1
|
Hirata K, Watanabe S, Kitagawa Y, Kudo K. A Review of Hypoxia Imaging Using 18F-Fluoromisonidazole Positron Emission Tomography. Methods Mol Biol 2024; 2755:133-140. [PMID: 38319574 DOI: 10.1007/978-1-0716-3633-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Tumor hypoxia is an essential factor related to malignancy, prognosis, and resistance to treatment. Positron emission tomography (PET) is a modality that visualizes the distribution of radiopharmaceuticals administered into the body. PET imaging with [18F]fluoromisonidazole ([18F]FMISO) identifies hypoxic tissues. Unlike [18F]fluorodeoxyglucose ([18F]FDG)-PET, fasting is not necessary for [18F]FMISO-PET, but the waiting time from injection to image acquisition needs to be relatively long (e.g., 2-4 h). [18F]FMISO-PET images can be displayed on an ordinary commercial viewer on a personal computer (PC). While visual assessment is fundamental, various quantitative indices such as tumor-to-muscle ratio have also been proposed. Several novel hypoxia tracers have been invented to compensate for the limitations of [18F]FMISO.
Collapse
Affiliation(s)
- Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
- Department of Nuclear Medicine, Hokkaido University Hospital, Sapporo, Japan.
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
| | - Shiro Watanabe
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Nuclear Medicine, Hokkaido University Hospital, Sapporo, Japan
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshimasa Kitagawa
- Oral Diagnosis and Medicine, Department of Oral Pathobiological Science, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kohsuke Kudo
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Nuclear Medicine, Hokkaido University Hospital, Sapporo, Japan
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
2
|
Moskalik MY. Monofluoromethylation of N-Heterocyclic Compounds. Int J Mol Sci 2023; 24:17593. [PMID: 38139426 PMCID: PMC10744182 DOI: 10.3390/ijms242417593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The review focuses on recent advances in the methodologies for the formation or introduction of the CH2F moiety in N-heterocyclic substrates over the past 5 years. The monofluoromethyl group is one of the most versatile fluorinated groups used to modify the properties of molecules in synthetic medical chemistry. The review summarizes two strategies for the monofluoromethylation of N-containing heterocycles: direct monofluoromethylation with simple XCH2F sources (for example, ICH2F) and the assembly of N-heterocyclic structures from CH2F-containing substrates. The review describes the monofluoromethylation of pharmaceutically important three-, five- and six-membered N-heterocycles: pyrrolidines, pyrroles, indoles, imidazoles, triazoles, benzothiazoles, carbazoles, indazoles, pyrazoles, oxazoles, piperidines, morpholines, pyridines, quinolines and pyridazines. Assembling of 6-fluoromethylphenanthridine, 5-fluoromethyl-2-oxazolines, C5-monofluorinated isoxazoline N-oxides, and α-fluoromethyl-α-trifluoromethylaziridines is also shown. Fluoriodo-, fluorchloro- and fluorbromomethane, FCH2SO2Cl, monofluoromethyl(aryl)sulfoniummethylides, monofluoromethyl sulfides, (fluoromethyl)triphenylphosphonium iodide and 2-fluoroacetic acid are the main fluoromethylating reagents in recent works. The replacement of atoms and entire functional groups with a fluorine atom(s) leads to a change and often improvement in activity, chemical or biostability, and pharmacokinetic properties. The monofluoromethyl group is a bioisoster of -CH3, -CH2OH, -CH2NH2, -CH2CH3, -CH2NO2 and -CH2SH moieties. Bioisosteric replacement with the CH2F group is both an interesting task for organic synthesis and a pathway to modify drugs, agrochemicals and useful intermediates.
Collapse
Affiliation(s)
- Mikhail Yu Moskalik
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia
| |
Collapse
|
3
|
Tsuji T, Tsunematsu H, Imanishi M, Denda M, Tsuchiya K, Otaka A. Enhanced tumor specific drug release by hypoxia sensitive dual-prodrugs based on 2-nitroimidazole. Bioorg Med Chem Lett 2023; 95:129484. [PMID: 37716415 DOI: 10.1016/j.bmcl.2023.129484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Hypoxia in cancer is important in the development of cancer-selective medicines. Here, a novel hypoxia-responsible dual-prodrug is described. We designed and synthesized 2-nitroimidazole derivatives which spontaneously release both a PYG inhibitor and gemcitabine under hypoxic conditions. One such derivative, a prodrug 9 was found to be stable against chemical and enzymatic hydrolysis, and upon chemical reduction of the nitro group on imidazole, successfully releases both drugs. In an in vitro proliferation assay using human pancreatic cells, compound 9 exhibited significant anti-proliferative effects in hypoxia but fewer effects in normoxia. Consequently, prodrug 9 should be useful for cancer treatment due to its improved cancer selectivity and potential to overcome drug resistance.
Collapse
Affiliation(s)
- Takashi Tsuji
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Honoka Tsunematsu
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Masaki Imanishi
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Masaya Denda
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Koichiro Tsuchiya
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Akira Otaka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan.
| |
Collapse
|
4
|
Mittal S, Mallia MB. Molecular imaging of tumor hypoxia: Evolution of nitroimidazole radiopharmaceuticals and insights for future development. Bioorg Chem 2023; 139:106687. [PMID: 37406518 DOI: 10.1016/j.bioorg.2023.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Though growing evidence has been collected in support of the concept of dose escalation based on the molecular level images indicating hypoxic tumor sub-volumes that could be radio-resistant, validation of the concept is still a work in progress. Molecular imaging of tumor hypoxia using radiopharmaceuticals is expected to provide the required input to plan dose escalation through Image Guided Radiation Therapy (IGRT) to kill/control the radio-resistant hypoxic tumor cells. The success of the IGRT, therefore, is heavily dependent on the quality of images obtained using the radiopharmaceutical and the extent to which the image represents the true hypoxic status of the tumor in spite of the heterogeneous nature of tumor hypoxia. Available literature on radiopharmaceuticals for imaging hypoxia is highly skewed in favor of nitroimidazole as the pharmacophore given their ability to undergo oxygen dependent reduction in hypoxic cells. In this context, present review on nitroimidazole radiopharmaceuticals would be immensely helpful to the researchers to obtain a birds-eye view on what has been achieved so far and what can be tried differently to obtain a better hypoxia imaging agent. The review also covers various methods of radiolabeling that could be utilized for developing radiotracers for hypoxia targeting applications.
Collapse
Affiliation(s)
- Sweety Mittal
- Radiopharmaceuticals Division, Bhabha Atomic Research Center, Mumbai 400085, India.
| | - Madhava B Mallia
- Radiopharmaceuticals Division, Bhabha Atomic Research Center, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
5
|
García-Anaya MJ, Segado-Guillot S, Cabrera-Rodríguez J, Toledo-Serrano MD, Medina-Carmona JA, Gómez-Millán J. DOSE AND VOLUME DE-ESCALATION OF RADIOTHERAPY IN HEAD AND NECK CANCER. Crit Rev Oncol Hematol 2023; 186:103994. [PMID: 37061074 DOI: 10.1016/j.critrevonc.2023.103994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023] Open
Abstract
Radiotherapy plays a key role in the treatment of head and neck cancer. However, irradiation of the head and neck region is associated with high rates of acute and chronic toxicity. Technological advances have led to better visualisation of target volumes and critical structures and improved dose conformality in the treatment volume. Despite this, acute toxicity has not been substantially reduced and late toxicity has a significant impact on patients' quality of life. The greater radiosensitivity of tumours associated with the HPV and the development of new imaging techniques have encouraged research into new deintensified strategies to reduce the side effects of radiotherapy. The aim of this paper is to review the literature on the strategies of de-escalated treatment in dose and/or volume in head and neck cancer.
Collapse
Affiliation(s)
- M J García-Anaya
- Department of Radiation Oncology, Hospital Universitario Virgen de la Victoria, Malaga, Spain.
| | - S Segado-Guillot
- Department of Radiation Oncology, Hospital Universitario Virgen de la Victoria, Malaga, Spain
| | - J Cabrera-Rodríguez
- Department of Radiation Oncology, Hospital Universitario de Badajoz. Badajoz, Spain
| | - M D Toledo-Serrano
- Department of Radiation Oncology, Hospital Universitario Virgen de la Victoria, Malaga, Spain
| | - J A Medina-Carmona
- Department of Radiation Oncology, Hospital Universitario Virgen de la Victoria, Malaga, Spain
| | - J Gómez-Millán
- Department of Radiation Oncology, Hospital Universitario Virgen de la Victoria, Malaga, Spain; Instituto de Investigación Biomédica de Malaga, Malaga, Spain
| |
Collapse
|
6
|
Tamaki N, Hirata K, Kotani T, Nakai Y, Matsushima S, Yamada K. Four-dimensional quantitative analysis using FDG-PET in clinical oncology. Jpn J Radiol 2023:10.1007/s11604-023-01411-4. [PMID: 36947283 PMCID: PMC10366296 DOI: 10.1007/s11604-023-01411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Positron emission tomography (PET) with F-18 fluorodeoxyglucose (FDG) has been commonly used in many oncological areas. High-resolution PET permits a three-dimensional analysis of FDG distributions on various lesions in vivo, which can be applied for tissue characterization, risk analysis, and treatment monitoring after chemoradiotherapy and immunotherapy. Metabolic changes can be assessed using the tumor absolute FDG uptake as standardized uptake value (SUV) and metabolic tumor volume (MTV). In addition, tumor heterogeneity assessment can potentially estimate tumor aggressiveness and resistance to chemoradiotherapy. Attempts have been made to quantify intratumoral heterogeneity using radiomics. Recent reports have indicated the clinical feasibility of a dynamic FDG PET-computed tomography (CT) in pilot cohort studies of oncological cases. Dynamic imaging permits the assessment of temporal changes in FDG uptake after administration, which is particularly useful for differentiating pathological from physiological uptakes with high diagnostic accuracy. In addition, several new parameters have been introduced for the in vivo quantitative analysis of FDG metabolic processes. Thus, a four-dimensional FDG PET-CT is available for precise tissue characterization of various lesions. This review introduces various new techniques for the quantitative analysis of FDG distribution and glucose metabolism using a four-dimensional FDG analysis with PET-CT. This elegant study reveals the important role of tissue characterization and treatment strategies in oncology.
Collapse
Affiliation(s)
- Nagara Tamaki
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Kenji Hirata
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tomoya Kotani
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshitomo Nakai
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigenori Matsushima
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kei Yamada
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
7
|
Sasai K. My 42-year Experience in Radiation Oncology. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2022; 68:332-338. [PMID: 39021424 PMCID: PMC11250016 DOI: 10.14789/jmj.jmj22-0025-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 07/20/2024]
Abstract
In the present review, I provide an overview of the development of radiation therapy and short history of the Department of Radiation Oncology, Juntendo University. I also emphasize the importance of radiation therapy as a major treatment modality for cancers. Radiation therapy is a standard treatment for malignant tumors. It aims to deliver a sufficient radiation dose to a target volume to eradicate tumor cells or relieve symptoms of disease. Therapy can achieve good results in many types of cancers. Although radiation therapy sometimes causes undesirable adverse events, it is generally less invasive than other treatment modalities and does not alter the shape and function of healthy organs. When the author joined this field in 1981, radiation therapy techniques were highly primitive; however, during the past 42 years, treatment has advanced rapidly with the development of computer science, mechanical techniques and instrumentation. Currently, patients can be treated with precise radiation techniques, including intensity-modulated radiation therapy, image-guided radiation therapy, stereotactic irradiation, and brachytherapy. We also introduced a new treatment planning system that uses not only anatomical but also metabolic imaging, which permits correct delineation of the target volume. Therefore, it is crucial to stay up to date with advances and developments in rapidly emerging technologies to maintain high-quality treatment. The Department of Radiation Oncology at Juntendo University (Tokyo, Japan) is still small; however, it is gradually expanding and conducting research in both clinical and basic fields. It is the author's hope that many young investigators will join this field in the future.
Collapse
|
8
|
Subasinghe SAAS, Pautler RG, Samee MAH, Yustein JT, Allen MJ. Dual-Mode Tumor Imaging Using Probes That Are Responsive to Hypoxia-Induced Pathological Conditions. BIOSENSORS 2022; 12:478. [PMID: 35884281 PMCID: PMC9313010 DOI: 10.3390/bios12070478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 05/02/2023]
Abstract
Hypoxia in solid tumors is associated with poor prognosis, increased aggressiveness, and strong resistance to therapeutics, making accurate monitoring of hypoxia important. Several imaging modalities have been used to study hypoxia, but each modality has inherent limitations. The use of a second modality can compensate for the limitations and validate the results of any single imaging modality. In this review, we describe dual-mode imaging systems for the detection of hypoxia that have been reported since the start of the 21st century. First, we provide a brief overview of the hallmarks of hypoxia used for imaging and the imaging modalities used to detect hypoxia, including optical imaging, ultrasound imaging, photoacoustic imaging, single-photon emission tomography, X-ray computed tomography, positron emission tomography, Cerenkov radiation energy transfer imaging, magnetic resonance imaging, electron paramagnetic resonance imaging, magnetic particle imaging, and surface-enhanced Raman spectroscopy, and mass spectrometric imaging. These overviews are followed by examples of hypoxia-relevant imaging using a mixture of probes for complementary single-mode imaging techniques. Then, we describe dual-mode molecular switches that are responsive in multiple imaging modalities to at least one hypoxia-induced pathological change. Finally, we offer future perspectives toward dual-mode imaging of hypoxia and hypoxia-induced pathophysiological changes in tumor microenvironments.
Collapse
Affiliation(s)
| | - Robia G. Pautler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Md. Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Jason T. Yustein
- Integrative Molecular and Biomedical Sciences and the Department of Pediatrics in the Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Matthew J. Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA;
| |
Collapse
|
9
|
Ai S, Dong W, Li J, Yang Z. Hypoxia-Responsive Molecular Probe Lighted up by Peptide Self-Assembly for Cancer Cell Imaging. J Biomed Nanotechnol 2022; 18:1019-1027. [PMID: 35854443 DOI: 10.1166/jbn.2022.3304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hypoxia is a characteristic feature of most solid tumors, which promotes the proliferation, metastasis, and invasion of tumors and stimulates the resistance of cancer treatments, leading to the serious consequences of tumor recurrence. The exploration of hypoxia detection technology will aid tumor diagnosis and treatment. Fluorescence imaging technology is an accurate and efficient hypoxia detection technology. It has attracted significant research interest, but designing novel fluorescence probes, especially stimuli-responsive probes with high sensitivity and low toxicity is still challenging. In this work, we report a hypoxia-responsive molecular bioprobe lighted up by peptide self-assembly, which contains aggregationinduced emission (AIE) fluorescent molecule TPE, hypoxia-responsive azo group (-N═N-), the self-assembling peptide GFFY, and targeting ligand RGD. The resulting peptide derivative TPE-GFFY-N═N-EERGD forms supramolecular nanofibers but emit weak fluorescence because the azobenzene moiety can effectively quench the fluorescence of the TPE dye. However, the fluorescence-quenched nanofibers could be lighted up dramatically when the azo group is reduced. More importantly, this "turn-on" supramolecular fluorescence bioprobe enables effective detecting tumor hypoxia due to the overexpressed azoreductase in the tumor microenvironment. This work affords a paradigm of designing environmentsensitive fluorescent molecular probes for tumor hypoxia imaging.
Collapse
Affiliation(s)
- Sifan Ai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, People's Republic of China
| | - Wenhao Dong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, People's Republic of China
| | - Jie Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, People's Republic of China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
10
|
Khan R, Seltzer M. PET Imaging of Tumor Hypoxia in Head and Neck Cancer: A Primer for Neuroradiologists. Neuroimaging Clin N Am 2021; 30:325-339. [PMID: 32600634 DOI: 10.1016/j.nic.2020.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Tumor hypoxia is a known independent prognostic factor for adverse patient outcomes in those with head and neck cancer. Areas of tumor hypoxia have been found to be more radiation resistant than areas of tumor with normal oxygenation levels. Hypoxia imaging may serve to help identify the best initial treatment option and to assess intratreatment monitoring of tumor response in case treatment changes can be made. PET imaging is the gold standard method for imaging tumor hypoxia, with 18F-fluoromisonidazole the most extensively studied hypoxic imaging tracer. Newer tracers also show promise.
Collapse
Affiliation(s)
- Rihan Khan
- Department of Radiology, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH 03756, USA.
| | - Marc Seltzer
- Department of Radiology, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH 03756, USA
| |
Collapse
|
11
|
Zhou H, Qin F, Chen C. Designing Hypoxia-Responsive Nanotheranostic Agents for Tumor Imaging and Therapy. Adv Healthc Mater 2021; 10:e2001277. [PMID: 32985141 DOI: 10.1002/adhm.202001277] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/06/2020] [Indexed: 12/15/2022]
Abstract
Hypoxia, a common feature of most solid tumors, plays an important role in tumor proliferation, metastasis, and invasion, leading to drug, radiation, and photodynamic therapy resistance, and resulting in a sharp reduction in the disease-free survival rate of tumor patients. The lack of sufficient blood supply to the interior regions of tumors hinders the delivery of traditional drugs and contrast agents, interfering with their accumulation in the hypoxic region, and preventing efficient theranostics. Thus, there is a need for the fabrication of novel tumor theranostic agents that overcome these obstacles. Reports, in recent years, of hypoxia-responsive nanomaterials may provide with such means. In this review, a comprehensive description of the physicochemical and biological characteristics of hypoxic tumor tissues is provided, the principles of designing the hypoxia-responsive tumor theranostic agents are discussed, and the recent research into hypoxia-triggered nanomaterials is examined. Additionally, other hypoxia-associated responsive strategies, the current limitations, and future prospects for hypoxia-responsive nanotheranostic agents in tumor treatment are discussed.
Collapse
Affiliation(s)
- Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- College of Materials Sciences and Opto‐Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China
- Research Unit of Nanoscience and Technology Chinese Academy of Medical Sciences Beijing 100190 China
| | - Fenglan Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- College of Materials Sciences and Opto‐Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China
- Research Unit of Nanoscience and Technology Chinese Academy of Medical Sciences Beijing 100190 China
| |
Collapse
|
12
|
Shimizu Y, Nakai Y, Watanabe H, Iikuni S, Ono M, Saji H, Kuge Y, Saga T, Nakamoto Y. Increased [ 18F]FMISO accumulation under hypoxia by multidrug-resistant protein 1 inhibitors. EJNMMI Res 2021; 11:9. [PMID: 33492449 PMCID: PMC7835267 DOI: 10.1186/s13550-021-00752-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/11/2021] [Indexed: 11/30/2022] Open
Abstract
Background [18F]Fluoromisonidazole ([18F]FMISO) is a PET imaging probe widely used for the detection of hypoxia. We previously reported that [18F]FMISO is metabolized to the glutathione conjugate of the reduced form in hypoxic cells. In addition, we found that the [18F]FMISO uptake level varied depending on the cellular glutathione conjugation and excretion ability such as enzyme activity of glutathione-S-transferase and expression levels of multidrug resistance-associated protein 1 (MRP1, an efflux transporter), in addition to the cellular hypoxic state. In this study, we evaluated whether MRP1 activity affected [18F]FMISO PET imaging. Methods FaDu human pharyngeal squamous cell carcinoma cells were pretreated with MRP1 inhibitors (cyclosporine A, lapatinib, or MK-571) for 1 h, incubated with [18F]FMISO for 4 h under hypoxia, and their radioactivity was then measured. FaDu tumor-bearing mice were intravenously injected with [18F]FMISO, and PET/CT images were acquired at 4 h post-injection (1st PET scan). Two days later, the same mice were pretreated with MRP1 inhibitors (cyclosporine A, lapatinib, or MK-571) for 1 h, and PET/CT images were acquired (2nd PET scan). Results FaDu cells pretreated with MRP1 inhibitors exhibited significantly higher radioactivity than those without inhibitor treatment (cyclosporine A: 6.91 ± 0.27, lapatinib: 10.03 ± 0.47, MK-571: 10.15 ± 0.44%dose/mg protein, p < 0.01). In the in vivo PET study, the SUVmean ratio in tumors [calculated as after treatment (2nd PET scan)/before treatment of MRP1 inhibitors (1st PET scan)] of the mice treated with MRP1 inhibitors was significantly higher than those of control mice (cyclosporine A: 2.6 ± 0.7, lapatinib: 2.2 ± 0.7, MK-571: 2.2 ± 0.7, control: 1.2 ± 0.2, p < 0.05). Conclusion In this study, we revealed that MRP1 inhibitors increase [18F]FMISO accumulation in hypoxic cells. This suggests that [18F]FMISO-PET imaging is affected by MRP1 inhibitors independent of the hypoxic state.
Collapse
Affiliation(s)
- Yoichi Shimizu
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan. .,Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| | - Yukihiro Nakai
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Shimpei Iikuni
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hideo Saji
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, 060-0815, Japan
| | - Tsuneo Saga
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| |
Collapse
|
13
|
Zhou H, Guo M, Li J, Qin F, Wang Y, Liu T, Liu J, Sabet ZF, Wang Y, Liu Y, Huo Q, Chen C. Hypoxia-Triggered Self-Assembly of Ultrasmall Iron Oxide Nanoparticles to Amplify the Imaging Signal of a Tumor. J Am Chem Soc 2021; 143:1846-1853. [DOI: 10.1021/jacs.0c10245] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People’s Republic of China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100021, People’s Republic of China
| | - Mengyu Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jiayang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People’s Republic of China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100021, People’s Republic of China
| | - Fenglan Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People’s Republic of China
| | - Yuqing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People’s Republic of China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People’s Republic of China
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People’s Republic of China
| | - Zeinab Farhadi Sabet
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Yaling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People’s Republic of China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100021, People’s Republic of China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, People’s Republic of China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People’s Republic of China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100021, People’s Republic of China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, People’s Republic of China
| | - Qing Huo
- Department of Biomedical, College of Biochemical Engineering, Beijing Union University, Beijing 100023, People’s Republic of China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100021, People’s Republic of China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, People’s Republic of China
| |
Collapse
|
14
|
Yoon J, Kang SY, Lee KH, Cheon GJ, Oh DY. Targeting Hypoxia Using Evofosfamide and Companion Hypoxia Imaging of FMISO-PET in Advanced Biliary Tract Cancer. Cancer Res Treat 2020; 53:471-479. [PMID: 33091966 PMCID: PMC8053876 DOI: 10.4143/crt.2020.577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Hypoxia is widely known as one of the mechanisms of chemoresistance and as an environmental condition which triggers invasion and metastasis of cancer. Evofosfamide is a hypoxia-activated prodrug of the cytotoxin bromo-isophosphoramide mustard conjugated with 2-nitroimidazole. Biliary tract cancer (BTC) is known to contain large hypoxic area. This study evaluated the efficacy and safety of evofosfamide as a second-line treatment of advanced BTC. Materials and Methods Patients received evofosfamide at a dose of 340 mg/m2 on days 1, 8, and 15 of every 28-day cycle. Primary end-point was progression-free survival (PFS) rate at 4-months (4m-PFSR). Secondary end-points included overall survival (OS), PFS, disease control rate (DCR), metabolic response by 18F-fluorodeoxyglucose positron emission tomography (PET), hypoxic parameters evaluated by 18F-fluoromisonidazole (FMISO) PET and toxicity. Results Twenty patients were treated with evofosfamide, with 16 response-evaluable patients. There was no objective response; stable disease was observed in nine patients, with a DCR of 56.25%. 4m-PFSR was 40.6%. Median PFS was 3.60 months (95% confidence interval [CI], 1.68 to 5.52). Median OS was 6.37 months (95% CI, 3.94 to 8.79). Reduction of tumor metabolic activity was observed in eight of 15 patients (53.3%). High baseline hypoxic parameters were associated with poor PFS. Change of hypoxic parameters between pretreatment and post-treatment reflected hypoxic-activated drug response. There was no treatment-related death. Conclusion Evofosfamide as second-line treatment of advanced BTC showed acceptable safety and comparable efficacy to other agents. Changes in volumetric parameters measured with FMISO PET, showing the degree of tumor hypoxia, reflected the response to evofosfamide based on the mode of action.
Collapse
Affiliation(s)
- Jeesun Yoon
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seo Young Kang
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung-Hun Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Do-Youn Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Shukla M, Forghani R, Agarwal M. Patient-Centric Head and Neck Cancer Radiation Therapy: Role of Advanced Imaging. Neuroimaging Clin N Am 2020; 30:341-357. [PMID: 32600635 DOI: 10.1016/j.nic.2020.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The traditional 'one-size-fits-all' approach to H&N cancer therapy is archaic. Advanced imaging can identify radioresistant areas by using biomarkers that detect tumor hypoxia, hypercellularity etc. Highly conformal radiotherapy can target resistant areas with precision. The critical information that can be gleaned about tumor biology from these advanced imaging modalities facilitates individualized radiotherapy. The tumor imaging world is pushing its boundaries. Molecular imaging can now detect protein expression and genotypic variations across tumors that can be exploited for tailoring treatment. The exploding field of radiomics and radiogenomics extracts quantitative, biologic and genetic information and further expands the scope of personalized therapy.
Collapse
Affiliation(s)
- Monica Shukla
- Department of Radiation Oncology, Froedtert and Medical College of Wisconsin, 9200 W. Wisconsin Avenue, Milwaukee, WI 53226, USA
| | - Reza Forghani
- Augmented Intelligence & Precision Health Laboratory, Department of Radiology, Research Institute of McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
| | - Mohit Agarwal
- Department of Radiology, Section of Neuroradiology, Froedtert and Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
16
|
Shima T, Fujima N, Yamano S, Kudo K, Hirata K, Minowa K. Evaluation of non-Gaussian model-based diffusion-weighted imaging in oral squamous cell carcinoma: comparison with tumour functional information derived from positron-emission tomography. Clin Radiol 2020; 75:397.e15-397.e21. [PMID: 31987487 DOI: 10.1016/j.crad.2019.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
Abstract
AIM To evaluate and compare diffusion-weighted imaging (DWI) parameters derived from a non-Gaussian fitting model and positron-emission tomography (PET) parameters derived from 18F-fluoromisonidazole-PET (FMISO-PET) in patients with oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS Primary sites were evaluated prospectively in 18 patients. DWI was performed using six b-values (0-2,500). Diffusion-related parameters of kurtosis value (K), the kurtosis-corrected diffusion coefficient (DK), diffusion heterogeneity (α), distributed diffusion coefficient (DDC), the slow diffusion coefficient (Dslow), and the apparent diffusion coefficient (ADC) were calculated from four diffusion-fitting models. Maximal standardised uptake values (SUVmax), mean standardised uptake values (SUVmean), and the tumour-to-muscle ration (TMR) of the SUV value were calculated for FMISO-PET. Spearman's correlation coefficient was used to evaluate the correlation between each non-Gaussian diffusion model parameters and PET parameter. RESULTS There was moderate correlation between FMISO-PET SUVmax and Dslow (ρ=-0.45, p=0.06). In addition, there was good correlation between TMRmax and five non-Gaussian diffusion model parameters (K: ρ=0.65, p=0.004, DK: ρ=-0.72, p=0.0008, DDC: ρ=-0.75, p=0.0003, ADC: ρ=-0.74, p=0.0005, and Dslow: ρ= -0.65, p=0.003), and between TMRmean and five non-Gaussian model parameters (K: ρ=0.64, p=0.005, DK: ρ=-0.61, p=0.007, DDC: ρ=-0.63, p=0.005, ADC: ρ=-0.61, p=0.007, and Dslow: ρ=-0.56, p=0.015). CONCLUSION Non-Gaussian diffusion model parameters can be related to tumour hypoxia.
Collapse
Affiliation(s)
- T Shima
- Radiology, Department of Oral Pathobiological Science, Division of Oral Medical Science, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
| | - N Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - S Yamano
- Radiology, Department of Oral Pathobiological Science, Division of Oral Medical Science, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
| | - K Kudo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - K Hirata
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - K Minowa
- Radiology, Department of Oral Pathobiological Science, Division of Oral Medical Science, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan.
| |
Collapse
|
17
|
Kobayashi K, Manabe O, Hirata K, Yamaguchi S, Kobayashi H, Terasaka S, Toyonaga T, Furuya S, Magota K, Kuge Y, Kudo K, Shiga T, Tamaki N. Influence of the scan time point when assessing hypoxia in 18F-fluoromisonidazole PET: 2 vs. 4 h. Eur J Nucl Med Mol Imaging 2019; 47:1833-1842. [PMID: 31781832 DOI: 10.1007/s00259-019-04626-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/18/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE 18F-fluoromisonidazole (18F-FMISO) is the most widely used positron emission tomography (PET) tracer for imaging tumor hypoxia. Previous reports suggested that the time from injection to the scan may affect the assessment of 18F-FMISO uptake. Herein, we directly compared the images at 2 h and 4 h after a single injection of 18F-FMISO. METHODS Twenty-three patients with or suspected of having a brain tumor were scanned twice at 2 and 4 h following an intravenous injection of 18F-FMISO. We estimated the mean standardized uptake value (SUV) of the gray matter and white matter and the gray-to-white matter ratio in the background brain tissue from the two scans. We also performed a semi-quantitative analysis using the SUVmax and maximum tumor-to-normal ratio (TNR) for the tumor. RESULTS At 2 h, the SUVmean of gray matter was significantly higher than that of white matter (median 1.23, interquartile range (IQR) 1.10-1.32 vs. 1.04, IQR 0.95-1.16, p < 0.0001), whereas at 4 h, it significantly decreased to approach that of the white matter (1.10, IQR 1.00-1.23 vs. 1.02, IQR 0.93-1.13, p = NS). The gray-to-white matter ratio thus significantly declined from 1.17 (IQR 1.14-1.19) to 1.09 (IQR 1.07-1.10) (p < 0.0001). All 7 patients with glioblastoma showed significant increases in the SUVmax (2.20, IQR 1.67-3.32 at 2 h vs. 2.65, IQR 1.74-4.41 at 4 h, p = 0.016) and the TNR (1.75, IQR 1.40-2.38 at 2 h vs. 2.34, IQR 1.67-3.60 at 4 h, p = 0.016). CONCLUSION In the assessment of hypoxic tumors, 18F-FMISO PET for hypoxia imaging should be obtained at 4 h rather than 2 h after the injection.
Collapse
Affiliation(s)
- Kentaro Kobayashi
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, 060-8638, Japan
| | - Osamu Manabe
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, 060-8638, Japan
| | - Kenji Hirata
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, 060-8638, Japan.
| | - Shigeru Yamaguchi
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Sho Furuya
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, 060-8638, Japan
| | - Keiichi Magota
- Division of Medical Imaging and Technology, Hokkaido University Hospital, Sapporo, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Kohsuke Kudo
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Tohru Shiga
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, 060-8638, Japan
| | - Nagara Tamaki
- Department of Radiology, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
18
|
Zhen X, Jiang X. Polymer‐based activatable optical probes for tumor fluorescence and photoacoustic imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1593. [DOI: 10.1002/wnan.1593] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Xu Zhen
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering Nanjing University Nanjing China
| | - Xiqun Jiang
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering Nanjing University Nanjing China
| |
Collapse
|
19
|
A Novel PET Probe "[ 18F]DiFA" Accumulates in Hypoxic Region via Glutathione Conjugation Following Reductive Metabolism. Mol Imaging Biol 2019; 21:122-129. [PMID: 29845425 DOI: 10.1007/s11307-018-1214-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE Hypoxia in tumor has close relationship with angiogenesis and tumor progression. Previously, we developed 2,2-dihydroxymethyl-3-[18F]fluoropropyl-2-nitroimidazole ([18F]DiFA) as a novel positron emission tomography (PET) probe for diagnosis of hypoxia. In this study, we elucidated whether the accumulation of [18F]DiFA in cells is dependent on the hypoxic state and revealed how [18F]DiFA accumulates in hypoxic cells in combination with imaging mass spectrometry (IMS). PROCEDURES FaDu human head and neck cancer cells were treated with [18F]DiFA and then incubated under normoxia (21% O2) or hypoxia (1% O2) for 2 h. The cells were extracted using methanol, and the radioactivities of the precipitates (macromolecule fraction) and supernatants (low-molecular-weight fraction) were measured. FaDu-bearing mice were injected intravenously with [18F]DiFA and with pimonidazole 1 h later. The tumors were excised 2 h after the injection of [18F]DiFA. Autoradiography, IMS, and immunohistochemical (IHC) staining for pimonidazole were performed with serial tumor sections. RESULTS In the in vitro study, the radioactivity of FaDu cells was significantly higher under hypoxia than that under normoxia (0.53 ± 0.02 vs. 0.27 ± 0.02 %dose/mg protein, p < 0.05). The radioactivity of the low-molecular-weight fraction was 66.3 ± 0.6% in the hypoxic cell. In the in vivo study, [18F]DiFA accumulated in the tumor tissues existed mainly as low-molecular-weight compounds (90.4 ± 0.9%). In addition, the glutathione conjugate of reductive DiFA metabolite (amino-DiFA-GS) existed in tumor tissues revealed by the IMS study, and the distribution pattern of amino-DiFA-GS was very similar to that of the radioactivity and the positive staining area of pimonidazole. CONCLUSIONS Our results suggest that [18F]DiFA undergoes the glutathione conjugation reaction following reductive metabolism in hypoxic cells, which leads hypoxia-specific PET imaging with [18F]DiFA.
Collapse
|
20
|
Abstract
The progressive integration of positron emission tomography/computed tomography (PET/CT) imaging in radiation therapy has its rationale in the biological intertumoral and intratumoral heterogeneity of malignant lesions that require the individual adjustment of radiation dose to obtain an effective local tumor control in cancer patients. PET/CT provides information on the biological features of tumor lesions such as metabolism, hypoxia, and proliferation that can identify radioresistant regions and be exploited to optimize treatment plans. Here, we provide an overview of the basic principles of PET-based target volume selection and definition using 18F-fluorodeoxyglucose (18F-FDG) and then we focus on the emerging strategies of dose painting and adaptive radiotherapy using different tracers. Previous studies provided consistent evidence that integration of 18F-FDG PET/CT in radiotherapy planning improves delineation of target volumes and reduces the uncertainties and variabilities of anatomical delineation of tumor sites. PET-based dose painting and adaptive radiotherapy are feasible strategies although their clinical implementation is highly demanding and requires strong technical, computational, and logistic efforts. Further prospective clinical trials evaluating local tumor control, survival, and toxicity of these emerging strategies will promote the full integration of PET/CT in radiation oncology.
Collapse
Affiliation(s)
- Rosa Fonti
- Institute of Biostructures and Bioimages, National Research Council, Naples, Italy
| | - Manuel Conson
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
21
|
The Roles of Hypoxia Imaging Using 18F-Fluoromisonidazole Positron Emission Tomography in Glioma Treatment. J Clin Med 2019; 8:jcm8081088. [PMID: 31344848 PMCID: PMC6723061 DOI: 10.3390/jcm8081088] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022] Open
Abstract
Glioma is the most common malignant brain tumor. Hypoxia is closely related to the malignancy of gliomas, and positron emission tomography (PET) can noninvasively visualize the degree and the expansion of hypoxia. Currently, 18F-fluoromisonidazole (FMISO) is the most common radiotracer for hypoxia imaging. The clinical usefulness of FMISO PET has been established; it can distinguish glioblastomas from lower-grade gliomas and can predict the microenvironment of a tumor, including necrosis, vascularization, and permeability. FMISO PET provides prognostic information, including survival and treatment response information. Because hypoxia decreases a tumor’s sensitivity to radiation therapy, dose escalation to an FMISO-positive volume is an attractive strategy. Although this idea is not new, an insufficient amount of evidence has been obtained regarding this concept. New tracers for hypoxia imaging such as 18F-DiFA are being tested. In the future, hypoxia imaging will play an important role in glioma management.
Collapse
|
22
|
Watanabe S, Shiga T, Hirata K, Magota K, Okamoto S, Toyonaga T, Higashikawa K, Yasui H, Kobayashi J, Nishijima KI, Iseki K, Matsumoto H, Kuge Y, Tamaki N. Biodistribution and radiation dosimetry of the novel hypoxia PET probe [ 18F]DiFA and comparison with [ 18F]FMISO. EJNMMI Res 2019; 9:60. [PMID: 31278504 PMCID: PMC6611855 DOI: 10.1186/s13550-019-0525-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/05/2019] [Indexed: 02/03/2023] Open
Abstract
Background To facilitate hypoxia imaging in a clinical setting, we developed 1-(2,2-dihydroxymethyl-3-[18F]-fluoropropyl)-2-nitroimidazole ([18F]DiFA) as a new tracer that targets tumor hypoxia with its lower lipophilicity and efficient radiosynthesis. Here, we evaluated the radiation dosage, biodistribution, human safety, tolerability, and early elimination after the injection of [18F]DiFA in healthy subjects, and we performed a preliminary clinical study of patients with malignant tumors in a comparison with [18F]fluoromisonidazole ([18F]FMISO). Results The single administration of [18F]DiFA in 8 healthy male adults caused neither adverse events nor abnormal clinical findings. Dynamic and sequential whole-body scans showed that [18F]DiFA was rapidly cleared from all of the organs via the hepatobiliary and urinary systems. The whole-body mean effective dose of [18F]DiFA estimated by using the medical internal radiation dose (MIRD) schema with organ level internal dose assessment/exponential modeling (OLINDA/EXM) computer software 1.1 was 14.4 ± 0.7 μSv/MBq. Among the organs, the urinary bladder received the largest absorbed dose (94.7 ± 13.6 μSv/MBq). The mean absorbed doses of the other organs were equal to or less than those from other hypoxia tracers. The excretion of radioactivity via the urinary system was very rapid, reaching 86.4 ± 7.1% of the administered dose. For the preliminary clinical study, seven patients were subjected to [18F]FMISO and [18F]DiFA positron emission tomography (PET) at 48-h intervals to compare the two tracers’ diagnostic ability for tumor hypoxia. The results of the tumor hypoxia evaluation by [18F]DiFA PET at 1 h and 2 h were not significantly different from those obtained with [18F]FMISO PET at 4 h ([18F]DiFA at 1 h, p = 0.32; [18F]DiFA at 2 h, p = 0.08). Moreover, [18F]DiFA PET at both 1 h (k = 0.68) and 2 h (k = 1.00) showed better inter-observer reproducibility than [18F]FMISO PET at 4 h (k = 0.59). Conclusion [18F]DiFA is well tolerated, and its radiation dose is comparable to those of other hypoxia tracers. [18F]DiFA is very rapidly cleared via the urinary system. [18F]DiFA PET generated comparable images to [18F]FMISO PET in hypoxia imaging with shorter waiting time, demonstrating the promising potential of [18F]DiFA PET for hypoxia imaging and for a multicenter trial. Electronic supplementary material The online version of this article (10.1186/s13550-019-0525-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiro Watanabe
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Tohru Shiga
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Kenji Hirata
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Keiichi Magota
- Division of Medical Imaging and Technology, Hokkaido University Hospital, Kita-14, Nishi-5, Kita-ku, Sapporo, 060-8648, Japan
| | - Shozo Okamoto
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.,Department of Radiology, Obihiro Kosei Hospital, West 14 South 10-1, Obihiro, 080-0024, Japan
| | - Takuya Toyonaga
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Kei Higashikawa
- Central Institute of Isotope Science, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hironobu Yasui
- Central Institute of Isotope Science, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Jun Kobayashi
- Department of Pharmacy, Hokkaido University Hospital, Kita-14, Nishi-5, Kita-ku, Sapporo, 060-8648, Japan
| | - Ken-Ichi Nishijima
- Central Institute of Isotope Science, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.,Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikariga-oka, Fukushima, 960-1295, Japan
| | - Ken Iseki
- Department of Pharmacy, Hokkaido University Hospital, Kita-14, Nishi-5, Kita-ku, Sapporo, 060-8648, Japan.,Faculty of Pharmaceutical Sciences, Kita-14, Nishi-5, Kita-ku, Sapporo, 060-8648, Japan
| | - Hiroki Matsumoto
- Research Centre, Nihon Medi-Physics Co., Ltd., 3-1 Kitasode, Sodegaura, 299-0266, Japan
| | - Yuji Kuge
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.,Central Institute of Isotope Science, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Nagara Tamaki
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.,Department of Radiology, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
23
|
Zhang L, Yao X, Cao J, Hong H, Zhang A, Zhao R, Zhang Y, Zha Z, Liu Y, Qiao J, Zhu L, Kung HF. In Vivo Ester Hydrolysis as a New Approach in Development of Positron Emission Tomography Tracers for Imaging Hypoxia. Mol Pharm 2019; 16:1156-1166. [PMID: 30676751 DOI: 10.1021/acs.molpharmaceut.8b01131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hypoxia is an important biochemical and physiological condition associated with uncontrolled growth of tumor. Measurement of hypoxia in tumor tissue may be useful in characterization of tumor progression and monitoring drug treatment. [18F]FMISO is the most widely employed radiotracer for imaging of hypoxic tissue with positron emission tomography (PET). However, it showed relatively low uptake in hypoxic tissues, which led to low target-to-background contrast in PET images. To overcome these shortcomings, two novel 2-fluoroproprioic acid esters, nitroimidazole derivatives 2-fluoropropionic acid 2-(2-nitro-imidazol-1-yl)-ethyl ester (FNPFT, [19F]5) and 2-fluoropropionic acid 2-(2-methyl-5-nitro-imidazol-1-yl)-ethyl ester (FMNPFT, [19F]8), were prepared and tested. Radiolabeling of [18F]5 and [18F]8 was accomplished in 45 min (radiochemical purity >95%, the decay-corrected radiochemical yield of [18F]5 was 11 ± 2%, and that of [18F]8 was 13 ± 2%, n = 5). In vitro cell uptake studies using EMT-6 tumor cells showed that both radiotracers [18F]5 and [18F]8 displayed significantly higher uptake in hypoxic cells than those under normoxic condition, while 2-[18F]fluoropropionic acid (2-[18F]FPA) displayed no difference. Biodistribution studies in mice bearing EMT-6 tumor showed that [18F]5, [18F]8, and 2-[18F]FPA displayed similar tumor and major organ uptakes. Tumor uptake values for all three agents were higher than those of [18F]FMISO, respectively ( P < 0.05). This is likely due to a rapid in vivo hydrolysis of [18F]5 and [18F]8 to their metabolite, 2-[18F]FPA. Micro PET imaging studies in the same EMT-6 implanted mice tumor model also demonstrated that both [18F]5 and [18F]8 displayed similar tumor uptake comparable to that of 2-[18F]FPA. In conclusion, two new fluorine-18 labeled nitroimidazole derivatives, [18F]5 and [18F]8, showed good tumor uptakes in mice bearing EMT-6 tumor. However, in vivo biodistribution results suggested that they were more likely reflect the predominance of in vivo produced metabolite, 2-[18F]FPA, which may not be related to tumor hypoxic condition.
Collapse
Affiliation(s)
- Lifang Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Xinyue Yao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Jianhua Cao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Haiyan Hong
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Aili Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Ruiyue Zhao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Yan Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Zhihao Zha
- Beijing Institute for Brain Disorders , Capital Medical University , Beijing 100069 , P. R. China.,Department of Radiology , University of Pennsylvania , Philadelphia , Pennsylvania 19014 , United States
| | - Yajing Liu
- Beijing Institute for Brain Disorders , Capital Medical University , Beijing 100069 , P. R. China
| | - Jinping Qiao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Lin Zhu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China.,Beijing Institute for Brain Disorders , Capital Medical University , Beijing 100069 , P. R. China
| | - Hank F Kung
- Beijing Institute for Brain Disorders , Capital Medical University , Beijing 100069 , P. R. China.,Department of Radiology , University of Pennsylvania , Philadelphia , Pennsylvania 19014 , United States
| |
Collapse
|
24
|
Abstract
A hypoxic environment can be defined as a region of the body or the whole body that is deprived of oxygen. Hypoxia is a feature of many diseases, such as cardiovascular disease, tissue trauma, stroke, and solid cancers. A loss of oxygen supply usually results in cell death; however, when cells gradually become hypoxic, they may survive and continue to thrive as described for conditions that promote metastatic growth. The role of hypoxia in these pathogenic pathways is therefore of great interest, and understanding the effect of hypoxia in regulating these mechanisms is fundamentally important. This chapter gives an extensive overview of these mechanisms. Moreover, given the challenges posed by tumor hypoxia we describe the current methods to simulate and detect hypoxic conditions followed by a discussion on current and experimental therapies that target hypoxic cells.
Collapse
Affiliation(s)
- Elizabeth Bowler
- College of Medicine and Health, University of Exeter Medical School, Exeter, UK.
| | - Michael R Ladomery
- Faculty Health and Applied Sciences, University of the West of England, Bristol, UK
| |
Collapse
|
25
|
Noninvasive evaluation of 18F-FDG/ 18F-FMISO-based Micro PET in monitoring hepatic metastasis of colorectal cancer. Sci Rep 2018; 8:17832. [PMID: 30546057 PMCID: PMC6292879 DOI: 10.1038/s41598-018-36238-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
This study aimed to explore the application of two radiotracers (18F-fluorodeoxyglucose (FDG) and 18F-fluoromisonidazole (FMISO)) in monitoring hepatic metastases of human colorectal cancer (CRC). Mouse models of CRC hepatic metastases were established by implantation of the human CRC cell lines LoVo and HT29 by intrasplenic injection. Wound healing and Transwell assays were performed to examine cell migration and invasion abilities. Radiotracer-based cellular uptake in vitro and micro-positron emission tomography imaging of liver metastases in vivo were performed. The incidence of liver metastases in LoVo-xenografted mice was significantly higher than that in HT29-xenografted ones. The SUVmax/mean values of 18F-FMISO, but not 18F-FDG, in LoVo xenografts were significantly greater than in HT29 xenografts. In vitro, LoVo cells exhibited stronger metastatic potential and higher radiotracer uptake than HT29 cells. Mechanistically, the expression of HIF-1α and GLUT-1 in LoVo cells and LoVo tumor tissues was remarkably higher than in HT29 cells and tissues. Linear regression analysis demonstrated correlations between cellular 18F-FDG/18F-FMISO uptake and HIF-1α/GLUT-1 expression in vitro, as well as between 18F-FMISO SUVmax and GLUT-1 expression in vivo. 18F-FMISO uptake may serve as a potential biomarker for the detection of liver metastases in CRC, whereas its clinical use warrants validation.
Collapse
|
26
|
Incerti E, Mapelli P, Vuozzo M, Fallanca F, Monterisi C, Bettinardi V, Moresco RM, Gianolli L, Picchio M. Clinical PET imaging of tumour hypoxia in lung cancer. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Masaki Y, Shimizu Y, Yoshioka T, Nishijima KI, Zhao S, Higashino K, Numata Y, Tamaki N, Kuge Y. FMISO accumulation in tumor is dependent on glutathione conjugation capacity in addition to hypoxic state. Ann Nucl Med 2017; 31:596-604. [PMID: 28695498 PMCID: PMC5622914 DOI: 10.1007/s12149-017-1189-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/01/2017] [Indexed: 11/25/2022]
Abstract
OBJECTIVE 18F-fluoromisonidazole (FMISO), a well-known PET imaging probe for diagnosis of hypoxia, is believed to accumulate in hypoxic cells via covalent binding with macromolecules after reduction of the nitro group. Previously, we showed the majority of 18F-FMISO was incorporated into low-molecular-weight metabolites in hypoxic tumors, and the glutathione conjugate of reduced FMISO (amino-FMISO-GS) distributed in the tumor hypoxic regions as revealed by imaging mass spectrometry (IMS). The present study was conducted to clarify whether FMISO is metabolized to amino-FMISO-GS within tumor cells and how amino-FMISO-GS contributes to FMISO accumulation in hypoxic cells. We also evaluated the relationship between FMISO accumulation and the glutathione conjugation-related factors in the cells. METHODS Tumor cells (FaDu, LOVO, and T24) were treated with 18F-FMISO and incubated under normoxic or hypoxic conditions for 4 h. The FMISO metabolites were analyzed with LC-ESI-MS. Several glutathione conjugation-related factors of tumor cells were evaluated in vitro. FaDu tumor-bearing mice were intravenously injected with 18F-FMISO and the tumors were excised at 4 h post-injection. Autoradiography, IMS and histologic studies were performed. RESULTS Amino-FMISO-GS was the main contributor to FMISO incorporated in hypoxic FaDu cells in vitro and in vivo. Total FMISO uptake levels and amino-FMISO-GS levels were highest in FaDu, followed by LOVO, and then T24 (total uptake: 0.851 ± 0.009 (FaDu), 0.617 ± 0.021 (LOVO) and 0.167 ± 0.006 (T24) % dose/mg protein; amino-FMISO-GS: 0.502 ± 0.035 (FaDu), 0.158 ± 0.013 (LOVO), and 0.007 ± 0.001 (T24) % dose/mg protein). The glutathione level of FaDu was significantly higher than those of LOVO and T24. The enzyme activity of glutathione-S-transferase catalyzing the glutathione conjugation reaction in FaDu was similar levels to that in LOVO, and was higher than that in T24. Quantitative RT-PCR analysis revealed that the expression levels of efflux transporters of the glutathione conjugate (multidrug resistance-associated protein 1) were lowest in FaDu, followed by LOVO, and then T24. CONCLUSIONS FMISO accumulates in hypoxic cells through reductive metabolism followed by glutathione conjugation. We illustrated the possibility that increased production and decreased excretion of amino-FMISO-GS contribute to FMISO accumulation in tumor cells under hypoxic conditions.
Collapse
Affiliation(s)
- Yukiko Masaki
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, 001-0021, Japan
| | - Yoichi Shimizu
- Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
- Central Institute of Isotope Science, Hokkaido University, Sapporo, 060-0815, Japan.
| | - Takeshi Yoshioka
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, 001-0021, Japan
| | - Ken-Ichi Nishijima
- Central Institute of Isotope Science, Hokkaido University, Sapporo, 060-0815, Japan
- Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Songji Zhao
- Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Kenichi Higashino
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, 001-0021, Japan
| | - Yoshito Numata
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, 001-0021, Japan
| | - Nagara Tamaki
- Central Institute of Isotope Science, Hokkaido University, Sapporo, 060-0815, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, 060-0815, Japan
- Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| |
Collapse
|
28
|
Lin X, Fang S, Teng Y, Zhang J. Preparation and biological evaluation of a technetium-99m labeled 4-nitroimidazole derivative for imaging tumor hypoxia. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5277-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|