1
|
Liang Q, Ma C, Crowley SM, Allaire JM, Han X, Chong RWW, Packer NH, Yu HB, Vallance BA. Sialic acid plays a pivotal role in licensing Citrobacter rodentium's transition from the intestinal lumen to a mucosal adherent niche. Proc Natl Acad Sci U S A 2023; 120:e2301115120. [PMID: 37399418 PMCID: PMC10334811 DOI: 10.1073/pnas.2301115120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/30/2023] [Indexed: 07/05/2023] Open
Abstract
Enteric bacterial pathogens pose significant threats to human health; however, the mechanisms by which they infect the mammalian gut in the face of daunting host defenses and an established microbiota remain poorly defined. For the attaching and effacing (A/E) bacterial family member and murine pathogen Citrobacter rodentium, its virulence strategy likely involves metabolic adaptation to the host's intestinal luminal environment, as a necessary precursor to reach and infect the mucosal surface. Suspecting this adaptation involved the intestinal mucus layer, we found that C. rodentium was able to catabolize sialic acid, a monosaccharide derived from mucins, and utilize it as its sole carbon source for growth. Moreover, C. rodentium also sensed and displayed chemotactic activity toward sialic acid. These activities were abolished when the nanT gene, encoding a sialic acid transporter, was deleted (ΔnanT). Correspondingly, the ΔnanT C. rodentium strain was significantly impaired in its ability to colonize the murine intestine. Intriguingly, sialic acid was also found to induce the secretion of two autotransporter proteins, Pic and EspC, which possess mucinolytic and host-adherent properties. As a result, sialic acid enhanced the ability of C. rodentium to degrade intestinal mucus (through Pic), as well as to adhere to intestinal epithelial cells (through EspC). We thus demonstrate that sialic acid, a monosaccharide constituent of the intestinal mucus layer, functions as an important nutrient and a key signal for an A/E bacterial pathogen to escape the colonic lumen and directly infect its host's intestinal mucosa.
Collapse
Affiliation(s)
- Qiaochu Liang
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - Caixia Ma
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - Shauna M. Crowley
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - Joannie M. Allaire
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - Xiao Han
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - Raymond W. W. Chong
- ARC Centre of Excellence for Synthetic Biology, School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, Sydney, NSW2109, Australia
| | - Nicolle H. Packer
- ARC Centre of Excellence for Synthetic Biology, School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, Sydney, NSW2109, Australia
| | - Hong Bing Yu
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - Bruce A. Vallance
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| |
Collapse
|
2
|
HtrA family proteases of bacterial pathogens: pros and cons for their therapeutic use. Clin Microbiol Infect 2021; 27:559-564. [DOI: 10.1016/j.cmi.2020.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/25/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
|
3
|
Flores-Sanchez F, Chavez-Dueñas L, Sanchez-Villamil J, Navarro-Garcia F. Pic Protein From Enteroaggregative E. coli Induces Different Mechanisms for Its Dual Activity as a Mucus Secretagogue and a Mucinase. Front Immunol 2020; 11:564953. [PMID: 33281812 PMCID: PMC7705071 DOI: 10.3389/fimmu.2020.564953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
A hallmark of enteroaggregative Escherichia coli (EAEC) infection is the formation of an intestinal biofilm, which comprises a mucus layer with immersed bacteria. Pic is an autotransporter secreted by EAEC, and other E. coli pathotypes, and has been involved in two apparently contradictory phenotypes, as a mucus secretagogue and as a mucinase. Here, we investigated this Pic dual activity, mucus secretagogue capability and mucinolytic activity, in human goblet cells that secrete MUC2 and MUC5AC. Pic induced mucus hypersecretion directly in the goblet cells, without other intestinal cell types involved. At the same time, Pic exhibited strong proteolytic activity on the secreted mucins. These activities were independent since a mutation in the serine protease motif (PicS258I) abolished mucin degradation while maintaining the mucus secretagogue activity intact. Furthermore, deoxycholic acid (DCA)-induced mucins were proteolytically degraded when goblet cells were co-incubated with DCA/Pic, while co-incubation with DCA/PicS258I induced a synergistic effect on mucus hypersecretion. Pic was more efficient degrading MUC5AC than MUC2, but no degradation was detected with Pic inactivated at the active site by mutation or pharmacological inhibition. Remarkably, Pic cleaved MUC2 and MUC5AC in the C-terminal domain, leaving N-terminal subproducts, impacting the feature of gel-forming mucins and allowing mucus layer penetration by EAEC. Astonishingly, Pic stimulated rapid mucin secretion in goblet-like cells by activating the intracellular calcium pathway resulting from the PLC signal transduction pathway, leading to the production of DAG and releasing IP3, a second messenger of calcium signaling. Therefore, the dual activity of Pic, as a mucus secretagogue and a mucinase, is relevant in the context of carbon source generation and mucus layer penetration, allowing EAEC to live within the layer of mucus but also access epithelial cells.
Collapse
Affiliation(s)
- Fernando Flores-Sanchez
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), México DF, México
| | - Lucia Chavez-Dueñas
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), México DF, México
| | - Javier Sanchez-Villamil
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), México DF, México
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), México DF, México
| |
Collapse
|
4
|
Lakshmanan D, Harikrishnan A, Jyoti K, Idul Ali M, Jeevaratnam K. A compound isolated from Alpinia officinarum Hance. inhibits swarming motility of Pseudomonas aeruginosa and down regulates virulence genes. J Appl Microbiol 2020; 128:1355-1365. [PMID: 31869477 DOI: 10.1111/jam.14563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022]
Abstract
AIM The study was aimed at purifying the active principle from Alpinia officinarum rhizomes responsible for inhibition of swarming motility of Pseudomonas aeruginosa and analysing the mechanism of action. METHODS AND RESULTS The active compound from methanol extract of A. officinarum was purified by silica gel column chromatography followed by elution from Amberlite resin. The compound 1-(3,5-dihydroxyphenyl)-2-(methylamino)ethan-1-one, inhibited swarming motility at 12·5 µg ml-1 . This inhibition was independent of rhamnolipid production. Real-time PCR analysis showed significant down-regulation of virulence-associated genes including T3SS exoS, exoT and flagella master regulator fleQ. CONCLUSIONS The compound from A. officinarum inhibited swarming motility and significantly down-regulated the expression of type III secretory system effector genes exoS and exoT and flagellar master regulator fleQ genes. SIGNIFICANCE AND IMPACT OF THE STUDY The study identifies a potent swarming inhibitory compound from the common medicinal plant A. officinarum and reinstates the potential of plant-derived compounds in tackling virulence properties of pathogenic bacteria.
Collapse
Affiliation(s)
- D Lakshmanan
- Department of Biochemistry and Molecular Biology, Pondicherry University, Kalapet, Pondicherry, India
| | - A Harikrishnan
- Department of Chemistry, Pondicherry University, Kalapet, Pondicherry, India
| | - K Jyoti
- Department of Biochemistry and Molecular Biology, Pondicherry University, Kalapet, Pondicherry, India
| | - M Idul Ali
- Department of Biochemistry and Molecular Biology, Pondicherry University, Kalapet, Pondicherry, India
| | - K Jeevaratnam
- Department of Biochemistry and Molecular Biology, Pondicherry University, Kalapet, Pondicherry, India
| |
Collapse
|
5
|
Kida Y, Yamamoto T, Kuwano K. SdsA1, a secreted sulfatase, contributes to the in vivo virulence of Pseudomonas aeruginosa in mice. Microbiol Immunol 2020; 64:280-295. [PMID: 31907968 DOI: 10.1111/1348-0421.12772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/10/2019] [Accepted: 01/05/2020] [Indexed: 01/08/2023]
Abstract
Mucin is a glycoprotein that is the primary component of the mucus overlaying the epithelial tissues. Because mucin functions as a first line of the innate immune system, Pseudomonas aeruginosa appears to require interaction with mucin to establish infection in the host. However, the interactions between P. aeruginosa and mucin have been poorly understood. In this study, using in vivo expression technology (IVET), we attempted to identify mucin-inducible promoters that are likely to be involved in the establishment of P. aeruginosa infection. The IVET analysis revealed that the genes encoding glycosidases, sulfatases, and peptidases that are thought to be required for the utilization of mucin as a nutrient are present in 13 genes downstream of the identified promoters. Our results indicated that, among them, sdsA1 encoding a secreted sulfatase plays a central role in the degradation of mucin. It was then demonstrated that disruption of sdsA1 leads to a decreased release of sulfate from mucin and sulfated sugars. Furthermore, the sdsA1 mutant showed a reduction in the ability of mucin gel penetration and an attenuation of virulence in leukopenic mice compared with the wild-type strain. Collectively, these results suggest that SdsA1 plays an important role as a virulence factor of P. aeruginosa.
Collapse
Affiliation(s)
- Yutaka Kida
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Takeshi Yamamoto
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Koichi Kuwano
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Fukuoka, Japan
| |
Collapse
|
6
|
Hayashi N, Furue Y, Kai D, Yamada N, Yamamoto H, Nakano T, Oda M. Sulfated vizantin suppresses mucin layer penetration dependent on the flagella motility of Pseudomonas aeruginosa PAO1. PLoS One 2018; 13:e0206696. [PMID: 30383847 PMCID: PMC6211736 DOI: 10.1371/journal.pone.0206696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/17/2018] [Indexed: 12/29/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes severe infections, such as pneumonia and bacteremia. Several studies demonstrated that flagellar motility is an important virulence factor for P. aeruginosa infection. In this study, we determined whether sulfated vizantin affects P. aeruginosa flagellar motility in the absence of direct antimicrobial activity. We found that 100 μM sulfated vizantin suppressed P. aeruginosa PAO1 from penetrating through an artificial mucin layer by affecting flagellar motility, although it did not influence growth nor bacterial protease activity. To further clarify the mechanism in which sulfated vizantin suppresses the flagellar motility of P. aeruginosa PAO1, we examined the effects of sulfated vizantin on the composition of the flagellar filament and mRNA expression of several flagella-related genes, finding that sulfated vizantin did not influence the composition of the flagellar complex (fliC, motA, and motB) in P. aeruginosa PAO1, but significantly decreased mRNA expression of the chemotaxis-related genes cheR1, cheW, and cheZ. These results indicated that sulfated vizantin is an effective inhibitor of flagellar motility in P. aeruginosa.
Collapse
Affiliation(s)
- Naoki Hayashi
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yui Furue
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Daichi Kai
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Noriteru Yamada
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hirofumi Yamamoto
- Department of Chemistry and Functional Molecule, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Takashi Nakano
- Department of Microbiology and Infection Control, Osaka Medical College, Osaka, Japan
| | - Masataka Oda
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
7
|
Hayashi N, Yokotani A, Yamamoto M, Kososhi M, Morita M, Fukunishi C, Nishizawa N, Gotoh N. Extracellular Signals of a Human Epithelial Colorectal Adenocarcinoma (Caco-2) Cell Line Facilitate the Penetration of Pseudomonas aeruginosa PAO1 Strain through the Mucin Layer. Front Cell Infect Microbiol 2017; 7:415. [PMID: 28983473 PMCID: PMC5613098 DOI: 10.3389/fcimb.2017.00415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/06/2017] [Indexed: 01/25/2023] Open
Abstract
Pseudomonas aeruginosa can penetrate the layer of mucus formed by host intestinal epithelial cells, often resulting in sepsis in immunocompromised patients. We have previously demonstrated that P. aeruginosa can penetrate the mucin layer by flagellar motility and the degradation of the mucin layer. However, it remains unclear how P. aeruginosa initially recognizes epithelial cells. Using the human epithelial colorectal adenocarcinoma (Caco-2) cell line, we investigated extracellular signaling that could facilitate the penetration of P. aeruginosa through the mucin layer. The supernatant from Caco-2 cell cultures increased penetration of P. aeruginosa through an artificial mucin layer. The Caco-2 cell supernatant increased bacterial flagella-dependent swarming motility, but it did not influence P. aeruginosa growth or protease activity. Filtering of the Caco-2 cell supernatant indicated that proteins weighing <10 kDa increased mucin penetration, swarming motility, and, based on a tethered cell assay, induced acceleration of the flagellar filament rotational rate. Furthermore, a capillary assay showed that <10 kDa proteins in the Caco-2 cell supernatant attracted P. aeruginosa cells. Finally, we identified that growth-regulated oncogene-α (GRO-α) secreted by Caco-2 cells was a factor facilitating flagellar filament rotation and swarming motility, although it did not attract the bacteria. We conclude that penetration of the mucin layer by P. aeruginosa is facilitated by small proteins (<10 kDa) secreted by Caco-2 cells, both by inducing acceleration of flagellar motility and increasing chemotaxis.
Collapse
Affiliation(s)
- Naoki Hayashi
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical UniversityKyoto, Japan
| | - Atsushi Yokotani
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical UniversityKyoto, Japan
| | - Masami Yamamoto
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical UniversityKyoto, Japan
| | - Mariko Kososhi
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical UniversityKyoto, Japan
| | - Mayu Morita
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical UniversityKyoto, Japan
| | - Chiaki Fukunishi
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical UniversityKyoto, Japan
| | - Nagisa Nishizawa
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical UniversityKyoto, Japan
| | - Naomasa Gotoh
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical UniversityKyoto, Japan
| |
Collapse
|
8
|
Hayashi N, Nishizawa H, Kitao S, Deguchi S, Nakamura T, Fujimoto A, Shikata M, Gotoh N. Pseudomonas aeruginosa injects type III effector ExoS into epithelial cells through the function of type IV pili. FEBS Lett 2015; 589:890-6. [PMID: 25747138 DOI: 10.1016/j.febslet.2015.02.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/02/2015] [Accepted: 02/25/2015] [Indexed: 12/29/2022]
Abstract
Translocation of Pseudomonas aeruginosa through epithelial tissues can cause sepsis. Here, we examined whether P. aeruginosa penetrates epithelial cell layers using type IV pili (TFP). Deletion of TFP (pilA) did not affect association with Caco-2 cells, although it decreased penetration through, and disruption of, Caco-2 cell monolayers. We found that TFP are necessary for injection of the type III effector ExoS, which impairs defense against P. aeruginosa penetration, into host cells. Deletion of pilA attenuated oral infection in silkworms. We conclude that P. aeruginosa injects ExoS into cells through the function of TFP, enabling penetration of epithelial barriers.
Collapse
Affiliation(s)
- Naoki Hayashi
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Hideyuki Nishizawa
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Seiya Kitao
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Sakurako Deguchi
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Takano Nakamura
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Akiyo Fujimoto
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Mototsugu Shikata
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Naomasa Gotoh
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| |
Collapse
|
9
|
Abstract
Bacteria secrete effector proteins required for successful infection and expression of toxicity into host cells. The type III secretion apparatus is involved in these processes. Previously, we showed that the viscous polymer polyethylene glycol (PEG) 8000 suppressed effector secretion by Pseudomonas aeruginosa. We thus considered that other viscous polymers might also suppress secretion. We initially showed that PEG200 (formed from the same monomer (ethylene glycol) as PEG8000, but which forms solutions of lower viscosity than the latter compound) did not decrease effector secretion. By contrast, alginate, a high-viscous polymer formed from mannuronic and guluronic acid, unlike PEG8000, effectively inhibited secretion. The effectiveness of PEG8000 and alginate in this regard was closely associated with polymer viscosity, but the nature of viscosity dependence differed between the two polymers. Moreover, not only the natural polymer alginate, but also mucin, which protects against infection, suppressed secretion. We thus confirmed that polymer viscosity contributes to the suppression of effector secretion, but other factors (e.g. electrostatic interaction) may also be involved. Moreover, the results suggest that regulation of bacterial secretion by polymers may occur naturally via the action of components of biofilm or mucin layer.
Collapse
Affiliation(s)
- Takashi Ohgita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Misasagi-Nakauchicho 5, Yamashina-ku, Kyoto 607-8414, Japan
| | | | | | | |
Collapse
|