1
|
Shaker FH, Sanad EF, Elghazaly H, Hsia SM, Hamdy NM. piR-823 tale as emerging cancer-hallmark molecular marker in different cancer types: a step-toward ncRNA-precision. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:47-68. [PMID: 39102033 PMCID: PMC11787197 DOI: 10.1007/s00210-024-03308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
PIWI-interacting RNAs (piRNAs) have received a lot of attention for their functions in cancer research. This class of short non-coding RNAs (ncRNA) has roles in genomic stability, chromatin remodeling, messenger RNA (mRNA) integrity, and genome structure. We summarized the mechanisms underlying the biogenesis and regulatory molecular functions of piRNAs. Among all piRNAs studied in cancer, this review offers a comprehensive analysis of the emerging roles of piR-823 in various types of cancer, including colorectal, gastric, liver, breast, and renal cancers, as well as multiple myeloma. piR-823 has emerged as a crucial modulator of various cancer hallmarks through regulating multiple pathways. In the current review, we analyzed several databases and conducted an extensive literature search to explore the influence of piR-823 in carcinogenesis in addition to describing the potential application of piR-823 as prognostic and diagnostic markers as well as the therapeutic potential toward ncRNA precision.
Collapse
Affiliation(s)
- Fatma H Shaker
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abassia, 11566, Egypt
| | - Eman F Sanad
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abassia, 11566, Egypt
| | - Hesham Elghazaly
- Department of Clinical Oncology, Faculty of Medicine, Ain Shams University, Cairo, Abassia, 11566, Egypt
| | - Shih-Min Hsia
- School of Food and Safety, Nutrition Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, 110301, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 110301, Taiwan
| | - Nadia M Hamdy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abassia, 11566, Egypt.
| |
Collapse
|
2
|
Xu F, Li L, Jiang L, Zhang J. Identification of key genes and immune infiltration in multiple myeloma by bioinformatics analysis. Hematology 2023; 28:2264517. [PMID: 37815499 DOI: 10.1080/16078454.2023.2264517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023] Open
Abstract
OBJECTIVE Multiple Myeloma (MM) is a hematologic malignant disease with unclear molecular mechanisms. This integrated bioinformatic study aimed to identify key genes, pathways and immune cell infiltration pattern in MM. METHODS Differentially expressed genes (DEGs) from GSE6477 and GSE16558 dataset were filtrated with R package 'limma', whose function were explored by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The key genes were selected from Protein-protein interaction network (PPI) and logistic regression model. The correlation between key genes and survival in MM was evaluated using the survival and survminer package. Additionally, immune filtration analysis was accomplished by CIBERSORT tools. RESULTS 118 DEGs (92 up-regulated and 26 down-regulated) from two GSE datasets were identified, which were closely related with B cell receptor signaling pathway and Epstein-Barr virus infection. Furthermore, CD24 and PTPRC of five hub genes identified in PPI network were further screened out by the logistic regression model. Besides, CD24 and PTPRC expression were significantly correlated to the survival time in MM patients. Finally, MM might cause different infiltrating immune cell compositions, including increased infiltrations of B cells memory, Plasma cells, T cells CD4 memory resting, T cells follicular helper, Tregs, NK cells resting, Macrophages(M0/M1), Dendritic cells resting and Mast cells activating, and lower proportions of B cells naïve, T cells CD4 naïve, Macrophages M2 and Neutrophils. CONCLUSION Targeting CD24 and PTPRC as molecular markers of MM is valuable to MM therapy. Moreover, the immune cell infiltration will provide new insights into MM immunopathology.
Collapse
Affiliation(s)
- Fei Xu
- Department of Hematology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Ling Li
- Department of Hematology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - LiMei Jiang
- Department of Hematology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Jing Zhang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| |
Collapse
|
3
|
Abegunde S, Grieve S, Alfarra H, Reiman T. MST1 DOWNREGULATES TAZ TUMOUR SUPPRESSOR PROTEIN IN MULTIPLE MYELOMA AND IS A POTENTIAL THERAPEUTIC TARGET. Exp Hematol 2023:S0301-472X(23)00170-4. [PMID: 37137439 DOI: 10.1016/j.exphem.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/29/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
We have previously reported that TAZ functions as a tumor suppressor in multiple myeloma. MST1 is a serine-threonine kinase upstream of the Hippo-signaling pathway that functions as a tumor suppressor in many non-haematological malignancies. However, its role in hematological malignancies, including MM is still poorly understood. In this paper, we provide evidence that MST1 expression is higher in MM, and negatively correlates with TAZ expression in both cell lines and patient samples. High MST1 expression was associated with poor clinical outcomes. Genetic or pharmacological inhibition of MST1 leads to increased TAZ expression and cell death. Importantly, MST1 inhibitors sensitizes myeloma cells to frontline antimyeloma agent-lenalidomide and dexamethasone. Taken together, our data reveals a key role for MST1 in MM pathogenesis and provide evidence to explore the therapeutic potential of using MST inhibitors to upregulate TAZ expression in MM to promote response to anticancer agents.
Collapse
Affiliation(s)
- S Abegunde
- Department of Biology, University of New Brunswick, Saint John, NB, Canada, E2L 4L5; Dalhousie Medicine NB, Saint John, NB, Canada, E2L 4L5.
| | | | - H Alfarra
- Department of Biology, University of New Brunswick, Saint John, NB, Canada, E2L 4L5
| | - T Reiman
- Department of Biology, University of New Brunswick, Saint John, NB, Canada, E2L 4L5; Dalhousie Medicine NB, Saint John, NB, Canada, E2L 4L5; Saint John Regional Hospital, NB, Canada, E2L 4L2.
| |
Collapse
|
4
|
Zhang J, Wang Z, Wang K, Xin D, Wang L, Fan Y, Xu Y. Increased Expression of SRSF1 Predicts Poor Prognosis in Multiple Myeloma. JOURNAL OF ONCOLOGY 2023; 2023:9998927. [PMID: 37206090 PMCID: PMC10191755 DOI: 10.1155/2023/9998927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/11/2022] [Accepted: 01/19/2023] [Indexed: 05/21/2023]
Abstract
Background Multiple myeloma (MM) is a clonal plasma cell disorder which still lacks sufficient prognostic factors. The serine/arginine-rich splicing factor (SRSF) family serves as an important splicing regulator in organ development. Among all members, SRSF1 plays an important role in cell proliferation and renewal. However, the role of SRSF1 in MM is still unknown. Methods SRSF1 was selected from the primary bioinformatics analysis of SRSF family members, and then we integrated 11 independent datasets and analyzed the relationship between SRSF1 expression and MM clinical characteristics. Gene set enrichment analysis (GSEA) was conducted to explore the potential mechanism of SRSF1 in MM progression. ImmuCellAI was used to estimate the abundance of immune infiltrating cells between the SRSF1high and SRSF1low groups. The ESTIMATE algorithm was used to evaluate the tumor microenvironment in MM. The expression of immune-related genes was compared between the groups. Additionally, SRSF1 expression was validated in clinical samples. SRSF1 knockdown was conducted to explore the role of SRSF1 in MM development. Results SRSF1 expression showed an increasing trend with the progression of myeloma. Besides, SRSF1 expression increased as the age, ISS stage, 1q21 amplification level, and relapse times increased. MM patients with higher SRSF1 expression had worse clinical features and poorer outcomes. Univariate and multivariate analysis indicated that upregulated SRSF1 expression was an independent poor prognostic factor for MM. Enrichment pathway analysis confirmed that SRSF1 takes part in the myeloma progression via tumor-associated and immune-related pathways. Several checkpoints and immune-activating genes were significantly downregulated in the SRSF1high groups. Furthermore, we detected that SRSF1 expression was significantly higher in MM patients than that in control donors. SRSF1 knockdown resulted in proliferation arrest in MM cell lines. Conclusion The expression value of SRSF1 is positively associated with myeloma progression, and high SRSF1 expression might be a poor prognostic biomarker in MM patients.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang University Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zanzan Wang
- Department of Hematology, Ningbo First Hospital, Ningbo 315010, China
| | - Kailai Wang
- Zhejiang University Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Dijia Xin
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Luyao Wang
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yili Fan
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yang Xu
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
5
|
Trtkova KS, Luzna P, Drozdkova DW, Cizkova K, Janovska L, Gursky J, Prukova D, Frydrych I, Hajduch M, Minarik J. The epigenetic impact of suberohydroxamic acid and 5‑Aza‑2'‑deoxycytidine on DNMT3B expression in myeloma cell lines differing in IL‑6 expression. Mol Med Rep 2022; 26:321. [PMID: 36043519 PMCID: PMC9471560 DOI: 10.3892/mmr.2022.12837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 06/08/2022] [Indexed: 11/06/2022] Open
Abstract
Gene inactivation of the cyclin-dependent kinase inhibitors p16INK4a, p15INK4b and p21WAF is frequently mediated by promoter gene methylation, whereas histone deacetylases (HDACs) control gene expression through their ability to deacetylate proteins. The effect of suberohydroxamic acid (SBHA) and 5-Aza-2′-deoxycytidine (Decitabine) (DAC) treatments on the transcription of CDKN2A, CDKN2B and CDKN1A genes, and their effects on molecular biological behavior were examined in two myeloma cell lines, RPMI8226 and U266, which differ in p53-functionality and IL-6 expression. In both tested myeloma cell lines, a non-methylated state of the CDKN2B gene promoter region was detected with normal gene expression, and the same level of p15INK4b protein was detected by immunocytochemical staining. Furthermore, in myeloma cells treated with SBHA and DAC alone, the expression of both p15INK4b and p21WAF was significantly upregulated in RPMI8226 cells (p53-functional, without IL-6 expression), whereas in the U266 cell line (p53 deleted, expressing IL-6) only p21WAF expression was significantly increased. Moreover, the analysis revealed that treatment with DAC induced DNMT3B enhancement in U266 cells. In conclusion, in myeloma cells with IL-6 expression, significantly increased DNMT3B expression indicated the tumorigenic consequences of 5-Aza-2′deoxycytidine treatment, which requires careful use in diseases involving epigenetic dysregulation, such as multiple myeloma (MM).
Collapse
Affiliation(s)
- Katerina Smesny Trtkova
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 777 15 Olomouc, Czech Republic
| | - Petra Luzna
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 777 15 Olomouc, Czech Republic
| | - Denisa Weiser Drozdkova
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 777 15 Olomouc, Czech Republic
| | - Katerina Cizkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 777 15 Olomouc, Czech Republic
| | - Lucie Janovska
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 777 15 Olomouc, Czech Republic
| | - Jan Gursky
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 777 15 Olomouc, Czech Republic
| | - Dana Prukova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic
| | - Ivo Frydrych
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 779 00 Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 779 00 Olomouc, Czech Republic
| | - Jiri Minarik
- Department of Hemato‑Oncology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| |
Collapse
|
6
|
Kaur G, Jena L, Gupta R, Farswan A, Gupta A, Sriram K. Correlation of changes in subclonal architecture with progression in the MMRF CoMMpass study. Transl Oncol 2022; 23:101472. [PMID: 35777247 PMCID: PMC9253848 DOI: 10.1016/j.tranon.2022.101472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
Multiple myeloma (MM) is a heterogeneous plasma cell proliferative disorder that arises from its premalignant precursor stages through a complex cascade of interactions between clonal mutations and co-evolving microenvironment. The temporo-spatial evolutionary trajectories of MM are established early during myelomatogenesis in precursor stages and retained in MM. Such molecular events impact subsequent disease progression and clinical outcomes. Identification of clonal sweeps of actionable gene targets in MM could reveal potential vulnerabilities that may exist in early stages and thus potentiate prognostication and customization of early therapeutic interventions. We have evaluated clonal evolution at multiple time points in 76 MM patients enrolled in the MMRF CoMMpass study. The major findings of this study are (a) MM progresses predominantly through branching evolution, (b) there is a heterogeneous spectrum of mutational landscapes that include unique actionable gene targets at diagnosis compared to progression, (c) unique clonal gains/ losses of mutant driver genes can be identified in patients with different cytogenetic aberrations, (d) there is a significant correlation between co-occurring oncogenic mutations/ co-occurring subclones e.g., with mutated TP53+SYNE1, NRAS+MAGI3, and anticorrelative dependencies between FAT3+FCGBP gene pairs. Such co-trajectories may synchronize molecular events of drug response, myelomatogenesis and warrant future studies to explore their potential for early prognostication and development of risk stratified personalized therapies in MM.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Laboratory Oncology Unit, Dr. B. R.A. IRCH, AIIMS, New Delhi
| | - Lingaraja Jena
- Laboratory Oncology Unit, Dr. B. R.A. IRCH, AIIMS, New Delhi
| | - Ritu Gupta
- Laboratory Oncology Unit, Dr. B. R.A. IRCH, AIIMS, New Delhi.
| | - Akanksha Farswan
- SBILab, Department of Electronics and Communication Engineering, IIIT, Delhi
| | - Anubha Gupta
- SBILab, Department of Electronics and Communication Engineering, IIIT, Delhi.
| | - K Sriram
- Department of Computational Biology & Centre for Computational Biology, IIIT, Delhi
| |
Collapse
|
7
|
Ndacayisaba LJ, Rappard KE, Shishido SN, Ruiz Velasco C, Matsumoto N, Navarez R, Tang G, Lin P, Setayesh SM, Naghdloo A, Hsu CJ, Maney C, Symer D, Bethel K, Kelly K, Merchant A, Orlowski R, Hicks J, Mason J, Manasanch EE, Kuhn P. Enrichment-Free Single-Cell Detection and Morphogenomic Profiling of Myeloma Patient Samples to Delineate Circulating Rare Plasma Cell Clones. Curr Oncol 2022; 29:2954-2972. [PMID: 35621632 PMCID: PMC9139906 DOI: 10.3390/curroncol29050242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 01/27/2023] Open
Abstract
Multiple myeloma is an incurable malignancy that initiates from a bone marrow resident clonal plasma cell and acquires successive mutational changes and genomic alterations, eventually resulting in tumor burden accumulation and end-organ damage. It has been recently recognized that myeloma secondary genomic events result in extensive sub-clonal heterogeneity both in localized bone marrow areas and circulating peripheral blood plasma cells. Rare genomic subclones, including myeloma initiating cells, could be the drivers of disease progression and recurrence. Additionally, evaluation of rare myeloma cells in blood for disease monitoring has numerous advantages over invasive bone marrow biopsies. To this end, an unbiased method for detecting rare cells and delineating their genomic makeup enables disease detection and monitoring in conditions with low abundant cancer cells. In this study, we applied an enrichment-free four-plex (CD138, CD56, CD45, DAPI) immunofluorescence assay and single-cell DNA sequencing for morphogenomic characterization of plasma cells to detect and delineate common and rare plasma cells and discriminate between normal and malignant plasma cells in paired blood and bone marrow aspirates from five patients with newly diagnosed myeloma (N = 4) and monoclonal gammopathy of undetermined significance (n = 1). Morphological analysis confirms CD138+CD56+ cells in the peripheral blood carry genomic alterations that are clonally identical to those in the bone marrow. A subset of altered CD138+CD56- cells are also found in the peripheral blood consistent with the known variability in CD56 expression as a marker of plasma cell malignancy. Bone marrow tumor clinical cytogenetics is highly correlated with the single-cell copy number alterations of the liquid biopsy rare cells. A subset of rare cells harbors genetic alterations not detected by standard clinical diagnostic methods of random localized bone marrow biopsies. This enrichment-free morphogenomic approach detects and characterizes rare cell populations derived from the liquid biopsies that are consistent with clinical diagnosis and have the potential to extend our understanding of subclonality at the single-cell level in this disease. Assay validation in larger patient cohorts has the potential to offer liquid biopsy for disease monitoring with similar or improved disease detection as traditional blind bone marrow biopsies.
Collapse
Affiliation(s)
- Libere J. Ndacayisaba
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Kate E. Rappard
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - Stephanie N. Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - Carmen Ruiz Velasco
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - Nicholas Matsumoto
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - Rafael Navarez
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - Guilin Tang
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.T.); (P.L.)
| | - Pei Lin
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.T.); (P.L.)
| | - Sonia M. Setayesh
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - Amin Naghdloo
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - Ching-Ju Hsu
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - Carlisle Maney
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - David Symer
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.S.); (R.O.); (E.E.M.)
| | - Kelly Bethel
- Department of Pathology, Scripps Clinic Medical Group, La Jolla, CA 92037, USA;
| | - Kevin Kelly
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Akil Merchant
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Robert Orlowski
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.S.); (R.O.); (E.E.M.)
| | - James Hicks
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
- Department of Pathology, Scripps Clinic Medical Group, La Jolla, CA 92037, USA;
| | - Jeremy Mason
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Elisabeth E. Manasanch
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.S.); (R.O.); (E.E.M.)
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Correspondence: ; Tel.: +1-213-821-3980
| |
Collapse
|
8
|
Khanal N, Chen Z, Alelyunas YW, Szapacs ME, Wrona MD, Sikorski TW. Systematic optimization of targeted and multiplexed MS-based screening workflows for protein biomarkers. Bioanalysis 2022; 14:341-356. [PMID: 35255714 DOI: 10.4155/bio-2021-0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: The capability of targeted MS-based methods to simultaneously measure multiple analytes with high selectivity and sensitivity greatly facilitates the discovery and quantitation of novel biomarkers. However, the complexity of biological samples is a major bottleneck that requires extensive sample preparation. Results: This paper reports a generic workflow to optimize surrogate peptide-based protein biomarker screening for seven human proteins in a multiplexed manner without the need for any specific affinity reagents. Each step of the sample processing and LC-MS methods is systematically assessed and optimized for better analytical performance. Conclusion: The established method is used for the screening of multiple myeloma patient samples to determine which proteins could be robustly measured and serve as potential biomarkers of the disease.
Collapse
Affiliation(s)
- Neelam Khanal
- Bioanalysis, Immunogenicity & Biomarkers, In-vitro/In-vivo Translation, Research, GlaxoSmithKline, 1250 South Collegeville Rd., Collegeville, PA 19426, USA
- Scientific Operations, Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Zhuo Chen
- Bioanalysis, Immunogenicity & Biomarkers, In-vitro/In-vivo Translation, Research, GlaxoSmithKline, 1250 South Collegeville Rd., Collegeville, PA 19426, USA
| | - Yun W Alelyunas
- Scientific Operations, Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Matthew E Szapacs
- Bioanalysis, Immunogenicity & Biomarkers, In-vitro/In-vivo Translation, Research, GlaxoSmithKline, 1250 South Collegeville Rd., Collegeville, PA 19426, USA
| | - Mark D Wrona
- Scientific Operations, Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Timothy W Sikorski
- Bioanalysis, Immunogenicity & Biomarkers, In-vitro/In-vivo Translation, Research, GlaxoSmithKline, 1250 South Collegeville Rd., Collegeville, PA 19426, USA
| |
Collapse
|
9
|
Wang F, Ning S, Yu B, Wang Y. USP14: Structure, Function, and Target Inhibition. Front Pharmacol 2022; 12:801328. [PMID: 35069211 PMCID: PMC8766727 DOI: 10.3389/fphar.2021.801328] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
Ubiquitin-specific protease 14 (USP14), a deubiquitinating enzyme (DUB), is associated with proteasomes and exerts a dual function in regulating protein degradation. USP14 protects protein substrates from degradation by removing ubiquitin chains from proteasome-bound substrates, whereas promotes protein degradation by activating the proteasome. Increasing evidence have shown that USP14 is involved in several canonical signaling pathways, correlating with cancer, neurodegenerative diseases, autophagy, immune responses, and viral infections. The activity of USP14 is tightly regulated to ensure its function in various cellular processes. Structural studies have demonstrated that free USP14 exists in an autoinhibited state with two surface loops, BL1 and BL2, partially hovering above and blocking the active site cleft binding to the C-terminus of ubiquitin. Hence, both proteasome-bound and phosphorylated forms of USP14 require the induction of conformational changes in the BL2 loop to activate its deubiquitinating function. Due to its intriguing roles in the stabilization of disease-causing proteins and oncology targets, USP14 has garnered widespread interest as a therapeutic target. In recent years, significant progress has been made on identifying inhibitors targeting USP14, despite the complexity and challenges in improving their selectivity and affinity for USP14. In particular, the crystal structures of USP14 complexed with IU1-series inhibitors revealed the underlying allosteric regulatory mechanism and enabled the further design of potent inhibitors. In this review, we summarize the current knowledge regarding the structure, regulation, pathophysiological function, and selective inhibition of USP14, including disease associations and inhibitor development.
Collapse
Affiliation(s)
| | | | | | - Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
10
|
He H, Chen G, Chen CYC. Machine learning and graph neural network for finding potential drugs related to multiple myeloma. NEW J CHEM 2022. [DOI: 10.1039/d1nj04935f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An innovative voting mechanism for virtual drug screening.
Collapse
Affiliation(s)
- Haohuai He
- School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, 510275, China
| | - Guanxing Chen
- School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, 510275, China
| | - Calvin Yu-Chian Chen
- School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, 510275, China
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
11
|
Schütt J, Nägler T, Schenk T, Brioli A. Investigating the Interplay between Myeloma Cells and Bone Marrow Stromal Cells in the Development of Drug Resistance: Dissecting the Role of Epigenetic Modifications. Cancers (Basel) 2021; 13:cancers13164069. [PMID: 34439223 PMCID: PMC8392438 DOI: 10.3390/cancers13164069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Despite advances made in the last two decades, multiple myeloma (MM) is still an incurable disease. The genetic complexity of MM and the presence of intra-clonal heterogeneity are major contributors to disease relapse and the development of treatment resistance. Additionally, the bone marrow microenvironment is known to play a pivotal role in MM disease progression. Together with genetic modifications, epigenetic changes have been shown to influence MM development and progression. However, epigenetic treatments for MM are still lacking. This is mainly due to the high rate of adverse events of epigenetic drugs in clinical practice. In this review, we will focus on the role of epigenetic modifications in MM disease progression and the development of drug resistance, as well as their role in shaping the interplay between bone marrow stromal cells and MM cells. The current and future treatment strategies involving epigenetic drugs will also be addressed. Abstract Multiple Myeloma (MM) is a malignancy of plasma cells infiltrating the bone marrow (BM). Many studies have demonstrated the crucial involvement of bone marrow stromal cells in MM progression and drug resistance. Together with the BM microenvironment (BMME), epigenetics also plays a crucial role in MM development. A variety of epigenetic regulators, including histone acetyltransferases (HATs), histone methyltransferases (HMTs) and lysine demethylases (KDMs), are altered in MM, contributing to the disease progression and prognosis. In addition to histone modifications, DNA methylation also plays a crucial role. Among others, aberrant epigenetics involves processes associated with the BMME, like bone homeostasis, ECM remodeling or the development of treatment resistance. In this review, we will highlight the importance of the interplay of MM cells with the BMME in the development of treatment resistance. Additionally, we will focus on the epigenetic aberrations in MM and their role in disease evolution, interaction with the BMME, disease progression and development of drug resistance. We will also briefly touch on the epigenetic treatments currently available or currently under investigation to overcome BMME-driven treatment resistance.
Collapse
Affiliation(s)
- Jacqueline Schütt
- Clinic of Internal Medicine 2, Hematology and Oncology, Jena University Hospital, 07747 Jena, Germany
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine Jena (CMB), Jena University Hospital, 07747 Jena, Germany
- Clinic of Internal Medicine C, Hematology and Oncology, Stem Cell Transplantation and Palliative Care, Greifswald University Medicine, 17475 Greifswald, Germany
| | - Theresa Nägler
- Clinic of Internal Medicine 2, Hematology and Oncology, Jena University Hospital, 07747 Jena, Germany
| | - Tino Schenk
- Clinic of Internal Medicine 2, Hematology and Oncology, Jena University Hospital, 07747 Jena, Germany
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine Jena (CMB), Jena University Hospital, 07747 Jena, Germany
- Clinic of Internal Medicine C, Hematology and Oncology, Stem Cell Transplantation and Palliative Care, Greifswald University Medicine, 17475 Greifswald, Germany
| | - Annamaria Brioli
- Clinic of Internal Medicine 2, Hematology and Oncology, Jena University Hospital, 07747 Jena, Germany
- Clinic of Internal Medicine C, Hematology and Oncology, Stem Cell Transplantation and Palliative Care, Greifswald University Medicine, 17475 Greifswald, Germany
| |
Collapse
|
12
|
Hanna KS, Larson S, Nguyen J, Tu S, Boudreau J, Rose S. Updates in the management of relapsed/refractory multiple myeloma. J Oncol Pharm Pract 2021; 27:1477-1490. [PMID: 34162244 DOI: 10.1177/10781552211028906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multiple myeloma, a malignant neoplasm of plasma cells that accumulate in bone marrow, accounts for approximately 18% of hematologic malignancies in the United States. Patients are often treated with triplet therapy and may undergo stem cell transplantation. Despite effective therapies, multiple myeloma remains incurable. Patients often require maintenance therapy, and many will progress or relapsed following upfront treatment. Selection of treatment in the relapse/refractory setting is complex due numerous active therapeutic agents and combinations. Treatment is often tailored to prior exposure and duration. In 2020, three novel pharmacological agents were approved in the relapsed setting. We highlight the clinical safety and efficacy of selinexor, isatuximab-irfc, and belantamab mafodotin for patients with multiple myeloma.
Collapse
Affiliation(s)
- Kirollos S Hanna
- Mayo Clinic College of Medicine, Maple Grove, MN, USA.,M Health Fairview Maple Grove, Maple Grove, MN, USA
| | | | - Jenny Nguyen
- M Health Fairview Maple Grove, Maple Grove, MN, USA
| | - Sarah Tu
- M Health Fairview Maple Grove, Maple Grove, MN, USA
| | | | | |
Collapse
|
13
|
Ebrahimi S, Nonacs P. Genetic diversity through social heterosis can increase virulence in RNA viral infections and cancer progression. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202219. [PMID: 34035948 PMCID: PMC8097216 DOI: 10.1098/rsos.202219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 05/04/2023]
Abstract
In viral infections and cancer tumours, negative health outcomes often correlate with increasing genetic diversity. Possible evolutionary processes for such relationships include mutant lineages escaping host control or diversity, per se, creating too many immune system targets. Another possibility is social heterosis where mutations and replicative errors create clonal lineages varying in intrinsic capability for successful dispersal; improved environmental buffering; resource extraction or effective defence against immune systems. Rather than these capabilities existing in one genome, social heterosis proposes complementary synergies occur across lineages in close proximity. Diverse groups overcome host defences as interacting 'social genomes' with group genetic tool kits exceeding limited individual plasticity. To assess the possibility of social heterosis in viral infections and cancer progression, we conducted extensive literature searches for examples consistent with general and specific predictions from the social heterosis hypothesis. Numerous studies found supportive patterns in cancers across multiple tissues and in several families of RNA viruses. In viruses, social heterosis mechanisms probably result from long coevolutionary histories of competition between pathogen and host. Conversely, in cancers, social heterosis is a by-product of recent mutations. Investigating how social genomes arise and function in viral quasi-species swarms and cancer tumours may lead to new therapeutic approaches.
Collapse
Affiliation(s)
- Saba Ebrahimi
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90024, USA
| | - Peter Nonacs
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90024, USA
| |
Collapse
|
14
|
Müller LME, Migneco G, Scott GB, Down J, King S, Askar B, Jennings V, Oyajobi B, Scott K, West E, Ralph C, Samson A, Ilett EJ, Muthana M, Coffey M, Melcher A, Parrish C, Cook G, Lawson M, Errington-Mais F. Reovirus-induced cell-mediated immunity for the treatment of multiple myeloma within the resistant bone marrow niche. J Immunother Cancer 2021; 9:e001803. [PMID: 33741729 PMCID: PMC7986878 DOI: 10.1136/jitc-2020-001803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) remains an incurable disease and oncolytic viruses offer a well-tolerated addition to the therapeutic arsenal. Oncolytic reovirus has progressed to phase I clinical trials and its direct lytic potential has been extensively studied. However, to date, the role for reovirus-induced immunotherapy against MM, and the impact of the bone marrow (BM) niche, have not been reported. METHODS This study used human peripheral blood mononuclear cells from healthy donors and in vitro co-culture of MM cells and BM stromal cells to recapitulate the resistant BM niche. Additionally, the 5TGM1-Kalw/RijHSD immunocompetent in vivo model was used to examine reovirus efficacy and characterize reovirus-induced immune responses in the BM and spleen following intravenous administration. Collectively, these in vitro and in vivo models were used to characterize the development of innate and adaptive antimyeloma immunity following reovirus treatment. RESULTS Using the 5TGM1-Kalw/RijHSD immunocompetent in vivo model we have demonstrated that reovirus reduces both MM tumor burden and myeloma-induced bone disease. Furthermore, detailed immune characterization revealed that reovirus: (i) increased natural killer (NK) cell and CD8+ T cell numbers; (ii) activated NK cells and CD8+ T cells and (iii) upregulated effector-memory CD8+ T cells. Moreover, increased effector-memory CD8+ T cells correlated with decreased tumor burden. Next, we explored the potential for reovirus-induced immunotherapy using human co-culture models to mimic the myeloma-supportive BM niche. MM cells co-cultured with BM stromal cells displayed resistance to reovirus-induced oncolysis and bystander cytokine-killing but remained susceptible to killing by reovirus-activated NK cells and MM-specific cytotoxic T lymphocytes. CONCLUSION These data highlight the importance of reovirus-induced immunotherapy for targeting MM cells within the BM niche and suggest that combination with agents which boost antitumor immune responses should be a priority.
Collapse
Affiliation(s)
- Louise M E Müller
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Gemma Migneco
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Gina B Scott
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Jenny Down
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Sancha King
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Basem Askar
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Victoria Jennings
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Babatunde Oyajobi
- Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Karen Scott
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Emma West
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Christy Ralph
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Adel Samson
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Elizabeth J Ilett
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Munitta Muthana
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Matt Coffey
- Oncolytics Biotech Inc, Calgary, Alberta, Canada
| | - Alan Melcher
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | | | - Gordon Cook
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Michelle Lawson
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Fiona Errington-Mais
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| |
Collapse
|
15
|
Nylund P, Atienza Párraga A, Haglöf J, De Bruyne E, Menu E, Garrido-Zabala B, Ma A, Jin J, Öberg F, Vanderkerken K, Kalushkova A, Jernberg-Wiklund H. A distinct metabolic response characterizes sensitivity to EZH2 inhibition in multiple myeloma. Cell Death Dis 2021; 12:167. [PMID: 33579905 PMCID: PMC7881125 DOI: 10.1038/s41419-021-03447-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
Multiple myeloma (MM) is a heterogeneous haematological disease that remains clinically challenging. Increased activity of the epigenetic silencer EZH2 is a common feature in patients with poor prognosis. Previous findings have demonstrated that metabolic profiles can be sensitive markers for response to treatment in cancer. While EZH2 inhibition (EZH2i) has proven efficient in inducing cell death in a number of human MM cell lines, we hereby identified a subset of cell lines that despite a global loss of H3K27me3, remains viable after EZH2i. By coupling liquid chromatography-mass spectrometry with gene and miRNA expression profiling, we found that sensitivity to EZH2i correlated with distinct metabolic signatures resulting from a dysregulation of genes involved in methionine cycling. Specifically, EZH2i resulted in a miRNA-mediated downregulation of methionine cycling-associated genes in responsive cells. This induced metabolite accumulation and DNA damage, leading to G2 arrest and apoptosis. Altogether, we unveiled that sensitivity to EZH2i in human MM cell lines is associated with a specific metabolic and gene expression profile post-treatment.
Collapse
Affiliation(s)
- Patrick Nylund
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alba Atienza Párraga
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Jakob Haglöf
- Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| | - Elke De Bruyne
- Department of Haematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Eline Menu
- Department of Haematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Berta Garrido-Zabala
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anqi Ma
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Fredrik Öberg
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Vanderkerken
- Department of Haematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Antonia Kalushkova
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| | - Helena Jernberg-Wiklund
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
16
|
Deng C, Si C, Ye X, Zhou Q, Zeng T, Huang Z, Huang W, Zhu P, Zhong Q, Wu Z, Zhu H, Lin Q, Zhang W, Fu L, Zheng Y, Qian T. Prognostic significance of FSCN family in multiple myeloma. J Cancer 2021; 12:1936-1944. [PMID: 33753991 PMCID: PMC7974516 DOI: 10.7150/jca.53675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic tumor with monoclonal proliferation of malignant plasma cells in the bone marrow. Fascin (FSCN) is an actin-binding protein that plays a crucial role in cell migration and invasion, contributing to tumor metastasis. There are three members (FSCN1-3) in FSCN family. However, the prognostic role of FSCN family in MM remains unclear. In this study, we used four independent Gene Expression Omnibus (GEO) datasets to explore the relationships between FSCN1-3 expression profiles and patient survival in MM. We found that FSCN1 was dramatically down-regulated in MM compared to normal donors (p < 0.001) and monoclonal gammopathy of undetermined significance (MGUS) (p = 0.032). Patients with high expression of FSCN1 and FSCN2 had significantly longer OS (p = 0.023 and 0.028, respectively). Univariate and multivariate analysis showed that FSCN1 (p = 0.003, 0.002) and FSCN2 (p = 0.018, 0.013) were independent favorable prognostic factors for OS in MM. Moreover, the combination of high expression of FSCN1 and FSCN2 could effectively predict both longer EFS (p = 0.046) and OS (p = 0.015). Our study suggested that FSCN1 and FSCN2 can be used as favorable biomarkers for predicting clinical outcomes in MM.
Collapse
Affiliation(s)
- Cong Deng
- Department of Clinical laboratory, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China
| | - Chaozeng Si
- Department of Information Center, China-Japan Friendship Hospital, 100029 Beijing, China
| | - Xu Ye
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China
| | - Qiang Zhou
- Department of Clinical laboratory, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China
| | - Tiansheng Zeng
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Zeyong Huang
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Wenhui Huang
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Pei Zhu
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Qingfu Zhong
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Zhihua Wu
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Huoyan Zhu
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Qing Lin
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Wenjuan Zhang
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, Huaihe Hospital of Henan University, 475000 Kaifeng, China.,Department of Hematology, Huaihe Hospital of Henan University, 475000 Kaifeng, China
| | - Yongjiang Zheng
- Department of Hematology, Institute of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, 510630 Guangzhou, China
| | - Tingting Qian
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| |
Collapse
|
17
|
Treatment Strategies Considering Micro-Environment and Clonal Evolution in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13020215. [PMID: 33435539 PMCID: PMC7827913 DOI: 10.3390/cancers13020215] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Multiple myeloma is an uncurable hematological malignancy, although the prognosis of myeloma patients is getting better using proteasome inhibitors (PIs), immune modulatory drugs (IMiDs), monoclonal antibodies (MoAbs), and cytotoxic agents. Drug resistance makes myeloma difficult to treat and it can be subdivided into two broad categories: de novo and acquired. De novo drug resistance is associated with the bone marrow microenvironment including bone marrow stromal cells, the vascular niche and endosteal niche. Acquired drug resistance is related to clonal evolution and non-genetic diversity. The initial treatment plays the most important role considering de novo and acquired drug resistance and should contain PIs, IMIDs, MoAbs, and autologous stem cell transplantation because these treatments improve the bone marrow microenvironment and might prevent clonal evolution via sustained deep response including minimal residual disease negativity. Abstract Multiple myeloma is an uncurable hematological malignancy because of obtained drug resistance. Microenvironment and clonal evolution induce myeloma cells to develop de novo and acquired drug resistance, respectively. Cell adhesion-mediated drug resistance, which is induced by the interaction between myeloma and bone marrow stromal cells, and soluble factor-mediated drug resistance, which is induced by cytokines and growth factors, are two types of de novo drug resistance. The microenvironment, including conditions such as hypoxia, vascular and endosteal niches, contributes toward de novo drug resistance. Clonal evolution was associated with acquired drug resistance and classified as branching, linear, and neutral evolutions. The branching evolution is dependent on the microenvironment and escape of immunological surveillance while the linear and neutral evolution is independent of the microenvironment and associated with aggressive recurrence and poor prognosis. Proteasome inhibitors (PIs), immunomodulatory drugs (IMiDs), monoclonal antibody agents (MoAbs), and autologous stem cell transplantation (ASCT) have improved prognosis of myeloma via improvement of the microenvironment. The initial treatment plays the most important role considering de novo and acquired drug resistance and should contain PIs, IMIDs, MoAb and ASCT. This review summarizes the role of anti-myeloma agents for microenvironment and clonal evolution and treatment strategies to overcome drug resistance.
Collapse
|
18
|
Xu Y, Feng X, Zhou Q, Jiang W, Dai Y, Jiang Y, Liu X, Li S, Wang Y, Wang F, Li A, Zheng C. Novel Small Molecular Compound AE-848 Potently Induces Human Multiple Myeloma Cell Apoptosis by Modulating the NF-κB and PI3K/Akt/mTOR Signaling Pathways. Onco Targets Ther 2020; 13:13063-13075. [PMID: 33376355 PMCID: PMC7764792 DOI: 10.2147/ott.s270090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background We aimed to investigate the anti-multiple myeloma (MM) activity of the new small molecular compound AE-848 (5-bromo-2-hydroxyisophthalaldehyde bis[(1-methyl-1H-benzimidazol-2-yl)hydrazone]) and its underlying anti-MM mechanism. Methods Cell viability and apoptosis were detected and quantified by using MTT and flow cytometry, respectively. JC-1 dye-related techniques were used to assess mitochondrial membrane potential (MMP). Western blotting was applied to detect the expression of NF-κB and PI3K/Akt/mTOR pathway-associated proteins. The in vivo activity of AE-848 against MM was evaluated in a MM mouse model. Results Application of AE-848 into the in vitro cell culture system significantly reduced the viability and induced apoptosis of the MM cell lines, RPMI-8226 and U266, in a dose- and time-dependent manner, respectively. JC-1 dye and Western blotting analysis revealed that AE-848 induced the cleavage of caspase-8, caspase-3, and poly ADP-ribose polymerase (PARP), resulting in loss of mitochondrial membrane potential (MMP). Both the NF-κB and PI3K/AKT/mTOR signaling pathways were involved in AE-848-induced apoptosis of U266 and RPMI8226 cells. Moreover, AE-848 leads to cell cycle arrest of MM cells. Its anti-MM efficacy was further confirmed in a xenograft model of MM. AE-848 administration significantly inhibited MM tumor progression and prolonged the survival of MM-bearing mice. More importantly, our results demonstrated that AE-848 markedly induced primary MM cell apoptosis. Conclusion Our results for the first time showed that the small compound AE-848 had potent in vitro and in vivo anti-myeloma activity, indicating that AE-848 may have great potential to be developed as a drug for MM treatment.
Collapse
Affiliation(s)
- Yaqi Xu
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, People's Republic of China.,Shandong University-Karolinska Institute Collaboration Laboratory for Stem Cell Research, Jinan, Shandong, People's Republic of China
| | - Xiaoli Feng
- Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Qian Zhou
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, People's Republic of China.,Department of Hematology, Linyi Central Hospital, Linyi, Shandong, People's Republic of China
| | - Wen Jiang
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, People's Republic of China.,Institute of Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yibo Dai
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, People's Republic of China.,Shandong University-Karolinska Institute Collaboration Laboratory for Stem Cell Research, Jinan, Shandong, People's Republic of China
| | - Yang Jiang
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, People's Republic of China.,Shandong University-Karolinska Institute Collaboration Laboratory for Stem Cell Research, Jinan, Shandong, People's Republic of China
| | - Xiaoli Liu
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, People's Republic of China.,Shandong University-Karolinska Institute Collaboration Laboratory for Stem Cell Research, Jinan, Shandong, People's Republic of China
| | - Shuo Li
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, People's Republic of China.,Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Yongjing Wang
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, People's Republic of China.,Shandong University-Karolinska Institute Collaboration Laboratory for Stem Cell Research, Jinan, Shandong, People's Republic of China
| | - Fang Wang
- Institute of Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Ai Li
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, People's Republic of China.,Shandong University-Karolinska Institute Collaboration Laboratory for Stem Cell Research, Jinan, Shandong, People's Republic of China
| | - Chengyun Zheng
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, People's Republic of China.,Shandong University-Karolinska Institute Collaboration Laboratory for Stem Cell Research, Jinan, Shandong, People's Republic of China
| |
Collapse
|
19
|
Iannazzo D, Ettari R, Giofrè S, Eid AH, Bitto A. Recent Advances in Nanotherapeutics for Multiple Myeloma. Cancers (Basel) 2020; 12:cancers12113144. [PMID: 33120945 PMCID: PMC7693822 DOI: 10.3390/cancers12113144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Nanotherapeutics are useful tools to improve the deliverability of drugs, especially anti-cancer drugs that need to target specific cells. Several approaches have been studied for multiple myeloma, considering that immune cells are not easy to target with the available drugs. These pharmacological agents are administered in various combinations using Thalidomide (or Lenalidomide, Pomalidomide), corticosteroids (Dexamethasone), proteasome inhibitors (Bortezomib, Carfilzomib, Ixazomib), deacetylase inhibitors (Panobinostat), and monoclonal antibodies (Elotuzumab, Daratumumab). As all drugs these agents might have serious side effects and in addition, the reliance on stochastic events to deliver drugs to tumors reduces their effectiveness either through rapid clearance from blood or inadequate concentration in cancer cells. To address these issues liposomes, micelles, polymeric nanoparticles, inorganic nanoparticles, and carbon-based nanomaterials have been successfully tested in vivo and can be considered as useful tools to improve delivery of active pharmaceuticals that show poor bioavailability or poor internalization into myeloma cells. Abstract Anticancer therapies cannot be included in a one-size-fits-all scenario; it is imperative to adapt therapies to the tumor molecular profile and most importantly to develop target-specific therapeutics. Nanotherapeutics can combine molecular imaging with molecular therapy in order to provide the maximum benefit to patients in terms of disease prevention, identification, and treatment. Nanotechnology applied to therapy provides numerous advantages in diagnostics and in drug delivery, especially for those malignant cells that are difficult to target or for drugs with poor bioavailability, such as those used for multiple myeloma (MM). This review summarizes the recent advances in the development of nanoparticle-based systems for the treatment of MM, taking into account the methods used for their functionalization, biocompatibility, and anticancer activity.
Collapse
Affiliation(s)
- Daniela Iannazzo
- Department of Engineering, University of Messina, 98166 Messina, Italy;
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, 98165 Messina, Italy; (R.E.); (S.G.)
| | - Salvatore Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, 98165 Messina, Italy; (R.E.); (S.G.)
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar;
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, 2713 Doha, Qatar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
- Correspondence:
| |
Collapse
|
20
|
Liu Y, Jelloul F, Zhang Y, Bhavsar T, Ho C, Rao M, Lewis NE, Cimera R, Baik J, Sigler A, Sen F, Yabe M, Roshal M, Landgren O, Dogan A, Xiao W. Genetic Basis of Extramedullary Plasmablastic Transformation of Multiple Myeloma. Am J Surg Pathol 2020; 44:838-848. [PMID: 32118627 DOI: 10.1097/pas.0000000000001459] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In patients with multiple myeloma, plasmablastic transformation in the bone marrow is rare and associated with poor outcomes. The significance of discordant extramedullary plasmablastic transformation in patients with small, mature clonal plasma cells in the bone marrow has not been well studied. Here, we report the clinicopathologic, cytogenetic, and molecular features of 10 such patients (male/female: 6/4, median age: 65 y, range: 48 to 76 y) with an established diagnosis of multiple myeloma in the bone marrow composed of small, mature plasma cells in parallel with a concurrent or subsequent extramedullary plasmablastic transformation. Eight patients with available survival data showed an overall aggressive clinical course with a median survival of 4.5 months after the diagnosis of extramedullary plasmablastic transformation, despite aggressive treatment and even in patients with low-level bone marrow involvement. Pathologically, the extramedullary plasmablastic myeloma were clonally related to the corresponding bone marrow plasma cells, showed high levels of CMYC and/or P53 expression with a high Ki-67 proliferation index by immunohistochemistry and harbored more complex genomic aberrations including frequent mutations in the RAS pathway and MYC rearrangements compared with their bone marrow counterparts. In summary, although genetic and immunohistochemical studies were not uniformly performed on all cases due to the retrospective nature of this study, our data suggest that discordant extramedullary plasmablastic transformation of multiple myeloma has an aggressive clinical course and is characterized by frequent mutations in the RAS pathway and more complex genomic abnormalities.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pathology, Hematopathology Service
| | | | | | - Tapan Bhavsar
- Department of Pathology, Wayne State University School of Medicine, Detroit Receiving Hospital, Detroit, MI
| | - Caleb Ho
- Department of Pathology, Hematopathology Service.,Department of Pathology, Diagnostic Molecular Pathology Service
| | - Mamta Rao
- Department of Pathology, Cytogenetic Laboratory
| | | | | | - Jeeyeon Baik
- Department of Pathology, Hematopathology Service
| | | | - Filiz Sen
- Department of Pathology, Hematopathology Service
| | - Mariko Yabe
- Department of Pathology, Hematopathology Service
| | | | - Ola Landgren
- Department of Medicine, Myeloma Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ahmet Dogan
- Department of Pathology, Hematopathology Service
| | - Wenbin Xiao
- Department of Pathology, Hematopathology Service
| |
Collapse
|
21
|
Genomic Study of Chinese Quadruple-negative GISTs Using Next-generation Sequencing Technology. Appl Immunohistochem Mol Morphol 2020; 29:34-41. [PMID: 33002893 DOI: 10.1097/pai.0000000000000842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Approximately 10% of gastrointestinal stromal tumors (GISTs) are devoid of KIT, PDGFRA (platelet-derived growth factor-alpha), BRAF, and SDH alterations. The aim of this study was to characterize molecular drivers in Chinese patients with quadruple-negative GISTs. PATIENTS AND METHODS In 1022 Chinese patients with GIST, mutations of KIT and PDGFRA were analyzed by direct sequencing. Of these mutations, 142 KIT/PDGFRA wild-type (WT) GISTs were detected, and succinate dehydrogenase (SDH) deficiency was determined using immunohistochemistry analysis of succinate dehydrogenase B. In 78 KIT/PDGFRA/SDH cases, we performed targeted 425 cancer-related gene analysis using next-generation sequencing. The correlation between molecular findings and clinicopathologic features was also analyzed. RESULTS We defined 72 quadruple-negative GISTs from enrollments. They featured nongastric localization with histologic characteristics of spindle cells and male predilection. An overall 27.78% (20/72) of quadruple-negative tumors carried TP53, and 25.00% (18/72) carried RB1 mutations, which were frequently associated with high mitotic index and large size. TP53 analyses demonstrated coexistence with mutational activation of other oncogenes in 12 of 20 cases. A total of 18 RB1-mutated cases were independent of TP53. Further, no tumors carried NF1 and BRAF mutations. CONCLUSIONS We report the genomic analysis of Chinese quadruple-negative patients. These databases may help advance our understanding of quadruple-negative GISTs' progression. Next-generation sequencing from GISTs is feasible to provide relevant data for guiding individualized therapy.
Collapse
|
22
|
The role of deubiquitinating enzymes in cancer drug resistance. Cancer Chemother Pharmacol 2020; 85:627-639. [PMID: 32146496 DOI: 10.1007/s00280-020-04046-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/19/2020] [Indexed: 12/18/2022]
Abstract
Drug resistance is a well-known phenomenon leading to a reduction in the effectiveness of pharmaceutical treatments. Resistance to chemotherapeutic agents can involve various intrinsic cellular processes including drug efflux, increased resistance to apoptosis, increased DNA damage repair capabilities in response to platinum salts or other DNA-damaging drugs, drug inactivation, drug target alteration, epithelial-mesenchymal transition (EMT), inherent cell heterogeneity, epigenetic effects, or any combination of these mechanisms. Deubiquitinating enzymes (DUBs) reverse ubiquitination of target proteins, maintaining a balance between ubiquitination and deubiquitination of proteins to maintain cell homeostasis. Increasing evidence supports an association of altered DUB activity with development of several cancers. Thus, DUBs are promising candidates for targeted drug development. In this review, we outline the involvement of DUBs, particularly ubiquitin-specific proteases, and their roles in drug resistance in different types of cancer. We also review potential small molecule DUB inhibitors that can be used as drugs for cancer treatment.
Collapse
|
23
|
Furukawa Y, Kikuchi J. Molecular basis of clonal evolution in multiple myeloma. Int J Hematol 2020; 111:496-511. [DOI: 10.1007/s12185-020-02829-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
|
24
|
Soluble SLAMF7 promotes the growth of myeloma cells via homophilic interaction with surface SLAMF7. Leukemia 2019; 34:180-195. [PMID: 31358854 DOI: 10.1038/s41375-019-0525-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/24/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022]
Abstract
SLAMF7 is expressed mainly on multiple myeloma (MM) cells and considered an ideal target for immunotherapeutic approaches. Indeed, elotuzumab, an anti-SLAMF7 antibody, is used for the treatment of MM in combination with immunomodulatory drugs. SLAMF7 is cleaved via unknown mechanisms and detected as a soluble form (sSLAMF7) exclusively in the serum of MM patients; however, little is known about the role of sSLAMF7 in MM biology. In this study, we found that sSLAMF7 enhanced the growth of MM cells via homophilic interaction with surface SLAMF7 and subsequent activation of the SHP-2 and ERK signaling pathways. Elotuzumab suppressed sSLAMF7-induced MM cell growth both in vitro and in vivo. Promoter analyses identified IKZF1 (Ikaros) as a pivotal transcriptional activator of the SLAMF7 gene. Pharmacological targeting of Ikaros by lenalidomide and its analog pomalidomide downregulated SLAMF7 expression and ameliorated the response of MM cells to sSLAMF7. Elotuzumab blocked the growth-promoting function of sSLAMF7 when combined with lenalidomide in a murine xenograft model. Neutralization of sSLAMF7 is a novel antimyeloma mechanism of elotuzumab, which is enhanced by immunomodulatory drugs via downregulation of surface SLAMF7 expression on MM cells. These findings may provide important information for the optimal use of elotuzumab in MM treatment.
Collapse
|
25
|
Liu X, Peng J, Zhou Y, Xie B, Wang J. Silencing RRM2 inhibits multiple myeloma by targeting the Wnt/β‑catenin signaling pathway. Mol Med Rep 2019; 20:2159-2166. [PMID: 31322175 PMCID: PMC6691237 DOI: 10.3892/mmr.2019.10465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
Ribonucleotide reductase M2 (RRM2) is one of the two subunits that comprise ribonucleotide reductase (RR), the enzyme that catalyzes the conversion of ribonucleotide 5'‑diphosphates into 2'‑deoxyribonucleotides, which are required for DNA synthesis. RRM2 is a stress response factor important for the development of several tumors. However, its role in multiple myeloma (MM) remains to be fully elucidated. The present study aimed to investigate the role of RRM2 in MM. The expression of RRM2 in patients with MM was analyzed using the Oncomine database. The results demonstrated that RRM2 expression was higher in MM compared with healthy subjects. Reverse transcription‑quantitative polymerase chain reaction and western blot results revealed that RRM2 expression was decreased following transfection with a small interfering RNA targeting RRM2 into NCI‑H929 cells. RR activity and Cell Counting Kit‑8 assays demonstrated that RRM2 silencing reduced RR activity and inhibited cell proliferation. Annexin V‑propidium iodide staining indicated that the percentage of apoptotic NCI‑H929 cells was increased following RRM2 silencing compared with that in the control group. Increased phosphorylation of H2AX indicated that RRM2 silencing may activate the DNA‑damage response pathway in NCI‑H929 cells. Western blot analysis revealed that protein levels of the apoptosis‑associated factor Bcl‑2 were reduced, whereas Bax, cleaved caspase‑3 and cleaved poly(ADP‑ribose) polymerase 1 were upregulated following RRM2 silencing compared with the control group. In addition, the results demonstrated that RRM2 silencing may inhibit target gene expression in the Wnt/β‑catenin signaling pathway by increasing the phosphorylation of glucose synthase kinase 3β. These findings indicated that RRM2 may be involved in the proliferation and apoptosis of MM cells via the Wnt/β‑catenin signaling pathway, suggesting that RRM2 may represent a novel therapeutic target for MM.
Collapse
Affiliation(s)
- Xia Liu
- Central Laboratory, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Jiamin Peng
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Yayun Zhou
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Bei Xie
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Jianchao Wang
- Department of Clinical Laboratory, Zhejiang Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
26
|
Yen CH, Hsiao HH. NRF2 Is One of the Players Involved in Bone Marrow Mediated Drug Resistance in Multiple Myeloma. Int J Mol Sci 2018; 19:E3503. [PMID: 30405034 PMCID: PMC6274683 DOI: 10.3390/ijms19113503] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/28/2018] [Accepted: 11/04/2018] [Indexed: 02/07/2023] Open
Abstract
Multiple myeloma with clonal plasma expansion in bone marrow is the second most common hematologic malignancy in the world. Though the improvement of outcomes from the achievement of novel agents in recent decades, the disease progresses and leads to death eventually due to the elusive nature of myeloma cells and resistance mechanisms to therapeutic agents. In addition to the molecular and genetic basis of resistance pathomechanisms, the bone marrow microenvironment also contributes to disease progression and confers drug resistance in myeloma cells. In this review, we focus on the current state of the literature in terms of critical bone marrow microenvironment components, including soluble factors, cell adhesion mechanisms, and other cellular components. Transcriptional factor nuclear factor erythroid-derived-2-like 2 (NRF2), a central regulator for anti-oxidative stresses and detoxification, is implicated in chemoresistance in several cancers. The functional roles of NRF2 in myeloid-derived suppressor cells and multiple myeloma cells, and the potential of targeting NRF2 for overcoming microenvironment-mediated drug resistance in multiple myeloma are also discussed.
Collapse
Affiliation(s)
- Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| | - Hui-Hua Hsiao
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
27
|
Zheleznyak A, Shokeen M, Achilefu S. Nanotherapeutics for multiple myeloma. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1526. [PMID: 29701006 PMCID: PMC6185771 DOI: 10.1002/wnan.1526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 01/11/2023]
Abstract
Multiple myeloma (MM) is an age-related hematological malignancy with an estimated 30,000 new cases and 13,000 deaths per year. A disease of antibody-secreting malignant plasma B-cells that grow primarily in the bone marrow (BM), MM causes debilitating fractures, anemia, renal failure, and hypercalcemia. In addition to the abnormal genetic profile of MM cells, the permissive BM microenvironment (BMM) supports MM pathogenesis. Although advances in treatment options have significantly enhanced survival in MM patients, transient perfusion of small-molecule drugs in the BM does not provide sufficient residence to enhance MM cell-drug interaction, thus allowing some myeloma cells to escape the first line of treatment. As such, there remains a crucial need to develop advanced drug delivery systems that can navigate the complex BMM and effectively reach the myeloma cells. The high vascular density and spongy nature of bone structure suggest that nanoparticles (NPs) can serve as smart drug-delivery systems capable of extravasation and retention in various BM compartments to exert a durable therapeutic effect. In this focus article, we first summarize the pathophysiology of MM, emphasizing how the BM niche presents serious challenges for effective treatment of MM with small-molecule drugs. We then pivot to current efforts to develop NP-based drug carriers and intrinsically therapeutic nanotherapeutics. The article concludes with a brief perspective on the opportunities and challenges in developing and translating nanotherapeutics to improve the treatment outcomes of MM patients. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
| | - Monica Shokeen
- Departments of Radiology, and Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Samuel Achilefu
- Departments of Radiology, Biomedical Engineering, and Biochemistry & Molecular Biophysics, Washington University, St. Louis, MO, USA
| |
Collapse
|
28
|
Drug resistance in multiple myeloma. Cancer Treat Rev 2018; 70:199-208. [DOI: 10.1016/j.ctrv.2018.09.001] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/05/2018] [Accepted: 09/01/2018] [Indexed: 02/07/2023]
|
29
|
Sarıman M, Abacı N, Sırma Ekmekçi S, Çakiris A, Perçin Paçal F, Üstek D, Ayer M, Yenerel MN, Beşışık S, Çefle K, Palandüz Ş, Öztürk Ş. Investigation of Gene Expressions of Myeloma Cells in the Bone Marrow of Multiple Myeloma Patients by Transcriptome Analysis. Balkan Med J 2018; 36:23-31. [PMID: 30079703 PMCID: PMC6335938 DOI: 10.4274/balkanmedj.2018.0356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background: Multiple myeloma is a plasma cell dyscrasia characterized by transformation of B cells into malignant cells. Although there are data regarding the molecular pathology of multiple myeloma, the molecular mechanisms of the disease have not been fully elucidated. Aims: To investigate the gene expression profiles in bone marrow myeloma cells via RNA-sequencing technology. Study Design: Cell study. Methods: Myeloma cells from four patients with untreated multiple myeloma and B cells from the bone marrow of four healthy donors were sorted using a FACSAria II flow cytometer. The patient pool of myeloma cells and the control pool of B cells were the two comparative groups. A transcriptome analysis was performed and the results were analyzed using bioinformatics tools. Results: In total, 18.806 transcripts (94.4%) were detected in the pooled multiple myeloma patient cells. A total of 992 regions were detected as new exon candidates or alternative splicing regions. In addition, 490 mutations (deletions or insertions), 1.397 single nucleotide variations, 415 fusion transcripts, 132 frameshift mutations, and 983 fusions, which were reported before in the National Center for Biotechnology Information, were detected with unknown functions in patients. A total of 35.268 transcripts were obtained (71%) (25.355 transcripts were defined previously) in the control pool. In this preliminary study, the first 50 genes were analyzed with the MSigDB, Enrichr, and Panther gene set enrichment analysis programs. The molecular functions, cellular components, pathways, and biological processes of the genes were obtained and statistical values were determined using bioinformatics tools and are presented as a supplemental file. Conclusion: EEF1G, ITM2C, FTL, CLPTM1L, and CYBA are identified as possible candidate genes associated with myelomagenesis.
Collapse
Affiliation(s)
- Melda Sarıman
- Department of Genetics, İstanbul University, Aziz Sancar Experimental Medical Research Institute, İstanbul, Turkey
| | - Neslihan Abacı
- Department of Genetics, İstanbul University, Aziz Sancar Experimental Medical Research Institute, İstanbul, Turkey
| | - Sema Sırma Ekmekçi
- Department of Genetics, İstanbul University, Aziz Sancar Experimental Medical Research Institute, İstanbul, Turkey
| | - Aris Çakiris
- Department of Genetics, İstanbul University, Aziz Sancar Experimental Medical Research Institute, İstanbul, Turkey
| | - Ferda Perçin Paçal
- Department of Genetics, İstanbul University, Aziz Sancar Experimental Medical Research Institute, İstanbul, Turkey
| | - Duran Üstek
- Department of Genetics, İstanbul University, Aziz Sancar Experimental Medical Research Institute, İstanbul, Turkey
| | - Mesut Ayer
- Clinic of Hematology, İstanbul Haseki Training and Research Hospital, İstanbul, Turkey
| | - Mustafa Nuri Yenerel
- Department of Hematology, İstanbul Universiy İstanbul School of Medicine, İstanbul, Turkey
| | - Sevgi Beşışık
- Department of Internal Medicine, İstanbul Universiy İstanbul School of Medicine, İstanbul, Turkey
| | - Kıvanç Çefle
- Department of Internal Medicine, Division of Medical Genetics, İstanbul Universiy İstanbul School of Medicine, İstanbul, Turkey
| | - Şükrü Palandüz
- Department of Internal Medicine, Division of Medical Genetics, İstanbul Universiy İstanbul School of Medicine, İstanbul, Turkey
| | - Şükrü Öztürk
- Department of Internal Medicine, Division of Medical Genetics, İstanbul Universiy İstanbul School of Medicine, İstanbul, Turkey
| |
Collapse
|
30
|
Spaan I, Raymakers RA, van de Stolpe A, Peperzak V. Wnt signaling in multiple myeloma: a central player in disease with therapeutic potential. J Hematol Oncol 2018; 11:67. [PMID: 29776381 PMCID: PMC5960217 DOI: 10.1186/s13045-018-0615-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/06/2018] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma is the second most frequent hematological malignancy in the western world and remains incurable, predominantly due to acquired drug resistance and disease relapse. The highly conserved Wnt signal transduction pathway, which plays a key role in regulating cellular processes of proliferation, differentiation, migration, and stem cell self-renewal, is associated with multiple aspects of disease. Bone homeostasis is severely disturbed by Wnt antagonists that are secreted by the malignant plasma cells in the bone marrow. In the vast majority of patients, this results in osteolytic bone disease, which is associated with bone pain and pathological fractures and was reported to facilitate disease progression. More recently, cumulative evidence also indicates the importance of intrinsic Wnt signaling in the survival of multiple myeloma cells. However, Wnt pathway-activating gene mutations could not be identified. The search for factors or processes responsible for Wnt pathway activation currently focuses on aberrant ligand levels in the bone marrow microenvironment, increased expression of Wnt transcriptional co-factors and associated micro-RNAs, and disturbed epigenetics and post-translational modification processes. Furthermore, Wnt pathway activation is associated with acquired cell adhesion-mediated resistance of multiple myeloma cells to conventional drug therapies, including doxorubicin and lenalidomide. In this review, we present an overview of the relevance of Wnt signaling in multiple myeloma and highlight the Wnt pathway as a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Ingrid Spaan
- Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Reinier A Raymakers
- Department of Hematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Anja van de Stolpe
- Molecular Diagnostics, Philips Research, High Tech Campus 11, 5656 AE, Eindhoven, the Netherlands
| | - Victor Peperzak
- Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
31
|
Kikuchi J, Kuroda Y, Koyama D, Osada N, Izumi T, Yasui H, Kawase T, Ichinohe T, Furukawa Y. Myeloma Cells Are Activated in Bone Marrow Microenvironment by the CD180/MD-1 Complex, Which Senses Lipopolysaccharide. Cancer Res 2018; 78:1766-1778. [PMID: 29363546 DOI: 10.1158/0008-5472.can-17-2446] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/03/2017] [Accepted: 01/19/2018] [Indexed: 11/16/2022]
Abstract
Multiple myeloma (MM) cells acquire dormancy and drug resistance via interaction with bone marrow stroma cells (BMSC) in a hypoxic microenvironment. Elucidating the mechanisms underlying the regrowth of dormant clones may contribute to further improvement of the prognosis of MM patients. In this study, we find that the CD180/MD-1 complex, a noncanonical lipopolysaccharide (LPS) receptor, is expressed on MM cells but not on normal counterparts, and its abundance is markedly upregulated under adherent and hypoxic conditions. Bacterial LPS and anti-CD180 antibody, but not other Toll-like receptor ligands, enhanced the growth of MM cells via activation of MAP kinases ERK and JNK in positive correlation with expression levels of CD180. Administration of LPS significantly increased the number of CD180/CD138 double-positive cells in a murine xenograft model when MM cells were inoculated with direct attachment to BMSC. Knockdown of CD180 canceled the LPS response in vitro and in vivo Promoter analyses identified IKZF1 (Ikaros) as a pivotal transcriptional activator of the CD180 gene. Both cell adhesion and hypoxia activated transcription of the CD180 gene by increasing Ikaros expression and its binding to the promoter region. Pharmacological targeting of Ikaros by the immunomodulatory drug lenalidomide ameliorated the response of MM cells to LPS in a CD180-dependent manner in vitro and in vivo Thus, the CD180/MD-1 pathway may represent a novel mechanism of growth regulation of MM cells in a BM milieu and may be a therapeutic target of preventing the regrowth of dormant MM cells.Significance: This study describes a novel mechanism by which myeloma cells are regulated in the bone marrow, where drug resistance and dormancy can evolve after treatment, with potential therapeutic implications for treating this often untreatable blood cancer. Cancer Res; 78(7); 1766-78. ©2018 AACR.
Collapse
Affiliation(s)
- Jiro Kikuchi
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yoshiaki Kuroda
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Daisuke Koyama
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Naoki Osada
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Tohru Izumi
- Division of Hematology, Tochigi Cancer Center, Utsunomiya, Tochigi, Japan
| | - Hiroshi Yasui
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takakazu Kawase
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yusuke Furukawa
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| |
Collapse
|
32
|
Significant cytogenomic evolution identified by SNP chromosome microarray analysis accompanies plasmablastic transformation of a hyperdiploid plasma cell myeloma. J Hematop 2017. [DOI: 10.1007/s12308-017-0309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
33
|
Elevated Serum 8-Hydroxy-2’-Deoxyguanosine, Nitrite, and Nitrate in Patients with Stage I Multiple Myeloma. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2017. [DOI: 10.5812/ijcm.8493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Abstract
OBJECTIVES This integrative review describes the genomic variants that have been found to be associated with poor prognosis in patients diagnosed with multiple myeloma (MM). Second, it identifies MM genetic and genomic changes using next-generation sequencing, specifically whole-genome sequencing or exome sequencing. DATA SOURCE A search for peer-reviewed articles through PubMed, EBSCOhost, and DePaul WorldCat Libraries Worldwide yielded 33 articles that were included in the final analysis. CONCLUSION The most commonly reported genetic changes were KRAS, NRAS, TP53, FAM46C, BRAF, DIS3, ATM, and CCND1. These genetic changes play a role in the pathogenesis of MM, prognostication, and therapeutic targets for novel therapies. IMPLICATIONS FOR NURSING PRACTICE MM genetics and genomics are expanding rapidly; oncology nurse clinicians must have basic competencies in genetics and genomics to help patients understand the complexities of genetic and genomic alterations and be able to refer patients to appropriate genomic professionals if needed.
Collapse
|
35
|
The therapeutic potential of cell cycle targeting in multiple myeloma. Oncotarget 2017; 8:90501-90520. [PMID: 29163849 PMCID: PMC5685770 DOI: 10.18632/oncotarget.18765] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/11/2017] [Indexed: 12/15/2022] Open
Abstract
Proper cell cycle progression through the interphase and mitosis is regulated by coordinated activation of important cell cycle proteins (including cyclin-dependent kinases and mitotic kinases) and several checkpoint pathways. Aberrant activity of these cell cycle proteins and checkpoint pathways results in deregulation of cell cycle progression, which is one of the key hallmarks of cancer. Consequently, intensive research on targeting these cell cycle regulatory proteins identified several candidate small molecule inhibitors that are able to induce cell cycle arrest and even apoptosis in cancer cells. Importantly, several of these cell cycle regulatory proteins have also been proposed as therapeutic targets in the plasma cell malignancy multiple myeloma (MM). Despite the enormous progress in the treatment of MM the past 5 years, MM still remains most often incurable due to the development of drug resistance. Deregulated expression of the cyclins D is observed in virtually all myeloma patients, emphasizing the potential therapeutic interest of cyclin-dependent kinase inhibitors in MM. Furthermore, other targets have also been identified in MM, such as microtubules, kinesin motor proteins, aurora kinases, polo-like kinases and the anaphase promoting complex/cyclosome. This review will provide an overview of the cell cycle proteins and checkpoint pathways deregulated in MM and discuss the therapeutic potential of targeting proteins or protein complexes involved in cell cycle control in MM.
Collapse
|
36
|
Golay J. Direct targeting of cancer cells with antibodies: What can we learn from the successes and failure of unconjugated antibodies for lymphoid neoplasias? J Autoimmun 2017; 85:6-19. [PMID: 28666691 DOI: 10.1016/j.jaut.2017.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/11/2017] [Indexed: 12/26/2022]
Abstract
Following approval in 1997 of the anti-CD20 antibody rituximab for the treatment of B-NHL and CLL, many other unconjugated IgG1 MAbs have been tested in pre-clinical and clinical trials for the treatment of lymphoid neoplasms. Relatively few have been approved however and these are directed against a limited number of target antigens (CD20, CD52, CCR4, CD38, CD319). We review here the known biological properties of these antibodies and discuss which factors may have led to their success or may, on the contrary, limit their clinical application. Common factors of the approved MAbs are that the target antigen is expressed at relatively high levels on the neoplastic targets and their mechanism of action is mostly immune-mediated. Indeed most of these MAbs induce ADCC and phagocytosis by macrophages, and many also activate complement, leading to target cell lysis. In contrast direct cell death induction is not a common feature but may enhance efficacy in some cases. Interestingly, a key factor for the success of several MAbs appears to be their capacity to skew immunity towards an anti-tumour mode, by inhibiting/depleting suppressor cells and/or activating immune cells within the microenvironment, independently of FcγRs. We also expose here some of the strategies employed by industry to expand the clinical use of these molecules beyond their original indication. Interestingly, due to the central role of lymphocytes in the control of the immune response, several of the antibodies are now successfully used to treat many different autoimmune diseases and have also been formally approved for some of these new indications. There is little doubt that this trend will continue and that the precise mechanisms of therapeutic MAbs will be further dissected and better understood in the context of both tumour immunology and autoimmunity.
Collapse
Affiliation(s)
- Josée Golay
- Center of Cellular Therapy "G. Lanzani", USC Haematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Via Garibaldi 11-13, 24128, Bergamo, Italy.
| |
Collapse
|
37
|
Xu X, Liu J, Shen C, Ding L, Zhong F, Ouyang Y, Wang Y, He S. The role of ubiquitin-specific protease 14 (USP14) in cell adhesion-mediated drug resistance (CAM-DR) of multiple myeloma cells. Eur J Haematol 2016; 98:4-12. [DOI: 10.1111/ejh.12729] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaohong Xu
- Department of Pathology; Affiliated Cancer Hospital of Nantong University; Nantong Jiangsu Province China
| | - Jing Liu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target; Nantong University; Nantong Jiangsu Province China
| | - Chaoyan Shen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target; Nantong University; Nantong Jiangsu Province China
| | - Linlin Ding
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target; Nantong University; Nantong Jiangsu Province China
| | - Fei Zhong
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target; Nantong University; Nantong Jiangsu Province China
| | - Yu Ouyang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target; Nantong University; Nantong Jiangsu Province China
| | - Yuchan Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target; Nantong University; Nantong Jiangsu Province China
| | - Song He
- Department of Pathology; Affiliated Cancer Hospital of Nantong University; Nantong Jiangsu Province China
| |
Collapse
|
38
|
Zang M, Zou D, Yu Z, Li F, Yi S, Ai X, Qin X, Feng X, Zhou W, Xu Y, Li Z, Hao M, Sui W, Deng S, Acharya C, Zhao Y, Ru K, Qiu L, An G. Detection of recurrent cytogenetic aberrations in multiple myeloma: a comparison between MLPA and iFISH. Oncotarget 2016; 6:34276-87. [PMID: 26416457 PMCID: PMC4741451 DOI: 10.18632/oncotarget.5371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 09/04/2015] [Indexed: 11/25/2022] Open
Abstract
Multiple myeloma (MM) is a genetically heterogeneous disease with diverse clinical characteristics and outcomes. Recently, multiplex ligation-dependent probe amplification (MLPA) has emerged as an effective and robust method for the detection of cytogenetic aberrations in MM patients. In the present study, MLPA analysis was applied to analyze cytogenetics of CD138 tumor cells of 59 MM samples, and its result was compared, retrospectively, with the interphase fluorescence in situ hybridization (iFISH) data. We firstly established the normal range of each of the 42 diagnostic probes using healthy donor samples. A total of 151 aberrations were detected in 59 patient samples, and 49/59 cases (83.1%) harbored at least one copy number variation. Overall, 0–7 aberrations were detected per case using MLPA, indicating the heterogeneity and complexity of MM cytogenetics. We showed the high efficiency of MLPA and the high congruency of the two methods to assess cytogenetic aberrations. Considering that MLPA analysis is not reliable when the aberration only exits in a small population of tumor cells, it is essential to use both MLPA and iFISH as complementary techniques for the diagnosis of MM.
Collapse
Affiliation(s)
- Meirong Zang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Dehui Zou
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Fei Li
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuhua Yi
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Xiaofei Ai
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Xiaoqi Qin
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Xiaoyan Feng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China.,LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Wen Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China.,Cancer Research Institute, Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Central South University, Changsha, China
| | - Yan Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Zengjun Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Shuhui Deng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Chirag Acharya
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yaozhong Zhao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Kun Ru
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China.,LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Computational Approaches for the Discovery of Human Proteasome Inhibitors: An Overview. Molecules 2016; 21:molecules21070927. [PMID: 27438821 PMCID: PMC6274525 DOI: 10.3390/molecules21070927] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 01/10/2023] Open
Abstract
Proteasome emerged as an important target in recent pharmacological research due to its pivotal role in degrading proteins in the cytoplasm and nucleus of eukaryotic cells, regulating a wide variety of cellular pathways, including cell growth and proliferation, apoptosis, DNA repair, transcription, immune response, and signaling processes. The last two decades witnessed intensive efforts to discover 20S proteasome inhibitors with significant chemical diversity and efficacy. To date, the US FDA approved to market three proteasome inhibitors: bortezomib, carfilzomib, and ixazomib. However new, safer and more efficient drugs are still required. Computer-aided drug discovery has long being used in drug discovery campaigns targeting the human proteasome. The aim of this review is to illustrate selected in silico methods like homology modeling, molecular docking, pharmacophore modeling, virtual screening, and combined methods that have been used in proteasome inhibitors discovery. Applications of these methods to proteasome inhibitors discovery will also be presented and discussed to raise improvements in this particular field.
Collapse
|
40
|
Furukawa Y, Kikuchi J. Epigenetic mechanisms of cell adhesion-mediated drug resistance in multiple myeloma. Int J Hematol 2016; 104:281-92. [DOI: 10.1007/s12185-016-2048-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/13/2022]
|
41
|
de Haart SJ, Willems SM, Mutis T, Koudijs MJ, van Blokland MT, Lokhorst HM, de Weger RA, Minnema MC. Comparison of intramedullary myeloma and corresponding extramedullary soft tissue plasmacytomas using genetic mutational panel analyses. Blood Cancer J 2016; 6:e426. [PMID: 27206246 PMCID: PMC4916304 DOI: 10.1038/bcj.2016.35] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- S J de Haart
- Department of Clinical Chemistry and Hematology, UMC Utrecht, Utrecht, The Netherlands
| | - S M Willems
- Department of Molecular Pathology, UMC Utrecht, Utrecht, The Netherlands
| | - T Mutis
- Department of Hematology, VU Medical Center, Amsterdam, The Netherlands
| | - M J Koudijs
- Medical Genetics, UMC Utrecht, Utrecht, The Netherlands
| | - M T van Blokland
- Department of Molecular Pathology, UMC Utrecht, Utrecht, The Netherlands
| | - H M Lokhorst
- Department of Hematology, VU Medical Center, Amsterdam, The Netherlands
| | - R A de Weger
- Department of Molecular Pathology, UMC Utrecht, Utrecht, The Netherlands
| | - M C Minnema
- Department of Hematology, Cancer Center UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
42
|
Lub S, Maes K, Menu E, De Bruyne E, Vanderkerken K, Van Valckenborgh E. Novel strategies to target the ubiquitin proteasome system in multiple myeloma. Oncotarget 2016; 7:6521-37. [PMID: 26695547 PMCID: PMC4872730 DOI: 10.18632/oncotarget.6658] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/23/2015] [Indexed: 12/20/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by the accumulation of plasma cells in the bone marrow (BM). The success of the proteasome inhibitor bortezomib in the treatment of MM highlights the importance of the ubiquitin proteasome system (UPS) in this particular cancer. Despite the prolonged survival of MM patients, a significant amount of patients relapse or become resistant to therapy. This underlines the importance of the development and investigation of novel targets to improve MM therapy. The UPS plays an important role in different cellular processes by targeted destruction of proteins. The ubiquitination process consists of enzymes that transfer ubiquitin to proteins targeting them for proteasomal degradation. An emerging and promising approach is to target more disease specific components of the UPS to reduce side effects and overcome resistance. In this review, we will focus on different components of the UPS such as the ubiquitin activating enzyme E1, the ubiquitin conjugating enzyme E2, the E3 ubiquitin ligases, the deubiquitinating enzymes (DUBs) and the proteasome. We will discuss their role in MM and the implications in drug discovery for the treatment of MM.
Collapse
Affiliation(s)
- Susanne Lub
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ken Maes
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Els Van Valckenborgh
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
43
|
Fairfield H, Falank C, Avery L, Reagan MR. Multiple myeloma in the marrow: pathogenesis and treatments. Ann N Y Acad Sci 2016; 1364:32-51. [PMID: 27002787 PMCID: PMC4806534 DOI: 10.1111/nyas.13038] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple myeloma (MM) is a B cell malignancy resulting in osteolytic lesions and fractures. In the disease state, bone healing is limited owing to increased osteoclastic and decreased osteoblastic activity, as well as an MM-induced forward-feedback cycle where bone-embedded growth factors further enhance tumor progression as bone is resorbed. Recent work on somatic mutation in MM tumors has provided insight into cytogenetic changes associated with this disease; the initiating driver mutations causing MM are diverse because of the complexity and multitude of mutations inherent in MM tumor cells. This manuscript provides an overview of MM pathogenesis by summarizing cytogenic changes related to oncogenes and tumor suppressors associated with MM, reviewing risk factors, and describing the disease progression from monoclonal gammopathy of undetermined significance to overt MM. It also highlights the importance of the bone marrow microenvironment (BMM) in the establishment and progression of MM, as well as associated MM-induced bone disease, and the relationship of the bone marrow to current and future therapeutics. This review highlights why understanding the basic biology of the healthy and diseased BMM is crucial in the quest for better treatments and work toward a cure for genetically diverse diseases such as MM.
Collapse
Affiliation(s)
| | | | | | - Michaela R Reagan
- Maine Medical Center Research Institute, Scarborough, Maine
- University of Maine, Orono, Maine
| |
Collapse
|
44
|
Di Noto G, Bugatti A, Zendrini A, Mazzoldi EL, Montanelli A, Caimi L, Rusnati M, Ricotta D, Bergese P. Merging colloidal nanoplasmonics and surface plasmon resonance spectroscopy for enhanced profiling of multiple myeloma-derived exosomes. Biosens Bioelectron 2015; 77:518-24. [PMID: 26469728 DOI: 10.1016/j.bios.2015.09.061] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/25/2015] [Accepted: 09/27/2015] [Indexed: 01/31/2023]
Abstract
A novel approach for sorting exosomes from multiple myeloma (MM), monoclonal gammopathy of undetermined significance (MGUS) and healthy individuals is presented. The method is based on the combination of colloidal gold nanoplasmonics and surface plasmon resonance (SPR) biosensing and probes distinctive colloidal properties of MM-derived exosomes, such as molar concentration and cell membrane binding preferences. It allowed to discover that MM patients produce about four folds more exosomes than MGUS and healthy individuals. In addition, it showed that among the analyzed exosomes, only the MM-derived ones bind heparin - a structural analog of heparan sulfate proteoglycans known to mediate exosome endocytosis - with an apparent dissociation constant (Kd) equal to about 1 nM, indicating a high affinity binding. This plasmonic method complements the classical biochemical profiling approach to exosomes, expanding the MM biomarker panel and adding biosensors to the toolbox to diagnose MM. It may find applications for other diseases and has wider interest for fundamental and translational research involving exosomes.
Collapse
Affiliation(s)
- Giuseppe Di Noto
- Department of Molecular and Translational Medicine and INSTM, University of Brescia, Viale Europa, 11, 25132 Brescia, Italy.
| | - Antonella Bugatti
- Department of Molecular and Translational Medicine and INSTM, University of Brescia, Viale Europa, 11, 25132 Brescia, Italy
| | - Andrea Zendrini
- Department of Molecular and Translational Medicine and INSTM, University of Brescia, Viale Europa, 11, 25132 Brescia, Italy
| | - Elena Laura Mazzoldi
- Department of Molecular and Translational Medicine and INSTM, University of Brescia, Viale Europa, 11, 25132 Brescia, Italy
| | - Alessandro Montanelli
- Spedali Civili of Brescia, Clinical Chemistry Laboratory, P.le Spedali Civili 1, 25123 Brescia, Italy
| | - Luigi Caimi
- Department of Molecular and Translational Medicine and INSTM, University of Brescia, Viale Europa, 11, 25132 Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine and INSTM, University of Brescia, Viale Europa, 11, 25132 Brescia, Italy
| | - Doris Ricotta
- Department of Molecular and Translational Medicine and INSTM, University of Brescia, Viale Europa, 11, 25132 Brescia, Italy
| | - Paolo Bergese
- Department of Molecular and Translational Medicine and INSTM, University of Brescia, Viale Europa, 11, 25132 Brescia, Italy.
| |
Collapse
|
45
|
Guo J, McKenna SL, O’Dwyer ME, Cahill MR, O’Driscoll CM. RNA interference for multiple myeloma therapy: targeting signal transduction pathways. Expert Opin Ther Targets 2015; 20:107-21. [DOI: 10.1517/14728222.2015.1071355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|