1
|
Hou L, Chen Z, Chen F, Sheng L, Ye W, Dai Y, Guo X, Dong C, Li G, Liao K, Li Y, Ma J, Wei H, Ran W, Shang J, Ling X, Patel JS, Liang SH, Xu H, Wang L. Synthesis, preclinical assessment, and first-in-human study of [ 18F]d 4-FET for brain tumor imaging. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06964-8. [PMID: 39482500 DOI: 10.1007/s00259-024-06964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024]
Abstract
PURPOSE Tumor-to-background ratio (TBR) is a critical metric in oncologic PET imaging. This study aims to enhance the TBR of [18F]FET in brain tumor imaging by substituting deuterium ("D") for hydrogen ("H"), thereby improving the diagnostic sensitivity and accuracy. METHODS [18F]d4-FET was synthesised by two automated radiochemistry modules. Biodistribution studies and imaging efficacy were evaluated in vivo and ex vivo in rodent models, while metabolic stability and radiation dosimetry were assessed in non-human primates. Additionally, preliminary imaging evaluations were carried out in five brain tumor patients: three glioma patients underwent imaging with both [18F]d4-FET and [18F]FET, and two patients with brain metastases were imaged using [18F]d4-FET and [18F]FDG. RESULTS [18F]d4-FET demonstrated high radiochemical purity and yield. PET/MRI in rodent models demonstrated superior TBR for [18F]d4-FET compared to [18F]FET, and autoradiography showed tumor margins that correlated well with pathological extents. Studies in cynomolgus monkeys indicated comparable in vivo stability and effective dose with [18F]FET. In glioma patients, [18F]d4-FET showed enhanced TBR, while in patients with brain metastases, [18F]d4-FET displayed superior lesion delineation compared to [18F]FDG, especially in smaller metastatic sites. CONCLUSION We successfully synthesized the novel PET radiotracer [18F]d4-FET, which retains the advantageous properties of [18F]FET while potentially enhancing TBR for glioma imaging. Preliminary studies indicate excellent stability, efficacy, and sensitivity of [18F]d4-FET, suggesting its potential in clinical evaluations of brain tumors. TRIAL REGISTRATION ChiCTR2400081576, registration date: 2024-03-05, https://www.chictr.org.cn/bin/project/edit?pid=206162.
Collapse
Affiliation(s)
- Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zhiyong Chen
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Fanfan Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518025, China
| | - Lianghe Sheng
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Weijian Ye
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yingchu Dai
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Xiaoyu Guo
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Chenchen Dong
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Guocong Li
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Kai Liao
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
| | - Jie Ma
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Huiyi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Wenqing Ran
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jingjie Shang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xueying Ling
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jimmy S Patel
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA.
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
2
|
Guo X, Xing H, Pan H, Wang Y, Chen W, Wang H, Zhang X, Liu J, Xu N, Wang Y, Ma W. Neuronavigation Combined With Intraoperative Ultrasound and Intraoperative Magnetic Resonance Imaging Versus Neuronavigation Alone in Diffuse Glioma Surgery. World Neurosurg 2024:S1878-8750(24)01654-1. [PMID: 39343380 DOI: 10.1016/j.wneu.2024.09.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVE This study aimed to integrate intraoperative ultrasound and magnetic resonance imaging (IMRI) with neuronavigation (NN) to create a multimodal surgical protocol for diffuse gliomas. Clinical outcomes were compared to the standard NN-guided protocol. METHODS Adult patients with diffuse gliomas scheduled for gross total resection (GTR) were consecutively enrolled to undergo either NN-guided surgery (80 patients, July 2019-January 2022) or multimodal-integrated surgery (80 patients, February 2022-August 2023). The primary outcomes were the extent of resection (EOR) and GTR. Additional outcomes included operative time, blood loss, length of hospital stay, and patient survival. RESULTS GTR was achieved in 69% of patients who underwent multimodal-integrated surgery, compared to 43% of those who received NN-guided surgery (P = 0.002). Residual tumor was detected by IMRI in 53 patients (66%), and further GTR was achieved in 28 of these cases. The median EOR was 100% for the multimodal group and 95% for the NN-guided group (P = 0.001), while the median operative time was 8 hours versus 5 hours (P < 0.001). Neurological deficits, blood loss, and hospital stay durations were comparable between 2 groups. Multimodal-integrated surgery resulted in greater EOR and higher GTR rates in contrast-enhancing gliomas, gliomas in eloquent regions, and large gliomas (≥50 mm). GTR in glioblastomas and other contrast-enhancing gliomas contributed to improved overall survival. CONCLUSIONS Compared to standard NN-guided surgery, multimodal-integrated surgery using NN, IMRI, and intraoperative ultrasound significantly increased the EOR and GTR rates for diffuse gliomas.
Collapse
Affiliation(s)
- Xiaopeng Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, and National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; China Anti-Cancer Association Specialty Committee of Glioma, Peking Union Medical College Hospital, Beijing, China
| | - Hao Xing
- Department of Neurosurgery, Center for Malignant Brain Tumors, and National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huiru Pan
- Department of Neurosurgery, Center for Malignant Brain Tumors, and National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuekun Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, and National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenlin Chen
- Department of Neurosurgery, Center for Malignant Brain Tumors, and National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, and National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Zhang
- Department of Neurosurgery, Center for Malignant Brain Tumors, and National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiahui Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, and National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Xu
- Department of Anesthesia, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, and National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; China Anti-Cancer Association Specialty Committee of Glioma, Peking Union Medical College Hospital, Beijing, China.
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, and National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; China Anti-Cancer Association Specialty Committee of Glioma, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
3
|
Śledzińska-Bebyn P, Furtak J, Bebyn M, Serafin Z. Beyond conventional imaging: Advancements in MRI for glioma malignancy prediction and molecular profiling. Magn Reson Imaging 2024; 112:63-81. [PMID: 38914147 DOI: 10.1016/j.mri.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
This review examines the advancements in magnetic resonance imaging (MRI) techniques and their pivotal role in diagnosing and managing gliomas, the most prevalent primary brain tumors. The paper underscores the importance of integrating modern MRI modalities, such as diffusion-weighted imaging and perfusion MRI, which are essential for assessing glioma malignancy and predicting tumor behavior. Special attention is given to the 2021 WHO Classification of Tumors of the Central Nervous System, emphasizing the integration of molecular diagnostics in glioma classification, significantly impacting treatment decisions. The review also explores radiogenomics, which correlates imaging features with molecular markers to tailor personalized treatment strategies. Despite technological progress, MRI protocol standardization and result interpretation challenges persist, affecting diagnostic consistency across different settings. Furthermore, the review addresses MRI's capacity to distinguish between tumor recurrence and pseudoprogression, which is vital for patient management. The necessity for greater standardization and collaborative research to harness MRI's full potential in glioma diagnosis and personalized therapy is highlighted, advocating for an enhanced understanding of glioma biology and more effective treatment approaches.
Collapse
Affiliation(s)
- Paulina Śledzińska-Bebyn
- Department of Radiology, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland.
| | - Jacek Furtak
- Department of Clinical Medicine, Faculty of Medicine, University of Science and Technology, Bydgoszcz, Poland; Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
| | - Marek Bebyn
- Department of Internal Diseases, 10th Military Clinical Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
| | - Zbigniew Serafin
- Department of Radiology and Diagnostic Imaging, Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland
| |
Collapse
|
4
|
De Sutter S, Wuts J, Geens W, Vanbinst AM, Duerinck J, Vandemeulebroucke J. Modality redundancy for MRI-based glioblastoma segmentation. Int J Comput Assist Radiol Surg 2024; 19:2101-2109. [PMID: 39093499 PMCID: PMC11442599 DOI: 10.1007/s11548-024-03238-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE Automated glioblastoma segmentation from magnetic resonance imaging is generally performed on a four-modality input, including T1, contrast T1, T2 and FLAIR. We hypothesize that information redundancy is present within these image combinations, which can possibly reduce a model's performance. Moreover, for clinical applications, the risk of encountering missing data rises as the number of required input modalities increases. Therefore, this study aimed to explore the relevance and influence of the different modalities used for MRI-based glioblastoma segmentation. METHODS After the training of multiple segmentation models based on nnU-Net and SwinUNETR architectures, differing only in their amount and combinations of input modalities, each model was evaluated with regard to segmentation accuracy and epistemic uncertainty. RESULTS Results show that T1CE-based segmentation (for enhanced tumor and tumor core) and T1CE-FLAIR-based segmentation (for whole tumor and overall segmentation) can reach segmentation accuracies comparable to the full-input version. Notably, the highest segmentation accuracy for nnU-Net was found for a three-input configuration of T1CE-FLAIR-T1, suggesting the confounding effect of redundant input modalities. The SwinUNETR architecture appears to suffer less from this, where said three-input and the full-input model yielded statistically equal results. CONCLUSION The T1CE-FLAIR-based model can therefore be considered as a minimal-input alternative to the full-input configuration. Addition of modalities beyond this does not statistically improve and can even deteriorate accuracy, but does lower the segmentation uncertainty.
Collapse
Affiliation(s)
- Selene De Sutter
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | - Joris Wuts
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Wietse Geens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Anne-Marie Vanbinst
- Department of Radiology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Johnny Duerinck
- Department of Neurosurgery, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jef Vandemeulebroucke
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Radiology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- imec, Leuven, Belgium
| |
Collapse
|
5
|
Azizova A, Wamelink IJHG, Prysiazhniuk Y, Cakmak M, Kaya E, Petr J, Barkhof F, Keil VC. Human performance in predicting enhancement quality of gliomas using gadolinium-free MRI sequences. J Neuroimaging 2024. [PMID: 39300683 DOI: 10.1111/jon.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND AND PURPOSE To develop and test a decision tree for predicting contrast enhancement quality and shape using precontrast magnetic resonance imaging (MRI) sequences in a large adult-type diffuse glioma cohort. METHODS Preoperative MRI scans (development/optimization/test sets: n = 31/38/303, male = 17/22/189, mean age = 52/59/56.7 years, high-grade glioma = 22/33/249) were retrospectively evaluated, including pre- and postcontrast T1-weighted, T2-weighted, fluid-attenuated inversion recovery, and diffusion-weighted imaging sequences. Enhancement prediction decision tree (EPDT) was developed using development and optimization sets, incorporating four imaging features: necrosis, diffusion restriction, T2 inhomogeneity, and nonenhancing tumor margins. EPDT accuracy was assessed on a test set by three raters of variable experience. True enhancement features (gold standard) were evaluated using pre- and postcontrast T1-weighted images. Statistical analysis used confusion matrices, Cohen's/Fleiss' kappa, and Kendall's W. Significance threshold was p < .05. RESULTS Raters 1, 2, and 3 achieved overall accuracies of .86 (95% confidence interval [CI]: .81-.90), .89 (95% CI: .85-.92), and .92 (95% CI: .89-.95), respectively, in predicting enhancement quality (marked, mild, or no enhancement). Regarding shape, defined as the thickness of enhancing margin (solid, rim, or no enhancement), accuracies were .84 (95% CI: .79-.88), .88 (95% CI: .84-.92), and .89 (95% CI: .85-.92). Intrarater intergroup agreement comparing predicted and true enhancement features consistently reached substantial levels (≥.68 [95% CI: .61-.75]). Interrater comparison showed at least moderate agreement (group: ≥.42 [95% CI: .36-.48], pairwise: ≥.61 [95% CI: .50-.72]). Among the imaging features in the EPDT, necrosis assessment displayed the highest intra- and interrater consistency (≥.80 [95% CI: .73-.88]). CONCLUSION The proposed EPDT has high accuracy in predicting enhancement patterns of gliomas irrespective of rater experience.
Collapse
Affiliation(s)
- Aynur Azizova
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Ivar J H G Wamelink
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Yeva Prysiazhniuk
- Second Faculty of Medicine, Department of Pathophysiology, Charles University, Prague, Czech Republic
- Motol University Hospital, Prague, Czech Republic
| | - Marcus Cakmak
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands
- University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Elif Kaya
- Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Türkiye
| | - Jan Petr
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands
- Brain Imaging, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Center for Medical Image Computing, University College London, London, UK
| | - Vera C Keil
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Imaging, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Wagner S, Ewald C, Freitag D, Herrmann KH, Koch A, Bauer J, Vogl TJ, Kemmling A, Gufler H. Radiomics and visual analysis for predicting success of transplantation of heterotopic glioblastoma in mice with MRI. J Neurooncol 2024; 169:257-267. [PMID: 38960965 PMCID: PMC11341603 DOI: 10.1007/s11060-024-04725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/25/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Quantifying tumor growth and treatment response noninvasively poses a challenge to all experimental tumor models. The aim of our study was, to assess the value of quantitative and visual examination and radiomic feature analysis of high-resolution MR images of heterotopic glioblastoma xenografts in mice to determine tumor cell proliferation (TCP). METHODS Human glioblastoma cells were injected subcutaneously into both flanks of immunodeficient mice and followed up on a 3 T MR scanner. Volumes and signal intensities were calculated. Visual assessment of the internal tumor structure was based on a scoring system. Radiomic feature analysis was performed using MaZda software. The results were correlated with histopathology and immunochemistry. RESULTS 21 tumors in 14 animals were analyzed. The volumes of xenografts with high TCP (H-TCP) increased, whereas those with low TCP (L-TCP) or no TCP (N-TCP) continued to decrease over time (p < 0.05). A low intensity rim (rim sign) on unenhanced T1-weighted images provided the highest diagnostic accuracy at visual analysis for assessing H-TCP (p < 0.05). Applying radiomic feature analysis, wavelet transform parameters were best for distinguishing between H-TCP and L-TCP / N-TCP (p < 0.05). CONCLUSION Visual and radiomic feature analysis of the internal structure of heterotopically implanted glioblastomas provide reproducible and quantifiable results to predict the success of transplantation.
Collapse
Affiliation(s)
- Sabine Wagner
- Department of Neuroradiology, Marburg University Hospital - Philipps University, 35043, Marburg, Germany.
- Department of Neuroradiology, Institute for Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University, 07747, Jena, Germany.
| | - Christian Ewald
- Department of Neurosurgery, Brandenburg Medical School, Theodor Fontane, University Hospital Brandenburg/Havel, 14770, Brandenburg/Havel, Germany
| | - Diana Freitag
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital - Friedrich Schiller University, 07747, Jena, Germany
| | - Karl-Heinz Herrmann
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University, 07743, Jena, Germany
| | - Arend Koch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, and Berlin Institute of Health, Charité University Medicine, 10117, Berlin, Germany
| | - Johannes Bauer
- Department of Neurosurgery, Brandenburg Medical School, Theodor Fontane, University Hospital Brandenburg/Havel, 14770, Brandenburg/Havel, Germany
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, Goethe University Hospital Frankfurt, 60590, Frankfurt Am Main, Germany
| | - André Kemmling
- Department of Neuroradiology, Marburg University Hospital - Philipps University, 35043, Marburg, Germany
| | - Hubert Gufler
- Department of Diagnostic and Interventional Radiology, Goethe University Hospital Frankfurt, 60590, Frankfurt Am Main, Germany
| |
Collapse
|
7
|
Brugada-Bellsolà F, Rodríguez PT, González-Crespo A, Menéndez-Girón S, Panisello CH, Garcia-Armengol R, Alonso CJD. Intraoperative ultrasound and magnetic resonance comparative analysis in brain tumor surgery: a valuable tool to flatten ultrasound's learning curve. Acta Neurochir (Wien) 2024; 166:337. [PMID: 39138764 DOI: 10.1007/s00701-024-06228-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Intraoperative ultrasound (IOUS) is a profitable tool for neurosurgical procedures' assistance, especially in neuro-oncology. It is a rapid, ergonomic and reproducible technique. However, its known handicap is a steep learning curve for neurosurgeons. Here, we describe an interesting postoperative analysis that provides extra feedback after surgery, accelerating the learning process. METHOD We conducted a descriptive retrospective unicenter study including patients operated from intra-axial brain tumors using neuronavigation (Curve, Brainlab) and IOUS (BK-5000, BK medical) guidance. All patients had preoperative Magnetic Resonance Imaging (MRI) prior to tumor resection. During surgery, 3D neuronavigated IOUS studies (n3DUS) were obtained through craniotomy N13C5 transducer's integration to the neuronavigation system. At least two n3DUS studies were obtained: prior to tumor resection and at the resection conclusion. A postoperative MRI was performed within 48 h. MRI and n3DUS studies were posteriorly fused and analyzed with Elements (Brainlab) planning software, permitting two comparative analyses: preoperative MRI compared to pre-resection n3DUS and postoperative MRI to post-resection n3DUS. Cases with incomplete MRI or n3DUS studies were withdrawn from the study. RESULTS From April 2022 to March 2024, 73 patients were operated assisted by IOUS. From them, 39 were included in the study. Analyses comparing preoperative MRI and pre-resection n3DUS showed great concordance of tumor volume (p < 0,001) between both modalities. Analysis comparing postoperative MRI and post-resection n3DUS also showed good concordance in residual tumor volume (RTV) in cases where gross total resection (GTR) was not achieved (p < 0,001). In two cases, RTV detected on MRI that was not detected intra-operatively with IOUS could be reviewed in detail to recheck its appearance. CONCLUSIONS Post-operative comparative analyses between IOUS and MRI is a valuable tool for novel ultrasound users, as it enhances the amount of feedback provided by cases and could accelerate the learning process, flattening this technique's learning curve.
Collapse
Affiliation(s)
- Ferran Brugada-Bellsolà
- Department of Neurological Surgery, Germans Trias I Pujol University Hospital, Ctra del Canyet Sn, 08916, Barcelona, CP, Spain.
| | - Pilar Teixidor Rodríguez
- Department of Neurological Surgery, Germans Trias I Pujol University Hospital, Ctra del Canyet Sn, 08916, Barcelona, CP, Spain
| | - Antonio González-Crespo
- Department of Neurological Surgery, Germans Trias I Pujol University Hospital, Ctra del Canyet Sn, 08916, Barcelona, CP, Spain
| | - Sebastián Menéndez-Girón
- Department of Neurological Surgery, Germans Trias I Pujol University Hospital, Ctra del Canyet Sn, 08916, Barcelona, CP, Spain
| | - Cristina Hostalot Panisello
- Department of Neurological Surgery, Germans Trias I Pujol University Hospital, Ctra del Canyet Sn, 08916, Barcelona, CP, Spain
| | - Roser Garcia-Armengol
- Department of Neurological Surgery, Germans Trias I Pujol University Hospital, Ctra del Canyet Sn, 08916, Barcelona, CP, Spain
| | - Carlos J Domínguez Alonso
- Department of Neurological Surgery, Germans Trias I Pujol University Hospital, Ctra del Canyet Sn, 08916, Barcelona, CP, Spain
| |
Collapse
|
8
|
Li J, Han Z, Ma C, Chi H, Jia D, Zhang K, Feng Z, Han B, Qi M, Li G, Li X, Xue H. Intraoperative rapid molecular diagnosis aids glioma subtyping and guides precise surgical resection. Ann Clin Transl Neurol 2024; 11:2176-2187. [PMID: 38924338 PMCID: PMC11330232 DOI: 10.1002/acn3.52138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVE The molecular era of glioma diagnosis and treatment has arrived, and a single rapid histopathology is no longer sufficient for surgery. This study sought to present an automatic integrated gene detection system (AIGS), which enables rapid intraoperative detection of IDH/TERTp mutations. METHODS A total of 78 patients with gliomas were included in this study. IDH/TERTp mutations were detected intraoperatively using AIGS in 41 of these patients, and they were guided to surgical resection (AIGS detection group). The remaining 37 underwent histopathology-guided conventional surgical resection (non-AIGS detection group). The clinical utility of this technique was evaluated by comparing the accuracy of glioma subtype diagnosis before and after TERTp mutation results were obtained by pathologists and the extent of resection (EOR) and patient prognosis for molecular pathology-guided glioma surgery. RESULTS With NGS/Sanger sequencing and chromosome detection as the gold standard, the accuracy of AIGS results was 100%. And the timing was well matched to the intraoperative rapid pathology report. After obtaining the TERTp mutation detection results, the accuracy of the glioma subtype diagnosis made by the pathologists increased by 19.51%. Molecular pathology-guided surgical resection of gliomas significantly increased EOR (99.06% vs. 93.73%, p < 0.0001) and also improved median OS (26.77 vs. 13.47 months, p = 0.0289) and median PFS (15.90 vs. 10.57 months, p = 0.0181) in patients with glioblastoma. INTERPRETATION Using AIGS intraoperatively to detect IDH/TERTp mutations to accurately diagnose glioma subtypes can help achieve maximum safe resection of gliomas, which in turn improves the survival prognosis of patients.
Collapse
Affiliation(s)
- Jia Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| | - Zhe Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| | - Caizhi Ma
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| | - Huizhong Chi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| | - Deze Jia
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Kailiang Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Zichao Feng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Bo Han
- Department of PathologyShandong University Qilu HospitalJinanShandongChina
- Department of PathologyShandong University School of Basic Medical SciencesJinanShandongChina
| | - Mei Qi
- Department of PathologyShandong University Qilu HospitalJinanShandongChina
- Department of PathologyShandong University School of Basic Medical SciencesJinanShandongChina
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| | - Xueen Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| |
Collapse
|
9
|
DeGroot AL, Morris E, Hussain O, Smullen D, Ivanovic V, Krucoff M. Non-hemorrhagic cerebellar contrast enhancement on intraoperative MRI during a supratentorial glioma resection: Concerning finding of no significance. Radiol Case Rep 2024; 19:3376-3381. [PMID: 38841601 PMCID: PMC11152923 DOI: 10.1016/j.radcr.2024.04.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Intraoperative magnetic resonance imaging (iMRI) is a powerful tool used to verify maximal safe resection of gliomas. However, unsuspected new or incidental findings can present difficult clinical scenarios. Here we present a case of a large supratentorial glioma resection where new, incidental bilateral cerebellar hemispheric enhancement was noted on iMRI. A 52-year-old male with a large intra-axial mass spanning the right temporal and parietal lobes underwent a craniotomy for tumor resection utilizing iMRI. Imaging displayed new, remote, bilateral cerebellar enhancement. Upon completion of surgery, the patient was extubated and was at his neurological baseline. An immediate CT scan showed no abnormalities in the cerebellum, and the duration of his hospital stay was unaffected by this finding. An MRI 24 hours after the procedure demonstrated complete resolution of the enhancement. New, remote contrast enhancement in the cerebellum raises concerns for the potentially emergent, well-defined pathology known as remote cerebellar hemorrhage (RCH). However, here we describe a case where these findings turned out to be clinically insignificant, CT-negative, and self-limiting. Therefore, here we call this finding remote non-hemorrhagic cerebellar contrast enhancement (RNHCCE) to differentiate it from RCE, and we discuss nuances and management considerations for differentiating the two.
Collapse
Affiliation(s)
- Andrew L. DeGroot
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Emily Morris
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Omar Hussain
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - David Smullen
- Department of Radiology, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Vladimir Ivanovic
- Department of Radiology, Overland Park Regional Medical Center, Kansas City, KS, USA
| | - Max Krucoff
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI, USA
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, USA
| |
Collapse
|
10
|
Cossu G, Vandenbulcke A, Zaccarini S, Gaudet JG, Hottinger AF, Rimorini N, Potie A, Beaud V, Guerra-Lopez U, Daniel RT, Berna C, Messerer M. Hypnosis-Assisted Awake Craniotomy for Eloquent Brain Tumors: Advantages and Pitfalls. Cancers (Basel) 2024; 16:1784. [PMID: 38730736 PMCID: PMC11083963 DOI: 10.3390/cancers16091784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Awake craniotomy (AC) is recommended for the resection of tumors in eloquent areas. It is traditionally performed under monitored anesthesia care (MAC), which relies on hypnotics and opioids. Hypnosis-assisted AC (HAAC) is an emerging technique that aims to provide psychological support while reducing the need for pharmacological sedation and analgesia. We aimed to compare the characteristics and outcomes of patients who underwent AC under HAAC or MAC. METHODS We retrospectively analyzed the clinical, anesthetic, surgical, and neuropsychological data of patients who underwent awake surgical resection of eloquent brain tumors under HAAC or MAC. We used Mann-Whitney U tests, Wilcoxon signed-rank tests, and repeated-measures analyses of variance to identify statistically significant differences at the 0.05 level. RESULTS A total of 22 patients were analyzed, 14 in the HAAC group and 8 in the MAC group. Demographic, radiological, and surgical characteristics as well as postoperative outcomes were similar. Patients in the HAAC group received less remifentanil (p = 0.047) and propofol (p = 0.002), but more dexmedetomidine (p = 0.025). None of them received ketamine as a rescue analgesic. Although patients in the HAAC group experienced higher levels of perioperative pain (p < 0.05), they reported decreasing stress levels (p = 0.04) and greater levels of satisfaction (p = 0.02). CONCLUSION HAAC is a safe alternative to MAC as it reduces perioperative stress and increases overall satisfaction. Further research is necessary to assess whether hypnosis is clinically beneficial.
Collapse
Affiliation(s)
- Giulia Cossu
- Department of Neurosurgery, University Hospital of Lausanne and University of Lausanne, 1011 Lausanne, Switzerland; (A.V.); (R.T.D.); (M.M.)
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, University Hospital of Lausanne, 1011 Lausanne, Switzerland;
| | - Alberto Vandenbulcke
- Department of Neurosurgery, University Hospital of Lausanne and University of Lausanne, 1011 Lausanne, Switzerland; (A.V.); (R.T.D.); (M.M.)
| | - Sonia Zaccarini
- Department of Anesthesiology, University Hospital of Lausanne, 1011 Lausanne, Switzerland; (S.Z.); (J.G.G.)
- Center for Integrative and Complementary Medicine, Department of Anesthesiology, University Hospital of Lausanne, The Sense and University of Lausanne, 1011 Lausanne, Switzerland; (N.R.); (C.B.)
| | - John G. Gaudet
- Department of Anesthesiology, University Hospital of Lausanne, 1011 Lausanne, Switzerland; (S.Z.); (J.G.G.)
| | - Andreas F. Hottinger
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, University Hospital of Lausanne, 1011 Lausanne, Switzerland;
- Division of Neuro-oncology, Department of Oncology, University Hospital of Lausanne and University of Lausanne, 1011 Lausanne, Switzerland
| | - Nina Rimorini
- Center for Integrative and Complementary Medicine, Department of Anesthesiology, University Hospital of Lausanne, The Sense and University of Lausanne, 1011 Lausanne, Switzerland; (N.R.); (C.B.)
| | - Arnaud Potie
- Department of Anesthesiology, University Hospital of Lausanne, 1011 Lausanne, Switzerland; (S.Z.); (J.G.G.)
| | - Valerie Beaud
- Service of Neuropsychology and Neurorehabilitation, University Hospital of Lausanne, 1011 Lausanne, Switzerland; (V.B.); (U.G.-L.)
| | - Ursula Guerra-Lopez
- Service of Neuropsychology and Neurorehabilitation, University Hospital of Lausanne, 1011 Lausanne, Switzerland; (V.B.); (U.G.-L.)
| | - Roy T. Daniel
- Department of Neurosurgery, University Hospital of Lausanne and University of Lausanne, 1011 Lausanne, Switzerland; (A.V.); (R.T.D.); (M.M.)
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, University Hospital of Lausanne, 1011 Lausanne, Switzerland;
| | - Chantal Berna
- Center for Integrative and Complementary Medicine, Department of Anesthesiology, University Hospital of Lausanne, The Sense and University of Lausanne, 1011 Lausanne, Switzerland; (N.R.); (C.B.)
| | - Mahmoud Messerer
- Department of Neurosurgery, University Hospital of Lausanne and University of Lausanne, 1011 Lausanne, Switzerland; (A.V.); (R.T.D.); (M.M.)
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, University Hospital of Lausanne, 1011 Lausanne, Switzerland;
| |
Collapse
|
11
|
Eibl T, Schrey M, Liebert A, Ritter L, Lange R, Steiner HH, Schebesch KM. Significance of navigated transcranial magnetic stimulation and tractography to preserve motor function in patients undergoing surgery for motor eloquent gliomas. Heliyon 2024; 10:e28115. [PMID: 38533081 PMCID: PMC10963369 DOI: 10.1016/j.heliyon.2024.e28115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Resection of gliomas in or close to motor areas is at high risk for morbidity and development of surgery-related deficits. Navigated transcranial magnetic stimulation (nTMS) including nTMS-based tractography is suitable for presurgical planning and risk assessment. The aim of this study was to investigate the association of postoperative motor status and the spatial relation to motor eloquent brain tissue in order to increase the understanding of postoperative motor deficits. Patient data, nTMS examinations and imaging studies were retrospectively reviewed, corticospinal tracts (CST) were reconstructed with two different approaches of nTMS-based seeding. Postoperative imaging and nTMS-augmented preoperative imaging were merged to identify the relation between motor positive cortical and subcortical areas and the resection cavity. 38 tumor surgeries were performed in 36 glioma patients (28.9% female) aged 55.1 ± 13.8 years. Mean distance between the CST and the lesion was 6.9 ± 5.1 mm at 75% of the patient-individual fractional anisotropy threshold and median tumor volume reduction was 97.7 ± 11.6%. The positive predictive value for permanent deficits after resection of nTMS positive areas was 66.7% and the corresponding negative predictive value was 90.6%. Distances between the resection cavity and the CST were higher in patients with postoperative stable motor function. Extent of resection and distance between resection cavity and CST correlated well. The present study strongly supports preoperative nTMS as an important surgical tool for preserving motor function in glioma patients at risk.
Collapse
Affiliation(s)
- Thomas Eibl
- Department of Neurosurgery, Paracelsus Medical University, Breslauer Str. 201, 90471, Nuremberg, Bavaria, Germany
| | - Michael Schrey
- Department of Neurosurgery, Paracelsus Medical University, Breslauer Str. 201, 90471, Nuremberg, Bavaria, Germany
| | - Adrian Liebert
- Department of Neurosurgery, Paracelsus Medical University, Breslauer Str. 201, 90471, Nuremberg, Bavaria, Germany
| | - Leonard Ritter
- Department of Neurosurgery, Paracelsus Medical University, Breslauer Str. 201, 90471, Nuremberg, Bavaria, Germany
| | - Rüdiger Lange
- Department of Neurology, Paracelsus Medical University, Breslauer Str. 201, 90471, Nuremberg, Bavaria, Germany
| | - Hans-Herbert Steiner
- Department of Neurosurgery, Paracelsus Medical University, Breslauer Str. 201, 90471, Nuremberg, Bavaria, Germany
| | - Karl-Michael Schebesch
- Department of Neurosurgery, Paracelsus Medical University, Breslauer Str. 201, 90471, Nuremberg, Bavaria, Germany
| |
Collapse
|
12
|
Heidari M, Shokrani P. Imaging Role in Diagnosis, Prognosis, and Treatment Response Prediction Associated with High-grade Glioma. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:7. [PMID: 38993200 PMCID: PMC11111132 DOI: 10.4103/jmss.jmss_30_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/31/2022] [Accepted: 03/14/2023] [Indexed: 07/13/2024]
Abstract
Background Glioma is one of the most drug and radiation-resistant tumors. Gliomas suffer from inter- and intratumor heterogeneity which makes the outcome of similar treatment protocols vary from patient to patient. This article is aimed to overview the potential imaging markers for individual diagnosis, prognosis, and treatment response prediction in malignant glioma. Furthermore, the correlation between imaging findings and biological and clinical information of glioma patients is reviewed. Materials and Methods The search strategy in this study is to select related studies from scientific websites such as PubMed, Scopus, Google Scholar, and Web of Science published until 2022. It comprised a combination of keywords such as Biomarkers, Diagnosis, Prognosis, Imaging techniques, and malignant glioma, according to Medical Subject Headings. Results Some imaging parameters that are effective in glioma management include: ADC, FA, Ktrans, regional cerebral blood volume (rCBV), cerebral blood flow (CBF), ve, Cho/NAA and lactate/lipid ratios, intratumoral uptake of 18F-FET (for diagnostic application), RD, ADC, ve, vp, Ktrans, CBFT1, rCBV, tumor blood flow, Cho/NAA, lactate/lipid, MI/Cho, uptakes of 18F-FET, 11C-MET, and 18F-FLT (for prognostic and predictive application). Cerebral blood volume and Ktrans are related to molecular markers such as vascular endothelial growth factor (VEGF). Preoperative ADCmin value of GBM tumors is associated with O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. 2-hydroxyglutarate metabolite and dynamic 18F-FDOPA positron emission tomography uptake are related to isocitrate dehydrogenase (IDH) mutations. Conclusion Parameters including ADC, RD, FA, rCBV, Ktrans, vp, and uptake of 18F-FET are useful for diagnosis, prognosis, and treatment response prediction in glioma. A significant correlation between molecular markers such as VEGF, MGMT, and IDH mutations with some diffusion and perfusion imaging parameters has been identified.
Collapse
Affiliation(s)
- Maryam Heidari
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Shokrani
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Villa A, De Mitri Z, Vincenti S, Crippa E, Castiglioni L, Gelosa P, Rebecchi M, Tosi D, Brunialti E, Oevermann A, Falleni M, Sironi L, Bello L, Mazzaferro V, Ciana P. Canine glioblastoma-derived extracellular vesicles as precise carriers for glioblastoma imaging: Targeting across the blood-brain barrier. Biomed Pharmacother 2024; 172:116201. [PMID: 38306846 DOI: 10.1016/j.biopha.2024.116201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024] Open
Abstract
The treatment of glioblastoma (GBM) faces significant challenges due to the difficulty of delivering drugs through the blood-brain barrier (BBB). Extracellular vesicles (EVs) have emerged as potential carriers for targeted drug delivery to brain tumors. However, their use and distribution in the presence of an intact BBB and their ability to target GBM tissue are still under investigation. This study explored the use of EVs for GBM targeting across the BBB. Canine plasma EVs from healthy dogs and dogs with glioma were isolated, characterized, and loaded with diagnostic agents. Biodistribution studies were conducted in healthy murine models and a novel intranasal model that preserved BBB integrity while initiating early-stage GBM growth. This model assessed EVs' potential for delivering the contrast agent gadoteric acid to intracranial tumors. Imaging techniques, such as bioluminescence and MRI, confirmed EVs' targeting and delivery capabilities thus revealing a selective accumulation of canine glioma-derived EVs in brain tissue under physiological conditions. In the model of brain tumor, MRI experiments demonstrated the ability of EVs to accumulate gadoteric acid within GBM to enhance contrast of the tumoral mass, even when BBB integrity is maintained. This study underscores the potential of EVs derived from glioma for the targeted delivery of drugs to glioblastoma. EVs from dogs with glioma showed capacity to traverse the BBB and selectively accumulate within the brain tumor. Overall, this research represents a foundation for the application of autologous EVs to precision glioblastoma treatment, addressing the challenge of BBB penetration and targeting specificity in brain cancer therapy.
Collapse
Affiliation(s)
- Alessandro Villa
- Department of Health Sciences, University of Milan, via A. di Rudinì, 8, 20142, Milano, Italy
| | - Zemira De Mitri
- Department of Health Sciences, University of Milan, via A. di Rudinì, 8, 20142, Milano, Italy
| | - Simona Vincenti
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3001 Bern, Switzerland
| | - Elisabetta Crippa
- Department of Health Sciences, University of Milan, via A. di Rudinì, 8, 20142, Milano, Italy
| | - Laura Castiglioni
- Department of Pharmaceutical Sciences, University of Milan, via Balzaretti, 20133 Milano, Italy
| | - Paolo Gelosa
- Department of Pharmaceutical Sciences, University of Milan, via Balzaretti, 20133 Milano, Italy
| | - Monica Rebecchi
- Department of Health Sciences, University of Milan, via A. di Rudinì, 8, 20142, Milano, Italy
| | - Delfina Tosi
- Department of Health Sciences, University of Milan, via A. di Rudinì, 8, 20142, Milano, Italy
| | - Electra Brunialti
- Department of Health Sciences, University of Milan, via A. di Rudinì, 8, 20142, Milano, Italy
| | - Anna Oevermann
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3001 Bern, Switzerland
| | - Monica Falleni
- Department of Health Sciences, University of Milan, via A. di Rudinì, 8, 20142, Milano, Italy
| | - Luigi Sironi
- Department of Pharmaceutical Sciences, University of Milan, via Balzaretti, 20133 Milano, Italy
| | - Lorenzo Bello
- Department of Oncology and Hemato-Oncology, Università Degli Studi di Milano, Via Festa del Perdono 7, 20122 Milano, Italy
| | - Vincenzo Mazzaferro
- Department of Oncology and Hemato-Oncology, Università Degli Studi di Milano, Via Festa del Perdono 7, 20122 Milano, Italy; HPB Surgery and Liver Transplantation, Fondazione IRCCS Istituto Nazionale Tumori (INT), Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - Paolo Ciana
- Department of Health Sciences, University of Milan, via A. di Rudinì, 8, 20142, Milano, Italy.
| |
Collapse
|
14
|
Hao J, Cai H, Gu L, Ma Y, Li Y, Liu B, Zhu H, Zeng F, Wu M. A transferrin receptor targeting dual-modal MR/NIR fluorescent imaging probe for glioblastoma diagnosis. Regen Biomater 2024; 11:rbae015. [PMID: 38487713 PMCID: PMC10939466 DOI: 10.1093/rb/rbae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 03/17/2024] Open
Abstract
The prognosis of glioblastoma (GBM) remains challenging, primarily due to the lack of a precise, effective imaging technique for comprehensively characterization. Addressing GBM diagnostic challenges, our study introduces an innovative dual-modal imaging that merges near-infrared (NIR) fluorescent imaging with magnetic resonance imaging (MRI). This method employs superparamagnetic iron oxide nanoparticles coated with NIR fluorescent dyes, specifically Cyanine 7, and targeted peptides. This synthetic probe facilitates MRI functionality through superparamagnetic iron oxide nanoparticles, provides NIR imaging capability via Cyanine 7 and enhances tumor targeting trough peptide interactions, offering a comprehensive diagnostic tool for GBM. Notably, the probe traverses the blood-brain barrier, targeting GBM in vivo via peptides, producing clear and discernible images in both modalities. Cytotoxicity and histopathology assessments confirm the probe's favorable safety profile. These findings suggest that the dual-modal MR\NIR fluorescent imaging probe could revolutionize GBM prognosis and survival rates, which can also be extended to other tumors type.
Collapse
Affiliation(s)
- Jiaqi Hao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Huawei Cai
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lei Gu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yiqi Ma
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Beibei Liu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyan Zhu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan 635000, China
| | - Min Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| |
Collapse
|
15
|
Karatsu K, Tamura R, Yo M, Nogawa H, Hino U, Kitamura Y, Ueda R, Toda M. The Role of Genetic Analysis in Distinguishing Multifocal and Multicentric Glioblastomas: An Illustrative Case. Case Rep Oncol 2024; 17:113-121. [PMID: 38260034 PMCID: PMC10803013 DOI: 10.1159/000536051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Glioblastomas can manifest as multiple, simultaneous, noncontiguous lesions. We genetically analyzed multiple glioblastomas and discuss their etiological origins in this report. Case Presentation We present the case of a 47-year-old woman who presented with memory impairment and left partial paralysis. Radiographic imaging revealed three apparently noncontiguous lesions in the right temporal and parietal lobes extending into the corpus callosum, leading to diagnosis of multicentric glioblastomas. All three lesions were excised. Genetic analysis of the lesions revealed a TERT promoter C228T mutation, a roughly equivalent amplification of EGFR, and homozygous deletion of CDKN2A/B exclusively in the two contrast-enhanced lesions. Additionally, the contrast-enhanced lesions exhibited the same two-base pair mutations of PTEN, whereas the non-enhanced lesion showed a partially distinct 13-base pair mutation. The other genetic characteristics were consistent. Rather than each having arisen de novo, we believe that they had developed by infiltration and are therefore best classified as multifocal glioblastomas. Conclusion Our findings underscore anew the possibility of infiltration by glioblastomas, even within regions devoid of signal alterations on T2-weighted images or fluid-attenuated inversion recovery images. Genetic analysis can play a crucial role in differentiating whether multiple glioblastomas are multifocal or multicentric.
Collapse
Affiliation(s)
- Kosuke Karatsu
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Yo
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Hirotsugu Nogawa
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Utaro Hino
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Kitamura
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Ueda
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Leon R, Fabelo H, Ortega S, Cruz-Guerrero IA, Campos-Delgado DU, Szolna A, Piñeiro JF, Espino C, O'Shanahan AJ, Hernandez M, Carrera D, Bisshopp S, Sosa C, Balea-Fernandez FJ, Morera J, Clavo B, Callico GM. Hyperspectral imaging benchmark based on machine learning for intraoperative brain tumour detection. NPJ Precis Oncol 2023; 7:119. [PMID: 37964078 PMCID: PMC10646050 DOI: 10.1038/s41698-023-00475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
Brain surgery is one of the most common and effective treatments for brain tumour. However, neurosurgeons face the challenge of determining the boundaries of the tumour to achieve maximum resection, while avoiding damage to normal tissue that may cause neurological sequelae to patients. Hyperspectral (HS) imaging (HSI) has shown remarkable results as a diagnostic tool for tumour detection in different medical applications. In this work, we demonstrate, with a robust k-fold cross-validation approach, that HSI combined with the proposed processing framework is a promising intraoperative tool for in-vivo identification and delineation of brain tumours, including both primary (high-grade and low-grade) and secondary tumours. Analysis of the in-vivo brain database, consisting of 61 HS images from 34 different patients, achieve a highest median macro F1-Score result of 70.2 ± 7.9% on the test set using both spectral and spatial information. Here, we provide a benchmark based on machine learning for further developments in the field of in-vivo brain tumour detection and delineation using hyperspectral imaging to be used as a real-time decision support tool during neurosurgical workflows.
Collapse
Affiliation(s)
- Raquel Leon
- Research Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| | - Himar Fabelo
- Research Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria, Spain.
| | - Samuel Ortega
- Research Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Nofima, Norwegian Institute of Food Fisheries and Aquaculture Research, Tromsø, Norway
| | - Ines A Cruz-Guerrero
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pediatric Plastic and Reconstructive Surgery, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Daniel Ulises Campos-Delgado
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- Instituto de Investigación en Comunicación Óptica, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Adam Szolna
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juan F Piñeiro
- Instituto de Investigación en Comunicación Óptica, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Carlos Espino
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Aruma J O'Shanahan
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Maria Hernandez
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - David Carrera
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Sara Bisshopp
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Coralia Sosa
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Francisco J Balea-Fernandez
- Research Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Department of Psychology, Sociology and Social Work, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Jesus Morera
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Bernardino Clavo
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria, Spain
- Research Unit, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Gustavo M Callico
- Research Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
17
|
Sollmann N, Zhang H, Kloth C, Zimmer C, Wiestler B, Rosskopf J, Kreiser K, Schmitz B, Beer M, Krieg SM. Modern preoperative imaging and functional mapping in patients with intracranial glioma. ROFO-FORTSCHR RONTG 2023; 195:989-1000. [PMID: 37224867 DOI: 10.1055/a-2083-8717] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Magnetic resonance imaging (MRI) in therapy-naïve intracranial glioma is paramount for neuro-oncological diagnostics, and it provides images that are helpful for surgery planning and intraoperative guidance during tumor resection, including assessment of the involvement of functionally eloquent brain structures. This study reviews emerging MRI techniques to depict structural information, diffusion characteristics, perfusion alterations, and metabolism changes for advanced neuro-oncological imaging. In addition, it reflects current methods to map brain function close to a tumor, including functional MRI and navigated transcranial magnetic stimulation with derived function-based tractography of subcortical white matter pathways. We conclude that modern preoperative MRI in neuro-oncology offers a multitude of possibilities tailored to clinical needs, and advancements in scanner technology (e. g., parallel imaging for acceleration of acquisitions) make multi-sequence protocols increasingly feasible. Specifically, advanced MRI using a multi-sequence protocol enables noninvasive, image-based tumor grading and phenotyping in patients with glioma. Furthermore, the add-on use of preoperatively acquired MRI data in combination with functional mapping and tractography facilitates risk stratification and helps to avoid perioperative functional decline by providing individual information about the spatial location of functionally eloquent tissue in relation to the tumor mass. KEY POINTS:: · Advanced preoperative MRI allows for image-based tumor grading and phenotyping in glioma.. · Multi-sequence MRI protocols nowadays make it possible to assess various tumor characteristics (incl. perfusion, diffusion, and metabolism).. · Presurgical MRI in glioma is increasingly combined with functional mapping to identify and enclose individual functional areas.. · Advancements in scanner technology (e. g., parallel imaging) facilitate increasing application of dedicated multi-sequence imaging protocols.. CITATION FORMAT: · Sollmann N, Zhang H, Kloth C et al. Modern preoperative imaging and functional mapping in patients with intracranial glioma. Fortschr Röntgenstr 2023; 195: 989 - 1000.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, United States
| | - Haosu Zhang
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Christopher Kloth
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Johannes Rosskopf
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Section of Neuroradiology, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Kornelia Kreiser
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Radiology and Neuroradiology, Universitäts- und Rehabilitationskliniken Ulm, Ulm, Germany
| | - Bernd Schmitz
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Section of Neuroradiology, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Sandro M Krieg
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| |
Collapse
|
18
|
Bin-Alamer O, Abou-Al-Shaar H, Gersey ZC, Huq S, Kallos JA, McCarthy DJ, Head JR, Andrews E, Zhang X, Hadjipanayis CG. Intraoperative Imaging and Optical Visualization Techniques for Brain Tumor Resection: A Narrative Review. Cancers (Basel) 2023; 15:4890. [PMID: 37835584 PMCID: PMC10571802 DOI: 10.3390/cancers15194890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Advancements in intraoperative visualization and imaging techniques are increasingly central to the success and safety of brain tumor surgery, leading to transformative improvements in patient outcomes. This comprehensive review intricately describes the evolution of conventional and emerging technologies for intraoperative imaging, encompassing the surgical microscope, exoscope, Raman spectroscopy, confocal microscopy, fluorescence-guided surgery, intraoperative ultrasound, magnetic resonance imaging, and computed tomography. We detail how each of these imaging modalities contributes uniquely to the precision, safety, and efficacy of neurosurgical procedures. Despite their substantial benefits, these technologies share common challenges, including difficulties in image interpretation and steep learning curves. Looking forward, innovations in this field are poised to incorporate artificial intelligence, integrated multimodal imaging approaches, and augmented and virtual reality technologies. This rapidly evolving landscape represents fertile ground for future research and technological development, aiming to further elevate surgical precision, safety, and, most critically, patient outcomes in the management of brain tumors.
Collapse
Affiliation(s)
- Othman Bin-Alamer
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Hussam Abou-Al-Shaar
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Zachary C. Gersey
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Sakibul Huq
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Justiss A. Kallos
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - David J. McCarthy
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Jeffery R. Head
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Edward Andrews
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Xiaoran Zhang
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Constantinos G. Hadjipanayis
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
19
|
Park J, Shim JK, Lee M, Kim D, Yoon SJ, Moon JH, Kim EH, Park JY, Chang JH, Kang SG. Classification of IDH wild-type glioblastoma tumorspheres into low- and high-invasion groups based on their transcriptional program. Br J Cancer 2023; 129:1061-1070. [PMID: 37558923 PMCID: PMC10539507 DOI: 10.1038/s41416-023-02391-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM), one of the most lethal tumors, exhibits a highly infiltrative phenotype. Here, we identified transcription factors (TFs) that collectively modulate invasion-related genes in GBM. METHODS The invasiveness of tumorspheres (TSs) were quantified using collagen-based 3D invasion assays. TF activities were quantified by enrichment analysis using GBM transcriptome, and confirmed by cell-magnified analysis of proteome imaging. Invasion-associated TFs were knocked down using siRNA or shRNA, and TSs were orthotopically implanted into mice. RESULTS After classifying 23 patient-derived GBM TSs into low- and high-invasion groups, we identified active TFs in each group-PCBP1 for low invasion, and STAT3 and SRF for high invasion. Knockdown of these TFs reversed the phenotype and invasion-associated-marker expression of GBM TSs. Notably, MRI revealed consistent patterns of invasiveness between TSs and the originating tumors, with an association between high invasiveness and poor prognosis. Compared to controls, mice implanted with STAT3- or SRF-downregulated GBM TSs showed reduced normal tissue infiltration and tumor growth, and prolonged survival, indicating a therapeutic response. CONCLUSIONS Our integrative transcriptome analysis revealed three invasion-associated TFs in GBM. Based on the relationship among the transcriptional program, invasive phenotype, and prognosis, we suggest these TFs as potential targets for GBM therapy.
Collapse
Affiliation(s)
- Junseong Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Mirae Lee
- Department of Neurosurgery, The Spine and Spinal Cord Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06230, Republic of Korea
- Department of Biochemistry and Molecular Biology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dokyeong Kim
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seon-Jin Yoon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jeong-Yoon Park
- Department of Neurosurgery, The Spine and Spinal Cord Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06230, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Department of Medical Science, Yonsei University Graduate School, Seoul, 03722, Republic of Korea.
| |
Collapse
|
20
|
Du P, Wu X, Liu X, Chen J, Chen L, Cao A, Geng D. The application of decision tree model based on clinicopathological risk factors and pre-operative MRI radiomics for predicting short-term recurrence of glioblastoma after total resection: a retrospective cohort study. Am J Cancer Res 2023; 13:3449-3462. [PMID: 37693142 PMCID: PMC10492119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/27/2023] [Indexed: 09/12/2023] Open
Abstract
To develop a decision tree model based on clinical information, molecular genetics information and pre-operative magnetic resonance imaging (MRI) radiomics-score (Rad-score) to investigate its predictive value for the risk of recurrence of glioblastoma (GBM) within one year after total resection. Patients with pathologically confirmed GBM at Huashan Hospital, Fudan University between November 2017 and June 2020 were retrospectively analyzed, and the enrolled patients were randomly divided into training and test sets according to the ratio of 3:1. The relevant clinical and MRI data of patients before, after surgery and follow-up were collected, and after feature extraction on preoperative MRI, the LASSO filter was used to filter the features and establish the Rad-score. Using the training set, a decision tree model for predicting recurrence of GBM within one year after total resection was established by the C5.0 algorithm, and scatter plots were generated to evaluate the prediction accuracy of the decision tree during model testing. The prediction performance of the model was also evaluated by calculating area under the receiver operating characteristic (ROC) curve (AUC), ACC, Sensitivity (SEN), Specificity (SPE) and other indicators. Besides, two external validation datasets from Wuhan union hospital and the second affiliated hospital of Xuzhou Medical University were used to verify the reliability and accuracy of the prediction model. According to the inclusion and exclusion criteria, 134 patients with GBM were finally identified for inclusion in the study, and 53 patients recurred within one year after total resection, with a mean recurrence time of 5.6 months. According to the importance of the predictor variables, a decision tree model for predicting recurrence based on five important factors, including patient age, Rad-score, O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation, pre-operative Karnofsky Performance Status (KPS) and Telomerase reverse transcriptase (TERT) promoter mutation, was developed. The AUCs of the model in the training and test sets were 0.850 and 0.719, respectively, and the scatter plot showed excellent consistency. In addition, the prediction model achieved AUCs of 0.810 and 0.702 in two external validation datasets from Wuhan union hospital and the second affiliated hospital of Xuzhou Medical University, respectively. The decision tree model based on clinicopathological risk factors and preoperative MRI Rad-score can accurately predict the risk of recurrence of GBM within one year after total resection, which can further guide the clinical optimization of patient treatment decisions, as well as refine the clinical management of patients and improve their prognoses to a certain extent.
Collapse
Affiliation(s)
- Peng Du
- Department of Radiology, Huashan Hospital, Fudan UniversityShanghai 200040, China
- Department of Radiology, The Second Affiliated Hospital of Xuzhou Medical UniversityXuzhou 221000, Jiangsu, China
| | - Xuefan Wu
- Department of Radiology, Shanghai Gamma HospitalShanghai 200040, China
| | - Xiao Liu
- School of Computer and Information Technology, Beijing Jiaotong UniversityBeijing 100044, China
| | - Jiawei Chen
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai 200040, China
| | - Lang Chen
- Department of Radiology, The Second Affiliated Hospital of Xuzhou Medical UniversityXuzhou 221000, Jiangsu, China
| | - Aihong Cao
- Department of Radiology, The Second Affiliated Hospital of Xuzhou Medical UniversityXuzhou 221000, Jiangsu, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan UniversityShanghai 200040, China
| |
Collapse
|
21
|
Paradossi G, Grossman R, Riccitelli F, Todaro F, Ram Z, Schioppa S, Domenici F. Toward a theranostic device for gliomas. Biochem Biophys Res Commun 2023; 671:124-131. [PMID: 37300942 DOI: 10.1016/j.bbrc.2023.05.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND In the surgical management of glioblastoma, a highly aggressive and incurable type of brain cancer, identification and treatment of residual tissue is the most common site of disease recurrence. Monitoring and localized treatment are achieved with engineered microbubbles (MBs) by combining ultrasound and fluorescence imaging with actively targeted temozolomide (TMZ) delivery. METHODS The MBs were conjugated with a near-infrared fluorescence probe CF790, cyclic pentapeptide bearing the RGD sequence and a carboxyl-temozolomide, TMZA. The efficiency of adhesion to HUVEC cells was assessed in vitro in realistic physiological conditions of shear rate and vascular dimensions. Cytotoxicity of TMZA-loaded MBs on U87 MG cells and IC50 were assessed by MTT tests. RESULTS We report on the design of injectable poly(vinyl alcohol) echogenic MBs designed as a platform with active targeting ability to tumor tissues, by tethering on the surface a ligand having the tripeptide sequence, RGD. The biorecognition of RGD-MBs onto HUVEC cells is quantitatively proved. Efficient NIR emission from the CF790-decorated MBs was successfully detected. The conjugation on the MBs surface of a specific drug as TMZ is achieved. The pharmacological activity of the coupled-to-surface drug is preserved by controlling the reaction conditions. CONCLUSIONS We present an improved formulation of PVA-MBs to achieve a multifunctional device with adhesion ability, cytotoxicity on glioblastoma cells and supporting imaging.
Collapse
Affiliation(s)
- Gaio Paradossi
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", 00133, Rome, Italy.
| | - Rachel Grossman
- Department of Neurosurgery, Tel Aviv Medical Center, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Francesco Riccitelli
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Federica Todaro
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Zvi Ram
- Department of Neurosurgery, Tel Aviv Medical Center, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Sara Schioppa
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Fabio Domenici
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", 00133, Rome, Italy
| |
Collapse
|
22
|
Zhang L, Liu Y, Huang H, Xie H, Zhang B, Xia W, Guo B. Multifunctional nanotheranostics for near infrared optical imaging-guided treatment of brain tumors. Adv Drug Deliv Rev 2022; 190:114536. [PMID: 36108792 DOI: 10.1016/j.addr.2022.114536] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 02/08/2023]
Abstract
Malignant brain tumors, a heterogeneous group of primary and metastatic neoplasms in the central nervous system (CNS), are notorious for their highly invasive and devastating characteristics, dismal prognosis and low survival rate. Recently, near-infrared (NIR) optical imaging modalities including fluorescence imaging (FLI) and photoacoustic imaging (PAI) have displayed bright prospect in innovation of brain tumor diagnoses, due to their merits, like noninvasiveness, high spatiotemporal resolution, good sensitivity and large penetration depth. Importantly, these imaging techniques have been widely used to vividly guide diverse brain tumor therapies in a real-time manner with high accuracy and efficiency. Herein, we provide a systematic summary of the state-of-the-art NIR contrast agents (CAs) for brain tumors single-modal imaging (e.g., FLI and PAI), dual-modal imaging (e.g., FLI/PAI, FLI/magnetic resonance imaging (MRI) and PAI/MRI) and triple-modal imaging (e.g., MRI/FLI/PAI and MRI/PAI/computed tomography (CT) imaging). In addition, we update the most recent progress on the NIR optical imaging-guided therapies, like single-modal (e.g., photothermal therapy (PTT), chemotherapy, surgery, photodynamic therapy (PDT), gene therapy and gas therapy), dual-modal (e.g., PTT/chemotherapy, PTT/surgery, PTT/PDT, PDT/chemotherapy, PTT/chemodynamic therapy (CDT) and PTT/gene therapy) and triple-modal (e.g., PTT/PDT/chemotherapy, PTT/PDT/surgery, PTT/PDT/gene therapy and PTT/gene/chemotherapy). Finally, we discuss the opportunities and challenges of the CAs and nanotheranostics for future clinic translation.
Collapse
Affiliation(s)
- Li Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yue Liu
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hui Xie
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Baozhu Zhang
- Department of Oncology, People's Hospital of Shenzhen Baoan District, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518101, China
| | - Wujiong Xia
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
23
|
Mosteiro A, Di Somma A, Ramos PR, Ferrés A, De Rosa A, González-Ortiz S, Enseñat J, González JJ. Is intraoperative ultrasound more efficient than magnetic resonance in neurosurgical oncology? An exploratory cost-effectiveness analysis. Front Oncol 2022; 12:1016264. [PMID: 36387079 PMCID: PMC9650059 DOI: 10.3389/fonc.2022.1016264] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Objective Intraoperative imaging is a chief asset in neurosurgical oncology, it improves the extent of resection and postoperative outcomes. Imaging devices have evolved considerably, in particular ultrasound (iUS) and magnetic resonance (iMR). Although iUS is regarded as a more economically convenient and yet effective asset, no formal comparison between the efficiency of iUS and iMR in neurosurgical oncology has been performed. Methods A cost-effectiveness analysis comparing two single-center prospectively collected surgical cohorts, classified according to the intraoperative imaging used. iMR (2013-2016) and iUS (2021-2022) groups comprised low- and high-grade gliomas, with a maximal safe resection intention. Units of health gain were gross total resection and equal or increased Karnofsky performance status. Surgical and health costs were considered for analysis. The incremental cost-effectiveness ratio (ICER) was calculated for the two intervention alternatives. The cost-utility graphic and the evolution of surgical duration with the gained experience were also analyzed. Results 50 patients followed an iMR-assisted operation, while 17 underwent an iUS-guided surgery. Gross total resection was achieved in 70% with iMR and in 60% with iUS. Median postoperative Karnofsky was similar in both group (KPS 90). Health costs were € 3,220 higher with iMR, and so were surgical-related costs (€ 1,976 higher). The ICER was € 322 per complete resection obtained with iMR, and € 644 per KPS gained or maintained with iMR. When only surgical-related costs were analyzed, ICER was € 198 per complete resection with iMR and € 395 per KPS gained or maintained. Conclusion This is an unprecedented but preliminary cost-effectiveness analysis of the two most common intraoperative imaging devices in neurosurgical oncology. iMR, although being costlier and time-consuming, seems cost-effective in terms of complete resection rates and postoperative performance status. However, the differences between both techniques are small. Possibly, iMR and iUS are complementary aids during the resection: iUS real-time images assist while advancing towards the tumor limits, informing about the distance to relevant landmarks and correcting neuronavigation inaccuracy due to brain shift. Yet, at the end of resection, it is the iMR that reliably corroborates whether residual tumor remains.
Collapse
Affiliation(s)
- Alejandra Mosteiro
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
- Facultad de Medicina, Universitat de Barcelona, Barcelona, Spain
- *Correspondence: Alejandra Mosteiro,
| | - Alberto Di Somma
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
- Facultad de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Pedro Roldán Ramos
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
- Facultad de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Abel Ferrés
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Andrea De Rosa
- Division of Neurosurgery, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Sofía González-Ortiz
- Division of Neurosurgery, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Joaquim Enseñat
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
- Facultad de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Jose Juan González
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
- Facultad de Medicina, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
The new era of bio-molecular imaging with O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) in neurosurgery of gliomas. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Blokker M, Hamer PCDW, Wesseling P, Groot ML, Veta M. Fast intraoperative histology-based diagnosis of gliomas with third harmonic generation microscopy and deep learning. Sci Rep 2022; 12:11334. [PMID: 35790792 PMCID: PMC9256596 DOI: 10.1038/s41598-022-15423-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
Management of gliomas requires an invasive treatment strategy, including extensive surgical resection. The objective of the neurosurgeon is to maximize tumor removal while preserving healthy brain tissue. However, the lack of a clear tumor boundary hampers the neurosurgeon's ability to accurately detect and resect infiltrating tumor tissue. Nonlinear multiphoton microscopy, in particular higher harmonic generation, enables label-free imaging of excised brain tissue, revealing histological hallmarks within seconds. Here, we demonstrate a real-time deep learning-based pipeline for automated glioma image analysis, matching video-rate image acquisition. We used a custom noise detection scheme, and a fully-convolutional classification network, to achieve on average 79% binary accuracy, 0.77 AUC and 0.83 mean average precision compared to the consensus of three pathologists, on a preliminary dataset. We conclude that the combination of real-time imaging and image analysis shows great potential for intraoperative assessment of brain tissue during tumor surgery.
Collapse
Affiliation(s)
- Max Blokker
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Philip C de Witt Hamer
- Department of Neurosurgery, Amsterdam UMC location VU University Medical Center, Amsterdam, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, Amsterdam UMC location VU University Medical Center, Amsterdam, The Netherlands
| | - Marie Louise Groot
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mitko Veta
- Medical Image Analysis Group (IMAG/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
26
|
Franceschi S, Lessi F, Morelli M, Menicagli M, Pasqualetti F, Aretini P, Mazzanti CM. Sedoheptulose Kinase SHPK Expression in Glioblastoma: Emerging Role of the Nonoxidative Pentose Phosphate Pathway in Tumor Proliferation. Int J Mol Sci 2022; 23:5978. [PMID: 35682658 PMCID: PMC9180619 DOI: 10.3390/ijms23115978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022] Open
Abstract
Glioblastoma (GBM) is the most common form of malignant brain cancer and is considered the deadliest human cancer. Because of poor outcomes in this disease, there is an urgent need for progress in understanding the molecular mechanisms of GBM therapeutic resistance, as well as novel and innovative therapies for cancer prevention and treatment. The pentose phosphate pathway (PPP) is a metabolic pathway complementary to glycolysis, and several PPP enzymes have already been demonstrated as potential targets in cancer therapy. In this work, we aimed to evaluate the role of sedoheptulose kinase (SHPK), a key regulator of carbon flux that catalyzes the phosphorylation of sedoheptulose in the nonoxidative arm of the PPP. SHPK expression was investigated in patients with GBM using microarray data. SHPK was also overexpressed in GBM cells, and functional studies were conducted. SHPK expression in GBM shows a significant correlation with histology, prognosis, and survival. In particular, its increased expression is associated with a worse prognosis. Furthermore, its overexpression in GBM cells confirms an increase in cell proliferation. This work highlights for the first time the importance of SHPK in GBM for tumor progression and proposes this enzyme and the nonoxidative PPP as possible therapeutic targets.
Collapse
Affiliation(s)
- Sara Franceschi
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy; (F.L.); (M.M.); (M.M.); (P.A.); (C.M.M.)
| | - Francesca Lessi
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy; (F.L.); (M.M.); (M.M.); (P.A.); (C.M.M.)
| | - Mariangela Morelli
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy; (F.L.); (M.M.); (M.M.); (P.A.); (C.M.M.)
| | - Michele Menicagli
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy; (F.L.); (M.M.); (M.M.); (P.A.); (C.M.M.)
| | - Francesco Pasqualetti
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, 56126 Pisa, Italy;
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Paolo Aretini
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy; (F.L.); (M.M.); (M.M.); (P.A.); (C.M.M.)
| | - Chiara Maria Mazzanti
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy; (F.L.); (M.M.); (M.M.); (P.A.); (C.M.M.)
| |
Collapse
|
27
|
Effect of 3D Slicer Preoperative Planning and Intraoperative Guidance with Mobile Phone Virtual Reality Technology on Brain Glioma Surgery. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:9627663. [PMID: 35795881 PMCID: PMC9155860 DOI: 10.1155/2022/9627663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/15/2022] [Accepted: 04/27/2022] [Indexed: 12/01/2022]
Abstract
Objective To explore the effect of 3D Slicer preoperative planning and intraoperative guidance with mobile phone virtual reality (VR) technology on brain glioma surgery. Methods By means of retrospective study, the data of 77 brain glioma patients treated in the neurosurgery departments at The Second Affiliated Hospital of Wannan Medical College and Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine from January 2015 to January 2022 were analyzed, and the patients were divided into the experimental group (EG, n = 38) and the control group (CG, n = 39) according to the surgical modalities. Before surgery, all patients received positron emission tomography-computed tomography (PET/CT) scanning and magnetic resonance imaging (MRI) examination. For patients in EG, the DICOM format images acquired from PET-CT and MRI examinations were imported with the 3D Slicer software for 3D visual fusion reconstruction, acquiring VR images, and developing detailed preoperative planning. Then, the reconstructed images were imported into the Sina software on a mobile phone, and the surgery was performed with the assistance of VR technology; for patients in CG, traditional 2D images were used for tumor contour drawing by the subjective visual method, and the craniotomy was performed under a traditional microscope. Patients' surgery indicators and Karnofsky Performance Scale (KPS) scores were compared between the two groups. Results The number of cases with total resection, rate of total resection, hospital stay after surgery, and surgery time were significantly better in EG than in CG (P < 0.05); after treatment, the KPS score was significantly higher in EG than in CG (75.66 ± 4.01 vs 65.36 ± 5.23, P < 0.001). Conclusion Combining 3D Slicer preoperative planning with intraoperative mobile phone VR technology can promote the accuracy of brain glioma surgery, which is conducive to effectively removing tumors while protecting patients' neural function.
Collapse
|
28
|
Fan X, Zhang L, Huang J, Zhong Y, Fan Y, Zhou T, Lu M. An Integrated Immune-Related Bioinformatics Analysis in Glioma: Prognostic Signature’s Identification and Multi-Omics Mechanisms’ Exploration. Front Genet 2022; 13:889629. [PMID: 35601497 PMCID: PMC9114310 DOI: 10.3389/fgene.2022.889629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/18/2022] [Indexed: 12/05/2022] Open
Abstract
As the traditional treatment for glioma, the most common central nervous system malignancy with poor prognosis, the efficacy of high-intensity surgery combined with radiotherapy and chemotherapy is not satisfactory. The development of individualized scientific treatment strategy urgently requires the guidance of signature with clinical predictive value. In this study, five prognosis-related differentially expressed immune-related genes (PR-DE-IRGs) (CCNA2, HMGB2, CASP3, APOBEC3C, and BMP2) highly associated with glioma were identified for a prognostic model through weighted gene co-expression network analysis, univariate Cox and lasso regression. Kaplan-Meier survival curves, receiver operating characteristic curves and other methods have shown that the model has good performance in predicting the glioma patients’ prognosis. Further combined nomogram provided better predictive performance. The signature’s guiding value in clinical treatment has also been verified by multiple analysis results. We also constructed a comprehensive competing endogenous RNA (ceRNA) regulatory network based on the protective factor BMP2 to further explore its potential role in glioma progression. Numerous immune-related biological functions and pathways were enriched in a high-risk population. Further multi-omics integrative analysis revealed a strong correlation between tumor immunosuppressive environment/IDH1 mutation and signature, suggesting that their cooperation plays an important role in glioma progression.
Collapse
Affiliation(s)
- Xin Fan
- Department of Emergency Medicine, Shangrao Hospital Affiliated to Nanchang University, Shangrao People’s Hospital, Shangrao, China
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lingling Zhang
- School of Stomatology, Nanchang University, Nanchang, China
| | - Junwen Huang
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Yun Zhong
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Yanting Fan
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Tong Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Lu
- Department of Emergency Medicine, Shangrao Hospital Affiliated to Nanchang University, Shangrao People’s Hospital, Shangrao, China
- *Correspondence: Min Lu,
| |
Collapse
|
29
|
Hemodynamic Imaging in Cerebral Diffuse Glioma-Part A: Concept, Differential Diagnosis and Tumor Grading. Cancers (Basel) 2022; 14:cancers14061432. [PMID: 35326580 PMCID: PMC8946242 DOI: 10.3390/cancers14061432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Diffuse gliomas are the most common primary malignant intracranial neoplasms. Aside from the challenges pertaining to their treatment-glioblastomas, in particular, have a dismal prognosis and are currently incurable-their pre-operative assessment using standard neuroimaging has several drawbacks, including broad differentials diagnosis, imprecise characterization of tumor subtype and definition of its infiltration in the surrounding brain parenchyma for accurate resection planning. As the pathophysiological alterations of tumor tissue are tightly linked to an aberrant vascularization, advanced hemodynamic imaging, in addition to other innovative approaches, has attracted considerable interest as a means to improve diffuse glioma characterization. In the present part A of our two-review series, the fundamental concepts, techniques and parameters of hemodynamic imaging are discussed in conjunction with their potential role in the differential diagnosis and grading of diffuse gliomas. In particular, recent evidence on dynamic susceptibility contrast, dynamic contrast-enhanced and arterial spin labeling magnetic resonance imaging are reviewed together with perfusion-computed tomography. While these techniques have provided encouraging results in terms of their sensitivity and specificity, the limitations deriving from a lack of standardized acquisition and processing have prevented their widespread clinical adoption, with current efforts aimed at overcoming the existing barriers.
Collapse
|
30
|
Abstract
Gliomas are the most common intrinsic brain tumor in adults. Although maximal tumor resection improves survival, this must be balanced with preservation of neurologic function. Technological advancements have greatly expanded our ability to safely maximize tumor resection and design innovative therapeutic trials that take advantage of intracavitary delivery of therapeutic agents after resection. In this article, we review the role of surgical intervention for both low-grade and high-grade gliomas and the innovations that are driving and expanding the role of surgery in this therapeutically challenging group of malignancies.
Collapse
Affiliation(s)
- Dana Mitchell
- Department of Pediatrics, Indiana University, Herman B. Wells Center for Pediatric Research 1044 W Walnut St, Indianapolis, IN 46202, USA
| | - Jack M Shireman
- Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue CSC K3/803, Madison, WI 53792, USA
| | - Mahua Dey
- Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue CSC K3/803, Madison, WI 53792, USA.
| |
Collapse
|
31
|
Matsumae M, Nishiyama J, Kuroda K. Intraoperative MR Imaging during Glioma Resection. Magn Reson Med Sci 2022; 21:148-167. [PMID: 34880193 PMCID: PMC9199972 DOI: 10.2463/mrms.rev.2021-0116] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
One of the major issues in the surgical treatment of gliomas is the concern about maximizing the extent of resection while minimizing neurological impairment. Thus, surgical planning by carefully observing the relationship between the glioma infiltration area and eloquent area of the connecting fibers is crucial. Neurosurgeons usually detect an eloquent area by functional MRI and identify a connecting fiber by diffusion tensor imaging. However, during surgery, the accuracy of neuronavigation can be decreased due to brain shift, but the positional information may be updated by intraoperative MRI and the next steps can be planned accordingly. In addition, various intraoperative modalities may be used to guide surgery, including neurophysiological monitoring that provides real-time information (e.g., awake surgery, motor-evoked potentials, and sensory evoked potential); photodynamic diagnosis, which can identify high-grade glioma cells; and other imaging techniques that provide anatomical information during the surgery. In this review, we present the historical and current context of the intraoperative MRI and some related approaches for an audience active in the technical, clinical, and research areas of radiology, as well as mention important aspects regarding safety and types of devices.
Collapse
Affiliation(s)
- Mitsunori Matsumae
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Jun Nishiyama
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kagayaki Kuroda
- Department of Human and Information Sciences, School of Information Science and Technology, Tokai University, Hiratsuka, Kanagawa, Japan
| |
Collapse
|
32
|
Carrete LR, Young JS, Cha S. Advanced Imaging Techniques for Newly Diagnosed and Recurrent Gliomas. Front Neurosci 2022; 16:787755. [PMID: 35281485 PMCID: PMC8904563 DOI: 10.3389/fnins.2022.787755] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Management of gliomas following initial diagnosis requires thoughtful presurgical planning followed by regular imaging to monitor treatment response and survey for new tumor growth. Traditional MR imaging modalities such as T1 post-contrast and T2-weighted sequences have long been a staple of tumor diagnosis, surgical planning, and post-treatment surveillance. While these sequences remain integral in the management of gliomas, advances in imaging techniques have allowed for a more detailed characterization of tumor characteristics. Advanced MR sequences such as perfusion, diffusion, and susceptibility weighted imaging, as well as PET scans have emerged as valuable tools to inform clinical decision making and provide a non-invasive way to help distinguish between tumor recurrence and pseudoprogression. Furthermore, these advances in imaging have extended to the operating room and assist in making surgical resections safer. Nevertheless, surgery, chemotherapy, and radiation treatment continue to make the interpretation of MR changes difficult for glioma patients. As analytics and machine learning techniques improve, radiomics offers the potential to be more quantitative and personalized in the interpretation of imaging data for gliomas. In this review, we describe the role of these newer imaging modalities during the different stages of management for patients with gliomas, focusing on the pre-operative, post-operative, and surveillance periods. Finally, we discuss radiomics as a means of promoting personalized patient care in the future.
Collapse
Affiliation(s)
- Luis R. Carrete
- University of California San Francisco School of Medicine, San Francisco, CA, United States
| | - Jacob S. Young
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Jacob S. Young,
| | - Soonmee Cha
- Department of Radiology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
33
|
Tyurina AN, Vikhrova NB, Batalov AI, Kalaeva DB, Shults EI, Postnov AA, Pronin IN. [Radiological biomarkers of brain gliomas]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2022; 86:121-126. [PMID: 36534633 DOI: 10.17116/neiro202286061121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The most important objective of modern neuroimaging is comparison of data on genotype and phenotype of brain gliomas. Radiogenomics as a new branch of science is devoted to searching for such relationships based on MRI and PET/CT parameters. The 2021 WHO classification of tumors of the central nervous system poses the most important tasks for physicians in assessment of biological behavior of tumors and their response to combined treatment. The review demonstrates the possibilities and prospects of preoperative MRI and PET/CT with amino acids in assessing the genetic profile of brain gliomas.
Collapse
Affiliation(s)
- A N Tyurina
- Burdenko Neurosurgery Center, Moscow, Russia
| | | | - A I Batalov
- Burdenko Neurosurgery Center, Moscow, Russia
| | - D B Kalaeva
- Burdenko Neurosurgery Center, Moscow, Russia
- Moscow Engineering Physics Institute, Moscow, Russia
| | - E I Shults
- Research Practical Clinical Center of Diagnosis and Telemedicine Technologies, Moscow, Russia
| | - A A Postnov
- Burdenko Neurosurgery Center, Moscow, Russia
- Moscow Engineering Physics Institute, Moscow, Russia
- Lebedev Physical Institute, Moscow, Russia
| | - I N Pronin
- Burdenko Neurosurgery Center, Moscow, Russia
| |
Collapse
|
34
|
Lu X, Li C, Xu W, Wu Y, Wang J, Chen S, Zhang H, Huang H, Huang H, Liu W. Malignant Tumor Purity Reveals the Driven and Prognostic Role of CD3E in Low-Grade Glioma Microenvironment. Front Oncol 2021; 11:676124. [PMID: 34557404 PMCID: PMC8454269 DOI: 10.3389/fonc.2021.676124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/02/2021] [Indexed: 12/23/2022] Open
Abstract
The tumor microenvironment (TME) contributes to the initiation and progression of many neoplasms. However, the impact of low-grade glioma (LGG) purity on carcinogenesis remains to be elucidated. We selected 509 LGG patients with available genomic and clinical information from the TCGA database. The percentage of tumor infiltrating immune cells and the tumor purity of LGG were evaluated using the ESTIMATE and CIBERSORT algorithms. Stromal-related genes were screened through Cox regression, and protein-protein interaction analyses and survival-related genes were selected in 487 LGG patients from GEO database. Hub genes involved in LGG purity were then identified and functionally annotated using bioinformatics analyses. Prognostic implications were validated in 100 patients from an Asian real-world cohort. Elevated tumor purity burden, immune scores, and stromal scores were significantly associated with poor outcomes and increased grade in LGG patients from the TCGA cohort. In addition, CD3E was selected with the most significant prognostic value (Hazard Ratio=1.552, P<0.001). Differentially expressed genes screened according to CD3E expression were mainly involved in stromal related activities. Additionally, significantly increased CD3E expression was found in 100 LGG samples from the validation cohort compared with adjacent normal brain tissues. High CD3E expression could serve as an independent prognostic indicator for survival of LGG patients and promotes malignant cellular biological behaviors of LGG. In conclusion, tumor purity has a considerable impact on the clinical, genomic, and biological status of LGG. CD3E, the gene for novel membrane immune biomarker deeply affecting tumor purity, may help to evaluate the prognosis and develop individual immunotherapy strategies for LGG patients. Evaluating the ratio of differential tumor purity and CD3E expression levels may provide novel insights into the complex structure of the LGG microenvironment and targeted drug development.
Collapse
Affiliation(s)
- Xiuqin Lu
- Department of Nursing and Health Management, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Chuanyu Li
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai Medical University, Fudan University, Shanghai, China
| | - Yuanyuan Wu
- Department of Gastroenterology, Naval Medical Center of People’s Liberation Army (PLA) of China, Naval Military Medical University, Shanghai, China
| | - Jian Wang
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuxian Chen
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai Medical University, Fudan University, Shanghai, China
| | - Huadong Huang
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Haineng Huang
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Wangrui Liu
- Department of Nursing and Health Management, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| |
Collapse
|
35
|
Chekhonin IV, Batalov AI, Zakharova NE, Pogosbekyan EL, Nikitin PV, Bykanov AE, Pitskhelauri DI, Pronin IN. [Magnetic resonance relaxometry in high-grade glioma subregion assessment - neuroimaging and morphological correlates]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2021; 85:41-48. [PMID: 34463449 DOI: 10.17116/neiro20218504141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To analyze the differences of high-grade glioma subregions using magnetic resonance relaxometry with compilation of images (MAGiC) and arterial spin labeling (ASL), as well as to compare quantitative measurements of these techniques with morphological data. MATERIAL AND METHODS The study enrolled 35 patients with newly diagnosed supratentorial gliomas (23 - grade IV, 12 - grade III). We measured relaxometric values (T1, T2, proton density), tumor blood flow (TBF) in glioma subregions and normal-appearing brain matter. Neuronavigation was intraoperatively used to obtain tissue samples from active tumor growth zone, perifocal infiltrative edema zone and adjacent brain matter along surgical approach. RESULTS ASL perfusion revealed higher tumor blood flow (TBF) in active tumor growth region compared to perifocal infiltrative edema zone (p<0.01). Relaxometric values (T1, T2, proton density) in perifocal zone were higher (p<0.01) compared to adjacent intact white matter along surgical approach. However, there were no differences in TBF between these zones. Proton density in tumor-adjacent intact white matter was higher (p<0.01) compared to normal-appearing white matter in ipsilateral hemisphere. There was inverse correlation between T2 and TBF in active tumor growth zone (Spearman rank R= -0.58; p=0.0016). We found inverse correlation between T2 and Ki67 proliferative index and direct correlation between TBF and Ki67 in this zone. Nevertheless, these relationships were insignificant after multiple test adjustment. CONCLUSION Our study advocates for complementary power of ASL perfusion and MR relaxometry in assessment of high-grade brain glioma subregions. More malignant tumor zones tend to have higher TBF and shorter T2. Further investigation is needed to prove the capability of MAGiC to reveal foci of increased relaxometric values in tumor-adjacent normal-appearing white matter.
Collapse
Affiliation(s)
| | - A I Batalov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | | | - P V Nikitin
- Burdenko Neurosurgical Center, Moscow, Russia
| | - A E Bykanov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
36
|
Kiesel B, Freund J, Reichert D, Wadiura L, Erkkilae MT, Woehrer A, Hervey-Jumper S, Berger MS, Widhalm G. 5-ALA in Suspected Low-Grade Gliomas: Current Role, Limitations, and New Approaches. Front Oncol 2021; 11:699301. [PMID: 34395266 PMCID: PMC8362830 DOI: 10.3389/fonc.2021.699301] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Radiologically suspected low-grade gliomas (LGG) represent a special challenge for the neurosurgeon during surgery due to their histopathological heterogeneity and indefinite tumor margin. Therefore, new techniques are required to overcome these current surgical drawbacks. Intraoperative visualization of brain tumors with assistance of 5-aminolevulinic acid (5-ALA) induced protoporphyrin IX (PpIX) fluorescence is one of the major advancements in the neurosurgical field in the last decades. Initially, this technique was exclusively applied for fluorescence-guided surgery of high-grade glioma (HGG). In the last years, the use of 5-ALA was also extended to other indications such as radiologically suspected LGG. Here, we discuss the current role of 5-ALA for intraoperative visualization of focal malignant transformation within suspected LGG. Furthermore, we discuss the current limitations of the 5-ALA technology in pure LGG which usually cannot be visualized by visible fluorescence. Finally, we introduce new approaches based on fluorescence technology for improved detection of pure LGG tissue such as spectroscopic PpIX quantification fluorescence lifetime imaging of PpIX and confocal microscopy to optimize surgery.
Collapse
Affiliation(s)
- Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Julia Freund
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - David Reichert
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, Vienna, Austria
| | - Lisa Wadiura
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Mikael T Erkkilae
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Department of Neurology, Institute for Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
37
|
d’Este SH, Nielsen MB, Hansen AE. Visualizing Glioma Infiltration by the Combination of Multimodality Imaging and Artificial Intelligence, a Systematic Review of the Literature. Diagnostics (Basel) 2021; 11:diagnostics11040592. [PMID: 33806195 PMCID: PMC8067218 DOI: 10.3390/diagnostics11040592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 01/14/2023] Open
Abstract
The aim of this study was to systematically review the literature concerning the integration of multimodality imaging with artificial intelligence methods for visualization of tumor cell infiltration in glioma patients. The review was performed in accordance with the preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines. The literature search was conducted in PubMed, Embase, The Cochrane Library and Web of Science and yielded 1304 results. 14 studies were included in the qualitative analysis. The reference standard for tumor infiltration was either histopathology or recurrence on image follow-up. Critical assessment was performed according to the Quality Assessment of Diagnostic Accuracy Studies (QUADAS2). All studies concluded their findings to be of significant value for future clinical practice. Diagnostic test accuracy reached an area under the curve of 0.74–0.91 reported in six studies. There was no consensus with regard to included image modalities, models or training and test strategies. The integration of artificial intelligence with multiparametric imaging shows promise for visualizing tumor cell infiltration in glioma patients. This approach can possibly optimize surgical resection margins and help provide personalized radiotherapy planning.
Collapse
Affiliation(s)
- Sabrina Honoré d’Este
- Department of Diagnostic Radiology, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark; (M.B.N.); (A.E.H.)
- Correspondence:
| | - Michael Bachmann Nielsen
- Department of Diagnostic Radiology, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark; (M.B.N.); (A.E.H.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Adam Espe Hansen
- Department of Diagnostic Radiology, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark; (M.B.N.); (A.E.H.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
38
|
Overcast WB, Davis KM, Ho CY, Hutchins GD, Green MA, Graner BD, Veronesi MC. Advanced imaging techniques for neuro-oncologic tumor diagnosis, with an emphasis on PET-MRI imaging of malignant brain tumors. Curr Oncol Rep 2021; 23:34. [PMID: 33599882 PMCID: PMC7892735 DOI: 10.1007/s11912-021-01020-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW This review will explore the latest in advanced imaging techniques, with a focus on the complementary nature of multiparametric, multimodality imaging using magnetic resonance imaging (MRI) and positron emission tomography (PET). RECENT FINDINGS Advanced MRI techniques including perfusion-weighted imaging (PWI), MR spectroscopy (MRS), diffusion-weighted imaging (DWI), and MR chemical exchange saturation transfer (CEST) offer significant advantages over conventional MR imaging when evaluating tumor extent, predicting grade, and assessing treatment response. PET performed in addition to advanced MRI provides complementary information regarding tumor metabolic properties, particularly when performed simultaneously. 18F-fluoroethyltyrosine (FET) PET improves the specificity of tumor diagnosis and evaluation of post-treatment changes. Incorporation of radiogenomics and machine learning methods further improve advanced imaging. The complementary nature of combining advanced imaging techniques across modalities for brain tumor imaging and incorporating technologies such as radiogenomics has the potential to reshape the landscape in neuro-oncology.
Collapse
Affiliation(s)
- Wynton B. Overcast
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N University Blvd. Room 0663, Indianapolis, IN 46202 USA
| | - Korbin M. Davis
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N University Blvd. Room 0663, Indianapolis, IN 46202 USA
| | - Chang Y. Ho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Goodman Hall, 355 West 16th Street, Suite 4100, Indianapolis, IN 46202 USA
| | - Gary D. Hutchins
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Research 2 Building (R2), Room E124, 920 W. Walnut Street, Indianapolis, IN 46202-5181 USA
| | - Mark A. Green
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Research 2 Building (R2), Room E124, 920 W. Walnut Street, Indianapolis, IN 46202-5181 USA
| | - Brian D. Graner
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Goodman Hall, 355 West 16th Street, Suite 4100, Indianapolis, IN 46202 USA
| | - Michael C. Veronesi
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Research 2 Building (R2), Room E174, 920 W. Walnut Street, Indianapolis, IN 46202-5181 USA
| |
Collapse
|