8508941 DOI: 10.3390/ijms221910269] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022] Open
Abstract
Teosinte branched1/cycloidea/proliferating cell factor (TCP) gene family members are plant-specific transcription factors that regulate plant growth and development by controlling cell proliferation and differentiation. However, there are no reported studies on the TCP gene family in Dendrobium catenatum Lindl. Here, a genome-wide analysis of TCP genes was performed in D. catenatum, and 25 TCP genes were identified. A phylogenetic analysis classified the family into two clades: Class I and Class II. Genes in the same clade share similar conserved motifs. The GFP signals of the DcaTCP-GFPs were detected in the nuclei of tobacco leaf epidermal cells. The activity of DcaTCP4, which contains the miR319a-binding sequence, was reduced when combined with miR319a. A transient activity assay revealed antagonistic functions of Class I and Class II of the TCP proteins in controlling leaf development through the jasmonate-signaling pathway. After different phytohormone treatments, the DcaTCP genes showed varied expression patterns. In particular, DcaTCP4 and DcaTCP9 showed opposite trends after 3 h treatment with jasmonate. This comprehensive analysis provides a foundation for further studies on the roles of TCP genes in D. catenatum.
Collapse
Affiliation(s)
- Li Zhang
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Z.); (C.L.); (D.Y.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Li
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Z.); (C.L.); (D.Y.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danni Yang
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Z.); (C.L.); (D.Y.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhua Wang
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Z.); (C.L.); (D.Y.); (Y.W.)
| | - Yongping Yang
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Z.); (C.L.); (D.Y.); (Y.W.)
- Correspondence: (Y.Y.); (X.S.); Tel.: +86-871-65230873 (X.S.)
| | - Xudong Sun
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Z.); (C.L.); (D.Y.); (Y.W.)
- Correspondence: (Y.Y.); (X.S.); Tel.: +86-871-65230873 (X.S.)
| |
Collapse
|
26
|
Genome-Wide Identification and Analysis of the Polycomb Group Family in Medicago truncatula. Int J Mol Sci 2021; 22:ijms22147537. [PMID: 34299158 PMCID: PMC8303337 DOI: 10.3390/ijms22147537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022] Open
Abstract
Polycomb group (PcG) proteins, which are important epigenetic regulators, play essential roles in the regulatory networks involved in plant growth, development, and environmental stress responses. Currently, as far as we know, no comprehensive and systematic study has been carried out on the PcG family in Medicago truncatula. In the present study, we identified 64 PcG genes with distinct gene structures from the M. truncatula genome. All of the PcG genes were distributed unevenly over eight chromosomes, of which 26 genes underwent gene duplication. The prediction of protein interaction network indicated that 34 M. truncatula PcG proteins exhibited protein-protein interactions, and MtMSI1;4 and MtVRN2 had the largest number of protein-protein interactions. Based on phylogenetic analysis, we divided 375 PcG proteins from 27 species into three groups and nine subgroups. Group I and Group III were composed of five components from the PRC1 complex, and Group II was composed of four components from the PRC2 complex. Additionally, we found that seven PcG proteins in M. truncatula were closely related to the corresponding proteins of Cicer arietinum. Syntenic analysis revealed that PcG proteins had evolved more conservatively in dicots than in monocots. M. truncatula had the most collinearity relationships with Glycine max (36 genes), while collinearity with three monocots was rare (eight genes). The analysis of various types of expression data suggested that PcG genes were involved in the regulation and response process of M. truncatula in multiple developmental stages, in different tissues, and for various environmental stimuli. Meanwhile, many differentially expressed genes (DEGs) were identified in the RNA-seq data, which had potential research value in further studies on gene function verification. These findings provide novel and detailed information on the M. truncatula PcG family, and in the future it would be helpful to carry out related research on the PcG family in other legumes.
Collapse
|
27
|
Gao G, Kan J, Jiang C, Ahmar S, Zhang J, Yang P. Genome-wide diversity analysis of TCP transcription factors revealed cases of selection from wild to cultivated barley. Funct Integr Genomics 2020; 21:31-42. [PMID: 33169329 DOI: 10.1007/s10142-020-00759-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/15/2020] [Accepted: 11/03/2020] [Indexed: 11/28/2022]
Abstract
Plant-specific TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING CELL FACTORS 1/2 (TCP) transcription factors have known roles in inflorescence architecture. In barley, there are two family members INTERMEDIUM-C (INT-c/HvTB1-1) and COMPOSITUM 1 (COM1/HvTCP24) which are involved in the manipulation of spike architecture, whereas the participation of TCP family genes in selection from wild (Hordeum vulgare subsp. spontaneum, Hs) to cultivated barley (Hordeum vulgare subsp. vulgare, Hv) remains poorly investigated. Here, by conducting a genome-wide survey for TCP-like sequences in publicly-released datasets, 22 HsTCP and 20 HvTCP genes encoded for mature proteins were identified and assigned into two classes (I and II) based on their functional domains and the phylogenetic analysis. Each counterpart of the orthologous gene in wild and cultivated barley usually represented a similarity on the transcriptional profile across the tissues. The diversity analysis of TCPs in 90 wild barley accessions and 137 landraces with geographically-referenced passport information revealed the detectable selection at three loci including INT-c/HvTB1-1, HvPCF2, and HvPCF8. Especially, the HvPCF8 haplotypes in cultivated barley were found correlating with their geographical collection sites. There was no difference observed in either transactivation activity in yeast or subcellular localization in Nicotiana benthamiana among these haplotypes. Nevertheless, the genome-wide diversity analysis of barley TCP genes in wild and cultivated populations provided insight for future functional characterization in plant development such as spike architecture.
Collapse
Affiliation(s)
- Guangqi Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinhong Kan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Congcong Jiang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sunny Ahmar
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ping Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|