1
|
Huang Y, Osouli A, Li H, Dudaney M, Pham J, Mancino V, Khan T, Chaudhuri B, Pastor-Soler NM, Hallows KR, Chung EJ. Therapeutic potential of urinary extracellular vesicles in delivering functional proteins and modulating gene expression for genetic kidney disease. Biomaterials 2025; 321:123296. [PMID: 40158444 DOI: 10.1016/j.biomaterials.2025.123296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Chronic kidney disease (CKD) is a widespread health concern, impacting approximately 600 million individuals worldwide and marked by a progressive decline in kidney function. A common form of CKD is autosomal dominant polycystic kidney disease (ADPKD), which is the most inherited genetic kidney disease and affects greater than 12.5 million individuals globally. Given that there are over 400 pathogenic PKD1/PKD2 mutations in patients with ADPKD, relying solely on small molecule drugs targeting a single signaling pathway has not been effective in treating ADPKD. Urinary extracellular vesicles (uEVs) are naturally released by cells from the kidneys and the urinary tract, and uEVs isolated from non-disease sources have been reported to carry functional polycystin-1 (PC1) and polycystin-2 (PC2), the respective products of PKD1 and PKD2 genes that are mutated in ADPKD. uEVs from non-disease sources, as a result, have the potential to provide a direct solution to the root of the disease by delivering functional proteins that are mutated in ADPKD. To test our hypothesis, we first isolated uEVs from healthy mice urine and conducted a comprehensive characterization of uEVs. Then, PC1 levels and EV markers CD63 and TSG101 of uEVs were confirmed via ELISA and Western blot. Following characterization of uEVs, the in vitro cellular uptake, inhibition of cyst growth, and gene rescue ability of uEVs were demonstrated in kidney cells. Next, upon administration of uEVs in vivo, uEVs showed bioavailability and accumulation in the kidneys. Lastly, uEV treatment in ADPKD mice (Pkd1fl/fl;Pax8-rtTA;Tet-O-Cre) showed smaller kidney size, lower cyst index, and enhanced PC1 levels without affecting safety despite repeated treatment. In summary, we demonstrate the potential of uEVs as natural nanoparticles to deliver protein and gene therapies for the treatment of chronic and genetic kidney diseases such as ADPKD.
Collapse
Affiliation(s)
- Yi Huang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Ali Osouli
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Hui Li
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Megan Dudaney
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jessica Pham
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Valeria Mancino
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Taranatee Khan
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Baishali Chaudhuri
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Nuria M Pastor-Soler
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kenneth R Hallows
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA; Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Bridge Institute, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Kamada A, Hirose T, Sato S, Takahashi C, Kaburaki T, Sato K, Ishikawa R, Endo A, Ito H, Oba-Yabana I, Nakamura H, Matsuyama M, Mori T. Construction of arginine vasopressin receptor 2-deficient rats by the rGONAD method. Clin Exp Nephrol 2025:10.1007/s10157-025-02652-5. [PMID: 40102322 DOI: 10.1007/s10157-025-02652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Congenital nephrogenic diabetes insipidus (NDI) is a hereditary disease characterized by a reduced response to arginine vasopressin in the renal collecting duct. NDI is primarily caused by mutations in the arginine vasopressin receptor 2 (AVPR2). Several animal models have been developed for congenital NDI; however, the appropriate models are limited. Thus, we constructed a novel Avpr2-deficient rat model using gene-editing technology to study the pathophysiological mechanisms of NDI. METHODS Avpr2-deficient rats were generated via a novel genome editing approach termed the rat Genome-editing via Oviductal Nucleic Acid Delivery (rGONAD) method. The phenotypes were analyzed using biological, molecular, and histological examinations. The effects of hydrochlorothiazide (40 mg/kg/d) on 24-h water intake, urine volume, and urine osmolality were evaluated in a metabolic cage. RESULTS Avpr2-deficient rats were born and weaned under normal rearing conditions and exhibited symptoms similar to those of human congenital NDI, such as polydipsia, polyuria, and growth retardation. Although they exhibited hydronephrosis-like kidneys, no glomerular or tubular damage was observed. Aquaporin-2 was retained in the cytoplasm of collecting duct cells, and its phosphorylation was suppressed. Administration of hydrochlorothiazide decreased urine volume and improved urine osmolality in Avpr2-deficient rats. CONCLUSIONS Avpr2-deficient rats are a reliable model of congenital NDI for elucidating the underlying mechanisms and identifying therapeutic targets.
Collapse
Affiliation(s)
- Ayaka Kamada
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino, Sendai, 983-8536, Japan
| | - Takuo Hirose
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino, Sendai, 983-8536, Japan.
- Division of Integrative Renal Replacement Therapy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| | - Shigemitsu Sato
- Division of Integrative Renal Replacement Therapy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Chika Takahashi
- Division of Integrative Renal Replacement Therapy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takahito Kaburaki
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino, Sendai, 983-8536, Japan
| | - Kaori Sato
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino, Sendai, 983-8536, Japan
| | - Risa Ishikawa
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino, Sendai, 983-8536, Japan
| | - Akari Endo
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino, Sendai, 983-8536, Japan
| | - Hiroki Ito
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino, Sendai, 983-8536, Japan
| | - Ikuko Oba-Yabana
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino, Sendai, 983-8536, Japan
| | - Hannah Nakamura
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino, Sendai, 983-8536, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama, Japan
| | - Takefumi Mori
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino, Sendai, 983-8536, Japan.
- Division of Integrative Renal Replacement Therapy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| |
Collapse
|
3
|
Ghosh T, Barman D, Show K, Lo R, Manna D, Ghosh T, Maiti DK. N-Heterocyclic Carbene-Catalyzed Facile Synthesis of Phthalidyl Sulfonohydrazones: Density Functional Theory Mechanistic Insights and Docking Interactions. ACS OMEGA 2024; 9:11510-11522. [PMID: 38496936 PMCID: PMC10938401 DOI: 10.1021/acsomega.3c08529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
N-heterocyclic carbene catalysis reaction protocol is disclosed for the synthesis of phthalidyl sulfonohydrazones. A broad range of N-tosyl hydrazones react effectively with phthalaldehyde derivatives under open-air conditions, enabling the formation of a new C-N bond via an oxidative path. The reaction proceeds under mild reaction conditions with broad substrate scopes, wide functional group tolerance, and good to excellent yields. The mechanistic pathway is studied successfully using control experiments, competitive reactions, ESI-MS spectral analyses of the reaction mixture, and computational study by density functional theory. The potential use of one of the phthalidyl sulfonohydrazone derivatives as the inhibitor of β-ketoacyl acyl carrier protein synthase I of Escherichia coli is investigated using molecular docking.
Collapse
Affiliation(s)
- Tanmoy Ghosh
- Department
of Chemistry, University of Calcutta, Kolkata 700009, India
| | - Debabrata Barman
- Department
of Chemistry, University of Calcutta, Kolkata 700009, India
| | - Krishanu Show
- Department
of Chemistry, Malda College, Malda, West Bengal 732101, India
| | - Rabindranath Lo
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, v.v.i., Flemingovo nám. 2, Prague 6, Praha 16610, Czech Republic
| | - Debashree Manna
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, v.v.i., Flemingovo nám. 2, Prague 6, Praha 16610, Czech Republic
- Department
of Applied Chemistry, Maulana Abul Kalam
Azad University of Technology, Haringhata, West Bengal 741249, India
| | - Tapas Ghosh
- Department
of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Dilip K. Maiti
- Department
of Chemistry, University of Calcutta, Kolkata 700009, India
| |
Collapse
|
4
|
Yang Y, Zhou J, Zhang D, Lv J, Chen M, Wang C, Song M, He F, Song S, Mei C. Dehydration Accelerates Cytogenesis and Cyst Growth in Pkd1 -/- Mice by Regulating Macrophage M2 Polarization. Inflammation 2023; 46:1272-1289. [PMID: 36997763 DOI: 10.1007/s10753-023-01806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 04/01/2023]
Abstract
Adult autosomal dominant polycystic kidney disease (ADPKD) has been shown to be related as a "third hit" to the occurrence of acute or chronic kidney injury. Here, we examined whether dehydration, as a common kidney risk factor, could cause cystogenesis in chronic-onset Pkd1-/- mice by regulating macrophage activation. First, we confirmed that dehydration accelerated cytogenesis in Pkd1-/- mice and that macrophages infiltrated the kidney tissues even earlier than macroscopic cyst formation. Then, microarray analysis suggested that glycolysis pathway may be involved in macrophage activation in Pkd1-/- kidneys under conditions of dehydration. Further, we confirmed glycolysis pathway was activated and lactic acid (L-LA) was overproduced in the Pkd1-/- kidney under conditions of dehydration. We have already proved that L-LA strongly stimulated M2 macrophage polarization and overproduction of polyamine in macrophage in vitro, and in the present study, we further discovered that M2 polarization-induced polyamine production shortened the primary cilia length by disrupting the PC1/PC2 complex. Finally, the activation of L-LA-arginase 1-polyamine pathway contributed to cystogenesis and progressive cyst growth in Pkd1-/- mice recurrently exposed to dehydration.
Collapse
Affiliation(s)
- Yang Yang
- Department of Nephrology, The 981th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Puning Road, No.3, Shuangqiao District, Chengde, China.
- Kidney Diagnostic and Therapeutic Center of People's Liberation Army, Beidaihe Rehabilitation and Recuperation Center of the Chinese People's Liberation Army, Qinhuangdao, China.
| | - Jie Zhou
- Department of Nephrology, Affiliated Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongjuan Zhang
- Department of Nephrology, The 981th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Puning Road, No.3, Shuangqiao District, Chengde, China
| | - Jiayi Lv
- Kidney Institution of the Chinese People's Liberation Army, Changzheng Hospital, The Navy Military Medical University, Fengyang Road, No.415, Huangpu District, Shanghai, China
| | - Meihan Chen
- Department of Nephrology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Chao Wang
- Kidney Diagnostic and Therapeutic Center of People's Liberation Army, Beidaihe Rehabilitation and Recuperation Center of the Chinese People's Liberation Army, Qinhuangdao, China
| | - Minghui Song
- Clinical Laboratory, Hainan Hospital of General Hospital of Chinese People's Liberation Army, Sanya, China
| | - Fagui He
- Department of Nephrology, The 981th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Puning Road, No.3, Shuangqiao District, Chengde, China
| | - Shuwei Song
- Kidney Institution of the Chinese People's Liberation Army, Changzheng Hospital, The Navy Military Medical University, Fengyang Road, No.415, Huangpu District, Shanghai, China
| | - Changlin Mei
- Kidney Institution of the Chinese People's Liberation Army, Changzheng Hospital, The Navy Military Medical University, Fengyang Road, No.415, Huangpu District, Shanghai, China.
| |
Collapse
|
5
|
Kurimoto J, Takagi H, Miyata T, Kawaguchi Y, Hodai Y, Tsumura T, Hagiwara D, Kobayashi T, Yasuda Y, Sugiyama M, Onoue T, Iwama S, Suga H, Banno R, Katsuki T, Ando F, Uchida S, Arima H. Mineralocorticoids induce polyuria by reducing apical aquaporin-2 expression of the kidney in partial vasopressin deficiency. Endocr J 2023; 70:295-304. [PMID: 36450452 DOI: 10.1507/endocrj.ej22-0339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The symptoms of diabetes insipidus may be masked by the concurrence of adrenal insufficiency and emerge after the administration of hydrocortisone, occasionally at high doses. To elucidate the mechanism underlying polyuria induced by the administration of high-dose corticosteroids in the deficiency of arginine vasopressin (AVP), we first examined the secretion of AVP in three patients in whom polyuria was observed only after the administration of high-dose corticosteroids. Next, we examined the effects of dexamethasone or aldosterone on water balance in wild-type and familial neurohypophyseal diabetes insipidus (FNDI) model mice. A hypertonic saline test showed that AVP secretion was partially impaired in all patients. In one patient, there were no apparent changes in AVP secretion before and after the administration of high-dose corticosteroids. In FNDI mice, unlike dexamethasone, the administration of aldosterone increased urine volumes and decreased urine osmolality. Immunohistochemical analyses showed that, after the administration of aldosterone in FNDI mice, aquaporin-2 expression was decreased in the apical membrane and increased in the basolateral membrane in the collecting duct. These changes were not observed in wild-type mice. The present data suggest that treatment with mineralocorticoids induces polyuria by reducing aquaporin-2 expression in the apical membrane of the kidney in partial AVP deficiency.
Collapse
Affiliation(s)
- Junki Kurimoto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yohei Kawaguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yuichi Hodai
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tetsuro Tsumura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshinori Yasuda
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya 464-8601, Japan
| | - Takeshi Katsuki
- Department of Diabetes and Endocrinology, Tokyo Saiseikai Central Hospital, Tokyo 108-0073, Japan
| | - Fumiaki Ando
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
6
|
Jiang K, Huang Y, Chung EJ. Combining Metformin and Drug-Loaded Kidney-Targeting Micelles for Polycystic Kidney Disease. Cell Mol Bioeng 2023; 16:55-67. [PMID: 36660586 PMCID: PMC9842834 DOI: 10.1007/s12195-022-00753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease that leads to eventual renal failure. Metformin (MET), an AMP-activated protein kinase (AMPK) activator already approved for type 2 diabetes, is currently investigated for ADPKD treatment. However, despite high tolerability, MET showed varying therapeutic efficacy in preclinical ADPKD studies. Thus, newer strategies have combined MET with other ADPKD small molecule drug candidates, thereby targeting multiple ADPKD-associated signaling pathways to enhance therapeutic outcomes through potential drug synergy. Unfortunately, the off-target side effects caused by these additional drug candidates pose a major hurdle. To address this, our group has previously developed kidney-targeting peptide amphiphile micelles (KMs), which displayed significant kidney accumulation in vivo, for delivering drugs to the site of the disease. Methods To mitigate the adverse effects of ADPKD drugs and evaluate their therapeutic potential in combination with MET, herein, we loaded KMs with ADPKD drug candidates including salsalate, octreotide, bardoxolone methyl, rapamycin, tolvaptan, and pioglitazone, and tested their in vitro therapeutic efficacy when combined with free MET. Specifically, after determining the 40% inhibitory concentration for each drug (IC40), the size, morphology, and surface charge of drug-loaded KMs were characterized. Next, drug-loaded KMs were applied in combination with MET to treat renal proximal tubule cells derived from Pkd1flox/-:TSLargeT mice in 2D proliferation and 3D cyst model. Results MET combined with all drug-loaded KMs demonstrated significantly enhanced efficacy as compared to free drugs in inhibiting cell proliferation and cyst growth. Notably, synergistic effects were found for MET and KMs loaded with either salsalate or rapamycin as determined by Bliss synergy scores. Conclusion Together, we show drug synergy using drug-loaded nanoparticles and free MET for the first time and present a novel nanomedicine-based combinatorial therapeutic approach for ADPKD with enhanced efficacy. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-022-00753-9.
Collapse
Affiliation(s)
- Kairui Jiang
- Department of Biomedical Engineering, University of Southern California, 1002 Childs Way, MCB 357, Los Angeles, CA 90089 USA
| | - Yi Huang
- Department of Biomedical Engineering, University of Southern California, 1002 Childs Way, MCB 357, Los Angeles, CA 90089 USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, 1002 Childs Way, MCB 357, Los Angeles, CA 90089 USA
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA USA
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA USA
- Bridge Institute, University of Southern California, Los Angeles, CA USA
| |
Collapse
|
7
|
Yang K, Shang Y, Yang N, Pan S, Jin J, He Q. Application of nanoparticles in the diagnosis and treatment of chronic kidney disease. Front Med (Lausanne) 2023; 10:1132355. [PMID: 37138743 PMCID: PMC10149997 DOI: 10.3389/fmed.2023.1132355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/22/2023] [Indexed: 05/05/2023] Open
Abstract
With the development of nanotechnology, nanoparticles have been used in various industries. In medicine, nanoparticles have been used in the diagnosis and treatment of diseases. The kidney is an important organ for waste excretion and maintaining the balance of the internal environment; it filters various metabolic wastes. Kidney dysfunction may result in the accumulation of excess water and various toxins in the body without being discharged, leading to complications and life-threatening conditions. Based on their physical and chemical properties, nanoparticles can enter cells and cross biological barriers to reach the kidneys and therefore, can be used in the diagnosis and treatment of chronic kidney disease (CKD). In the first search, we used the English terms "Renal Insufficiency, Chronic" [Mesh] as the subject word and terms such as "Chronic Renal Insufficiencies," "Chronic Renal Insufficiency," "Chronic Kidney Diseases," "Kidney Disease, Chronic," "Renal Disease, Chronic" as free words. In the second search, we used "Nanoparticles" [Mesh] as the subject word and "Nanocrystalline Materials," "Materials, Nanocrystalline," "Nanocrystals," and others as free words. The relevant literature was searched and read. Moreover, we analyzed and summarized the application and mechanism of nanoparticles in the diagnosis of CKD, application of nanoparticles in the diagnosis and treatment of renal fibrosis and vascular calcification (VC), and their clinical application in patients undergoing dialysis. Specifically, we found that nanoparticles can detect CKD in the early stages in a variety of ways, such as via breath sensors that detect gases and biosensors that detect urine and can be used as a contrast agent to avoid kidney damage. In addition, nanoparticles can be used to treat and reverse renal fibrosis, as well as detect and treat VC in patients with early CKD. Simultaneously, nanoparticles can improve safety and convenience for patients undergoing dialysis. Finally, we summarize the current advantages and limitations of nanoparticles applied to CKD as well as their future prospects.
Collapse
Affiliation(s)
- Kaibi Yang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiwei Shang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nan Yang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shujun Pan
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Juan Jin
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- *Correspondence: Juan Jin,
| | - Qiang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- Qiang He,
| |
Collapse
|
8
|
Ali S, Navaneethan SD, Virani SS, Gregg LP. Revisiting diuretic choice in chronic kidney disease. Curr Opin Nephrol Hypertens 2022; 31:406-413. [PMID: 35894274 PMCID: PMC9455225 DOI: 10.1097/mnh.0000000000000814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Existing guidelines offer little direction about the use of thiazide and loop diuretics in patients with chronic kidney disease (CKD). This review summarizes recent studies impacting indications and safety considerations for these agents in patients with CKD. RECENT FINDINGS Chlorthalidone reduces blood pressure compared to placebo in patients with advanced CKD, challenging the belief that thiazide diuretics lose efficacy at lower glomerular filtration rates (GFR). Existing studies show no clear impact of thiazide or loop diuretic use on kidney or cardiovascular outcomes in patients with CKD. Sodium-glucose co-transporter type 2 (SGLT2) inhibitors have diuretic effects, but concomitant use of a diuretic does not diminish the preventive benefits of these agents against acute kidney injury (AKI). Despite theoretical concerns, thiazide diuretics likely do not worsen circulating vasopressin levels or cyst progression in polycystic kidney disease and may be useful for alleviating polyuria from tolvaptan. Diuretics cause multiple adverse effects, including electrolyte abnormalities, hemodynamic-mediated decrease in estimated GFR, and AKI. SUMMARY Recent evidence supports expanded indications for diuretics in patients with kidney disease, including chlorthalidone for hypertension in advanced CKD. Monitoring electrolytes and estimated GFR is critical to ensure patient safety when prescribing these agents for patients with CKD.
Collapse
Affiliation(s)
- Sehrish Ali
- Selzman Institute for Kidney Health, Section of Nephrology,
Department of Medicine, Baylor College of Medicine, Houston, TX
- Section of Nephrology, Michael E. DeBakey Veterans Affairs
Medical Center, Houston, TX
| | - Sankar D. Navaneethan
- Selzman Institute for Kidney Health, Section of Nephrology,
Department of Medicine, Baylor College of Medicine, Houston, TX
- Section of Nephrology, Michael E. DeBakey Veterans Affairs
Medical Center, Houston, TX
- Veterans Affairs Health Services Research and Development
Center for Innovations in Quality, Effectiveness and Safety, Houston, TX
- Institute of Clinical and Translational Research, Baylor
College of Medicine, Houston, TX
| | - Salim S. Virani
- Veterans Affairs Health Services Research and Development
Center for Innovations in Quality, Effectiveness and Safety, Houston, TX
- Division of Cardiology, Baylor College of Medicine,
Houston, TX
- Division of Cardiology, Department of Medicine, Michael E.
DeBakey VA Medical Center, Houston, TX
| | - L. Parker Gregg
- Selzman Institute for Kidney Health, Section of Nephrology,
Department of Medicine, Baylor College of Medicine, Houston, TX
- Section of Nephrology, Michael E. DeBakey Veterans Affairs
Medical Center, Houston, TX
- Veterans Affairs Health Services Research and Development
Center for Innovations in Quality, Effectiveness and Safety, Houston, TX
| |
Collapse
|
9
|
|
10
|
Kramers BJ, Koorevaar IW, De Boer R, Hoorn EJ, Pena MJ, Gansevoort RT, Meijer E. Thiazide diuretics and the rate of disease progression in autosomal dominant polycystic kidney disease: an observational study. Nephrol Dial Transplant 2021; 36:1828-1836. [PMID: 33150452 PMCID: PMC8476080 DOI: 10.1093/ndt/gfaa150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In autosomal dominant polycystic kidney disease (ADPKD), hypertension is prevalent and cardiovascular events are the main cause of death. Thiazide diuretics are often prescribed as second-line antihypertensives, on top of renin-angiotensin-aldosterone system (RAAS) blockade. There is a concern, however, that diuretics may increase vasopressin concentration and RAAS activity, thereby worsening disease progression in ADPKD. We aimed to investigate the validity of these suggestions. METHODS We analysed an observational cohort of 533 ADPKD patients. Plasma copeptin (surrogate for vasopressin), aldosterone and renin were measured by enzyme-linked immunosorbent assay and radioimmunoassay, respectively. Linear mixed models were used to assess the association of thiazide use with estimated glomerular filtration rate (eGFR) decline and Cox proportional hazards models for the association with the composite kidney endpoint of incident end-stage kidney disease, 40% eGFR decline or death. RESULTS A total of 23% of participants (n = 125) used thiazide diuretics at baseline. Compared with non-users, thiazide users were older, a larger proportion was male, they had lower eGFRs and similar blood pressure under more antihypertensives. Plasma copeptin was higher, but this difference disappeared after adjustment for age and sex. Both renin and aldosterone were higher in thiazide users. There was no difference between thiazide users and non-users in the rate of eGFR decline {difference -0.35 mL/min/1.73 m2 per year [95% confidence interval (CI) -0.83 to -0.14], P = 0.2} during 3.9 years of follow-up (interquartile range 2.5-4.9). This did not change after adjustment for potential confounders [difference final model: 0.08 mL/min/1.73 m2 per year [95% CI -0.46 to -0.62], P = 0.8). In the crude model, thiazide use was associated with a higher incidence of the composite kidney endpoint [hazard ratio (HR) 1.53 (95% CI 1.05-2.23), P = 0.03]. However, this association lost significance after adjustment for age and sex and remained unassociated after adjustment for additional confounders [final model: HR 0.80 (95% CI 0.50-1.29), P = 0.4]. CONCLUSIONS These data do not show that thiazide diuretics have a detrimental effect on the rate of disease progression in ADPKD and suggest that these drugs can be prescribed as second-line antihypertensives.
Collapse
Affiliation(s)
- Bart J Kramers
- Departments of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Iris W Koorevaar
- Departments of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudolf De Boer
- Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Michelle J Pena
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University Hospital Groningen, Groningen, The Netherlands
| | - Ron T Gansevoort
- Departments of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Esther Meijer
- Departments of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
11
|
The effect of trichlormethiazide in autosomal dominant polycystic kidney disease patients receiving tolvaptan: a randomized crossover controlled trial. Sci Rep 2021; 11:17666. [PMID: 34480075 PMCID: PMC8417075 DOI: 10.1038/s41598-021-97113-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 08/17/2021] [Indexed: 12/11/2022] Open
Abstract
The vasopressin V2 receptor antagonist tolvaptan delays the progression of autosomal dominant polycystic kidney disease (ADPKD). However, some patients discontinue tolvaptan because of severe adverse aquaretic events. This open-label, randomized, controlled, counterbalanced, crossover trial investigated the effects of trichlormethiazide, a thiazide diuretic, in patients with ADPKD receiving tolvaptan (n = 10) who randomly received antihypertensive therapy with or without trichlormethiazide for 12 weeks. The primary and secondary outcomes included amount and osmolarity of 24-h urine and health-related quality-of-life (HRQOL) parameters assessed by the Kidney Disease Quality of Life-Short Form questionnaire, renal function slope, and plasma/urinary biomarkers associated with disease progression. There was a significant reduction in urine volume (3348 ± 584 vs. 4255 ± 739 mL; P < 0.001) and a significant increase in urinary osmolarity (182.5 ± 38.1 vs. 141.5 ± 38.1 mOsm; P = 0.001) in patients treated with trichlormethiazide. Moreover, trichlormethiazide improved the following HRQOL subscales: effects of kidney disease, sleep, emotional role functioning, social functioning, and role/social component summary. No significant differences were noted in renal function slope or plasma/urinary biomarkers between patients treated with and without trichlormethiazide. In patients with ADPKD treated with tolvaptan, trichlormethiazide may improve tolvaptan tolerability and HRQOL parameters.
Collapse
|
12
|
Huang Y, Wang J, Jiang K, Chung EJ. Improving kidney targeting: The influence of nanoparticle physicochemical properties on kidney interactions. J Control Release 2021; 334:127-137. [PMID: 33892054 DOI: 10.1016/j.jconrel.2021.04.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/23/2022]
Abstract
Kidney-targeted nanoparticles have become of recent interest due to their potential to deliver drugs directly to diseased tissue, decrease off-target adverse effects, and increase overall tolerability to patients with chronic kidney disease that require lifelong drug exposure. Given the physicochemical properties of nanoparticles can drastically affect their ability to extravasate past cellular and biological barriers and access the kidneys, we surveyed the literature from the past decade and analyzed how nanoparticle size, charge, shape, and material density affects passage and interaction with the kidneys. Specifically, we found that nanoparticle size impacted the mechanism of nanoparticle entry into the kidneys such as glomerular filtration or tubular secretion. In addition, we found charge, aspect ratio, and material density influences nanoparticle renal retention and provide insights for designing nanoparticles for passive kidney targeting. Finally, we conclude by highlighting active targeting strategies that bolster kidney retention and discuss the clinical status of nanomedicine for kidney diseases.
Collapse
Affiliation(s)
- Yi Huang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Kairui Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA; Department of Medicine, Division of Nephrology and Hypertension, University of Southern California, Los Angeles, CA, USA; Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Song R, Liu Y, Majhi PK, Ng PR, Hao L, Xu J, Tian W, Zhang L, Liu H, Zhang X, Chi YR. Enantioselective modification of sulfonamides and sulfonamide-containing drugs via carbene organic catalysis. Org Chem Front 2021. [DOI: 10.1039/d1qo00212k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Enantioselective modification of sulfonamides and sulfonamide-containing drugs via carbene organic catalysis is disclosed. The cation−π interaction was computationally found to play a pivotal role in modulating the reaction enantioselectivity.
Collapse
|
14
|
Huang Y, Jiang K, Zhang X, Chung EJ. The effect of size, charge, and peptide ligand length on kidney targeting by small, organic nanoparticles. Bioeng Transl Med 2020; 5:e10173. [PMID: 33005739 PMCID: PMC7510478 DOI: 10.1002/btm2.10173] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) affects 15% of the US adult population. However, most clinically available drugs for CKD show low bioavailability to the kidneys and non-specific uptake by other organs which results in adverse side effects. Hence, a targeted, drug delivery strategy to enhance kidney drug delivery is highly desired. Recently, our group developed small, organic nanoparticles called peptide amphiphile micelles (PAM) functionalized with the zwitterionic peptide ligand, (KKEEE)3K, that passage through the glomerular filtration barrier for kidney accumulation. Despite high bioavailability to the kidneys, these micelles also accumulated in the liver to a similar extent. To further optimize the physicochemical properties and develop design rules for kidney-targeting micelles, we synthesized a library of PAMs of varying size, charge, and peptide repeats. Specifically, variations of the original (KKEEE)3K peptide including (KKEEE)2K, (KKEEE)K, (EEKKK)3E, (EEKKK)2E, (EEKKK)E, KKKKK, and EEEEE were functionalized onto nanoparticles, and peptide surface density and PEG linker molecular weight were altered. After characterization with transmission electron microscopy (TEM) and dynamic light scattering (DLS), nanoparticles were intravenously administered into wildtype mice, and biodistribution was assessed through ex vivo imaging. All micelles localized to the kidneys, but nanoparticles that are positively-charged, close to the renal filtration size cut-off, and consisted of additional zwitterionic peptide sequences generally showed higher renal accumulation. Upon immunohistochemistry, micelles were confirmed to bind to the multiligand receptor, megalin, and histological analyses showed no tissue damage. Our study provides insight into the design of micelle carriers for kidney targeting and their potential for future therapeutic application.
Collapse
Affiliation(s)
- Yi Huang
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kairui Jiang
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Xuting Zhang
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Eun Ji Chung
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Medicine, Division of Nephrology and HypertensionUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Surgery, Division of Vascular Surgery and Endovascular TherapyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
15
|
K. Rangan G, Raghubanshi A, Chaitarvornkit A, Chandra AN, Gardos R, Munt A, Read MN, Saravanabavan S, Zhang JQ, Wong AT. Current and emerging treatment options to prevent renal failure due to autosomal dominant polycystic kidney disease. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1804859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gopala K. Rangan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Australia
| | - Aarya Raghubanshi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Alissa Chaitarvornkit
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Faculty of Engineering, The University of Sydney, Camperdown, Australia
| | - Ashley N. Chandra
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | | | - Alexandra Munt
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Australia
| | - Mark N. Read
- The School of Computer Science and the Westmead Initiative, The University of Sydney, Westmead, Australia
| | - Sayanthooran Saravanabavan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Jennifer Q.J. Zhang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Annette T.Y. Wong
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Australia
| |
Collapse
|
16
|
Nobakht N, Hanna RM, Al-Baghdadi M, Ameen KM, Arman F, Nobahkt E, Kamgar M, Rastogi A. Advances in Autosomal Dominant Polycystic Kidney Disease: A Clinical Review. Kidney Med 2020; 2:196-208. [PMID: 32734239 PMCID: PMC7380379 DOI: 10.1016/j.xkme.2019.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Polycystic kidney disease (PKD) is a multiorgan disorder resulting in fluid-filled cyst formation in the kidneys and other systems. The replacement of kidney parenchyma with an ever-increasing volume of cysts eventually leads to kidney failure. Recently, increased understanding of the pathophysiology of PKD and genetic advances have led to new approaches of treatment targeting physiologic pathways, which has been proven to slow the progression of certain types of the disease. We review the pathophysiologic patterns and recent advances in the clinical pharmacotherapy of autosomal dominant PKD. A multipronged approach with pharmacologic and nonpharmacologic treatments can be successfully used to slow down the rate of progression of autosomal dominant PKD to kidney failure.
Collapse
Affiliation(s)
- Niloofar Nobakht
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Ramy M. Hanna
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Division of Nephrology, Department of Medicine, University of California Irvine, Orange, CA
| | - Maha Al-Baghdadi
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Medicine, University of Alabama Birmingham Huntsville Regional Campus, Huntsville, AL
| | - Khalid Mohammed Ameen
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Farid Arman
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Medicine, University of Pennsylvania Medical Center, Philadelphia, PA
| | - Ehsan Nobahkt
- Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University, Washington, DC
| | - Mohammad Kamgar
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Anjay Rastogi
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
17
|
Rastogi A, Ameen KM, Al-Baghdadi M, Shaffer K, Nobakht N, Kamgar M, Lerma EV. Autosomal dominant polycystic kidney disease: updated perspectives. Ther Clin Risk Manag 2019; 15:1041-1052. [PMID: 31692482 PMCID: PMC6716585 DOI: 10.2147/tcrm.s196244] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited multisystem disorder, characterized by renal and extra-renal fluid-filled cyst formation and increased kidney volume that eventually leads to end-stage renal disease. ADPKD is considered the fourth leading cause of end-stage renal disease in the United States and globally. Care of patients with ADPKD was, for a long time, limited to supportive lifestyle measures, due to the lack of therapeutic strategies targeting the main pathways involved in the pathophysiology of ADPKD. As the first FDA approved treatment of ADPKD, Vasopressin (V2) receptor blocking agent, tolvaptan, is an urgently awaited advance for ADPKD patients. In our review, we also shed some lights on what is beyond Tolvaptan as there are other medications in the pipeline and many medications have been or are currently being studied in clinical trials such as Tesevatinib, Metformin and Pravastatin, with the goal of slowing the rate of progression of ADPKD by reducing the increase in total kidney volume or maintaining eGFR. Here, we review updates in the perspectives and management of ADPKD.
Collapse
Affiliation(s)
- Anjay Rastogi
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Khalid Mohammed Ameen
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Maha Al-Baghdadi
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Kelly Shaffer
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Niloofar Nobakht
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Mohammad Kamgar
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Edgar V Lerma
- Department of Medicine, Divison of Nephrology, University of Illinois at Chicago/Advocate Christ Medical Center, Section of Nephrology, Oak Lawn, IL, USA
| |
Collapse
|