1
|
Shen Y, Yu C. The Bone-Vascular Axis: A Key Player in Chronic Kidney Disease Associated Vascular Calcification. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:545-557. [PMID: 39664335 PMCID: PMC11631106 DOI: 10.1159/000541280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/31/2024] [Indexed: 12/13/2024]
Abstract
Background The bone-vascular axis plays a key role in the pathogenesis of vascular calcification (VC) in patients with chronic kidney disease (CKD). Understanding and managing the role of the bone-vascular axis in CKD-mineral and bone disorder (CKD-MBD) is critical for preventing and treating associated complications, including osteoporosis, arterial calcification, and cardiovascular diseases. This study aimed to comprehensively summarize the role of bone metabolism markers in uremic VC. Summary The skeleton, as an endocrine organ, can regulate systemic metabolic processes by secreting various bioactive substances. These molecules can induce the transdifferentiation of vascular smooth muscle cells, promoting their transition to other functional states, thereby affecting vascular growth and remodeling. Key Messages The prevalence of VC in individuals with CKD is notably high. CKD-associated VC is characterized by the widespread accumulation of hydroxyapatite within the arterial media, which occurs as a result of the transformation of smooth muscle cells into osteoblastic smooth muscle cells under the influence of uremic toxins. Osteoblasts and osteoclasts in bone tissue secrete mineral metabolic proteins, which can influence neighboring cells, primarily vascular smooth muscle cells, through paracrine signaling. Both circulating and osteocytic sclerostin can exert a protective effect by inhibiting wingless/integrated (WNT)-induced calcification. The therapeutic goal for CKD-MBD is to reduce production of sclerostin by decreasing the osteogenic transdifferentiation of vascular smooth muscle cells. Calciprotein particles act as a physiological agent for delivering calcium-phosphate the bone and inducing fibroblast growth factor-23 expression in osteoblasts.
Collapse
Affiliation(s)
- Yingjing Shen
- Department of Nephrology, Shanghai Tianyou Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Cernaro V, Longhitano E, Calabrese V, Casuscelli C, Di Carlo S, Spinella C, Gembillo G, Santoro D. Progress in pharmacotherapy for the treatment of hyperphosphatemia in renal failure. Expert Opin Pharmacother 2023; 24:1737-1746. [PMID: 37527180 DOI: 10.1080/14656566.2023.2243817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
INTRODUCTION Among the clinical and metabolic complications of progressive chronic kidney disease (CKD), CKD-mineral bone disorder (CKD-MBD) significantly contributes to morbidity and mortality. While overt and persistent hyperphosphatemia is typical of advanced CKD and requires treatment, other abnormalities of calcium/phosphate metabolism begin to occur since the early stages of the disease. AREAS COVERED We searched on the PubMed database, without restrictions for language or time range, for randomized clinical trials and meta-analyses investigating phosphate-lowering therapies. The various phosphate binders show different safety profiles and diverse effects on calcium/phosphate metabolism and vascular calcification. The in-depth knowledge of the characteristics of these drugs is crucial to ensure adequate treatment to CKD patients. EXPERT OPINION A proper control of serum phosphate can be achieved using phosphate binders. These medications may induce side effects. Moreover, data on their impact on clinical outcomes are partly controversial or scarce, especially for the new generation drugs. Hyperphosphatemia favors cardiovascular disease and increases the risk for CKD progression. These effects are partially mediated by fibroblast growth factor 23 (FGF23), a phosphaturic hormone that raises to maintain normal serum phosphate. Since there are no data supporting the use of phosphate-lowering agents when phosphataemia is normal, a key role is played by reducing dietary phosphate intake with the aim to control serum phosphate and the compensatory FGF23 and parathyroid hormone (PTH) increase.
Collapse
Affiliation(s)
- Valeria Cernaro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Elisa Longhitano
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vincenzo Calabrese
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Chiara Casuscelli
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Silvia Di Carlo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Claudia Spinella
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Guido Gembillo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
3
|
Hashimoto Y, Kato S, Kuro-O M, Miura Y, Itano Y, Ando M, Kuwatsuka Y, Maruyama S. Impact of etelcalcetide on fibroblast growth factor-23 and calciprotein particles in patients with secondary hyperparathyroidism undergoing hemodialysis. Nephrology (Carlton) 2022; 27:763-770. [PMID: 35749253 DOI: 10.1111/nep.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/02/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recently, we demonstrated the efficacy of etelcalcetide in the control of secondary hyperparathyroidism (SHPT). This post hoc analysis aimed to evaluate changes in fibroblast growth factor-23 (FGF23) and calciprotein particles (CPPs) after treatment with calcimimetics. METHODS The DUET trial was a 12-week multicenter, open-label, parallel-group, randomized (1:1:1) study with patients treated with etelcalcetide plus active vitamin D (E+D group; n = 41), etelcalcetide plus oral calcium (E+Ca group; n = 41), or control (C group; n = 42) under maintenance hemodialysis. Serum levels of FGF23 and CPPs were measured at baseline, and 6 and 12 weeks after the start. RESULTS In the linear mixed model, serum levels of FGF23 in etelcalcetide users were significantly lower than those in non-users at week 6 (p < 0.001) and week 12 (p < 0.001). When compared the difference between the E+Ca group and the E+D group, serum levels of FGF23 in the E+Ca group were significantly lower than those in the E+D group at week 12 (p = 0.017). There were no significant differences in the serum levels of CPPs between etelcalcetide users and non-users at week 6 (p = 0.10) and week 12 (p = 0.18), while CPPs in the E+Ca group were significantly lower than those in the E+D group (p < 0.001) at week 12. CONCLUSION Etelcalcetide may be useful through suppression of FGF23 levels among hemodialysis patients with SHPT. When correcting hypocalcemia, loading oral calcium preparations could be more advantageous than active vitamin D for the suppression of both FGF23 and CPPs.
Collapse
Affiliation(s)
- Yusaku Hashimoto
- Department of Nephrology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Sawako Kato
- Department of Nephrology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Makoto Kuro-O
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Yutaka Miura
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Yuya Itano
- Department of Nephrology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Masahiko Ando
- Department of Advanced Medicine, Nagoya University Hospital, Aichi, Japan
| | - Yachiyo Kuwatsuka
- Department of Advanced Medicine, Nagoya University Hospital, Aichi, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Aichi, Japan
| |
Collapse
|
4
|
Tiong MK, Cai MMX, Toussaint ND, Tan SJ, Pasch A, Smith ER. Effect of nutritional calcium and phosphate loading on calciprotein particle kinetics in adults with normal and impaired kidney function. Sci Rep 2022; 12:7358. [PMID: 35513558 PMCID: PMC9072391 DOI: 10.1038/s41598-022-11065-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/31/2022] [Indexed: 12/20/2022] Open
Abstract
Plasma approaches metastability with respect to its calcium and phosphate content, with only minor perturbations in ionic activity needed to sustain crystal growth once nucleated. Physiologically, calcium and phosphate are intermittently absorbed from the diet each day, yet plasma concentrations of these ions deviate minimally post-prandially. This implies the existence of a blood-borne mineral buffer system to sequester calcium phosphates and minimise the risk of deposition in the soft tissues. Calciprotein particles (CPP), endogenous mineral-protein colloids containing the plasma protein fetuin-A, may fulfill this function but definitive evidence linking dietary mineral loading with their formation is lacking. Here we demonstrate that CPP are formed as a normal physiological response to feeding in healthy adults and that this occurs despite minimal change in conventional serum mineral markers. Further, in individuals with Chronic Kidney Disease (CKD), in whom mineral handling is impaired, we show that both fasting and post-prandial levels of CPP precursors are markedly augmented and strongly inversely correlated with kidney function. This study highlights the important, but often neglected, contribution of colloidal biochemistry to mineral homeostasis and provides novel insight into the dysregulation of mineral metabolism in CKD.
Collapse
Affiliation(s)
- Mark K Tiong
- Department of Nephrology, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC, 3052, Australia. .,Department of Medicine (RMH), University of Melbourne, Parkville, Australia.
| | - Michael M X Cai
- Department of Nephrology, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC, 3052, Australia
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC, 3052, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| | - Sven-Jean Tan
- Department of Nephrology, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC, 3052, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| | - Andreas Pasch
- Calciscon AG, Biel, Switzerland.,Lindenhofspital Bern, Bern, Switzerland.,Department of Physiology and Pathophysiology, Johannes Kepler University, Linz, Austria
| | - Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC, 3052, Australia. .,Department of Medicine (RMH), University of Melbourne, Parkville, Australia.
| |
Collapse
|
5
|
Vervloet MG. Shedding Light on the Complex Regulation of FGF23. Metabolites 2022; 12:metabo12050401. [PMID: 35629904 PMCID: PMC9147863 DOI: 10.3390/metabo12050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
Early research has suggested a rather straightforward relation between phosphate exposure, increased serum FGF23 (Fibroblast Growth Factor 23) concentrations and clinical endpoints. Unsurprisingly, however, subsequent studies have revealed a much more complex interplay between autocrine and paracrine factors locally in bone like PHEX and DMP1, concentrations of minerals in particular calcium and phosphate, calciprotein particles, and endocrine systems like parathyroid hormone PTH and the vitamin D system. In addition to these physiological regulators, an expanding list of disease states are shown to influence FGF23 levels, usually increasing it, and as such increase the burden of disease. While some of these physiological or pathological factors, like inflammatory cytokines, may partially confound the association of FGF23 and clinical endpoints, others are in the same causal path, are targetable and hence hold the promise of future treatment options to alleviate FGF23-driven toxicity, for instance in chronic kidney disease, the FGF23-associated disease with the highest prevalence by far. These factors will be reviewed here and their relative importance described, thereby possibly opening potential means for future therapeutic strategies.
Collapse
Affiliation(s)
- Marc G. Vervloet
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Nephrology, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; ; Tel.: +31-20-4442671
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
6
|
Tiong MK, Smith ER, Pascoe EM, Elder GJ, Lioufas NM, Pedagogos E, Hawley CM, Valks A, Holt SG, Hewitson TD, Toussaint ND. Effect of lanthanum carbonate on serum calciprotein particles in patients with stage 3-4 CKD-results from a placebo-controlled randomized trial. Nephrol Dial Transplant 2022; 38:344-351. [PMID: 35212735 PMCID: PMC9923701 DOI: 10.1093/ndt/gfac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Calciprotein particles (CPP) are colloidal aggregates of calcium phosphate and the mineral-binding protein fetuin-A, and are potential mediators of cardiovascular disease in chronic kidney disease (CKD). Emerging evidence suggests non-calcium-containing phosphate binders may reduce serum CPP in patients with kidney failure who require dialysis; however, it is unclear whether similar interventions are effective in patients with earlier stages of CKD. METHODS The IMpact of Phosphate Reduction On Vascular End-points in CKD (IMPROVE-CKD) was a multi-centre, placebo-controlled, randomized trial of lanthanum carbonate on cardiovascular markers in 278 participants with stage 3b/4 CKD. In this pre-specified exploratory analysis, primary (CPP-I) and secondary CPP (CPP-II) were measured in a sub-cohort of participants over 96 weeks. Treatment groups were compared using linear mixed-effects models and the relationship between serum CPP and pulse wave velocity (PWV) and abdominal aortic calcification (AAC) was examined. RESULTS A total of 253 participants had CPP data for baseline and at least one follow-up timepoint and were included in this analysis. The mean age was 62.4 ± 12.6 years, 32.0% were female and the mean estimated glomerular filtration rate (eGFR) was 26.6 ± 8.3 mL/min/1.73 m2. Baseline median serum CPP-I was 14.9 × 104 particles/mL [interquartile range (IQR) 4.6-49.3] and median CPP-II was 3.3 × 103 particles/mL (IQR 1.4-5.4). There was no significant difference between treatment groups at 96 weeks in CPP-I [22.8% (95% confidence interval -39.2, 36.4), P = 0.65] or CPP-II [-18.3% (95% confidence interval -40.0, 11.2), P = 0.20] compared with a placebo. Serum CPP were not correlated with baseline PWV or AAC, or with the progression of either marker. CONCLUSIONS Lanthanum carbonate was not associated with a reduction of CPP at 96 weeks when compared with a placebo in a CKD cohort.
Collapse
Affiliation(s)
| | - Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Australia,Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| | - Elaine M Pascoe
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, Australia
| | - Grahame J Elder
- University of Notre Dame, Sydney, Australia,University of Sydney, Sydney, Australia,Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia,Department of Nephrology, Westmead Hospital, Sydney, Australia
| | - Nicole M Lioufas
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Australia,Department of Medicine (RMH), University of Melbourne, Parkville, Australia,Department of Nephrology, Western Health, Sunshine, Australia
| | | | - Carmel M Hawley
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, Australia,Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia,Translational Research Institute, Brisbane, Queensland, Australia
| | - Andrea Valks
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, Australia
| | - Stephen G Holt
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Australia,Department of Medicine (RMH), University of Melbourne, Parkville, Australia,SEHA Kidney Care, Abu Dhabi Health Services Company, Abu Dhabi, United Arab Emirates,Khalifa University, Abu Dhabi, United Arab Emirates
| | - Tim D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Australia,Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Australia,Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| |
Collapse
|
7
|
Navarro-García JA, González-Lafuente L, Fernández-Velasco M, Ruilope LM, Ruiz-Hurtado G. Fibroblast Growth Factor-23-Klotho Axis in Cardiorenal Syndrome: Mediators and Potential Therapeutic Targets. Front Physiol 2021; 12:775029. [PMID: 34867481 PMCID: PMC8634640 DOI: 10.3389/fphys.2021.775029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiorenal syndrome (CRS) is a complex disorder that refers to the category of acute or chronic kidney diseases that induce cardiovascular disease, and inversely, acute or chronic heart diseases that provoke kidney dysfunction. There is a close relationship between renal and cardiovascular disease, possibly due to the presence of common risk factors for both diseases. Thus, it is well known that renal diseases are associated with increased risk of developing cardiovascular disease, suffering cardiac events and even mortality, which is aggravated in those patients with end-stage renal disease or who are undergoing dialysis. Recent works have proposed mineral bone disorders (MBD) as the possible link between kidney dysfunction and the development of cardiovascular outcomes. Traditionally, increased serum phosphate levels have been proposed as one of the main factors responsible for cardiovascular damage in kidney patients. However, recent studies have focused on other MBD components such as the elevation of fibroblast growth factor (FGF)-23, a phosphaturic bone-derived hormone, and the decreased expression of the anti-aging factor Klotho in renal patients. It has been shown that increased FGF-23 levels induce cardiac hypertrophy and dysfunction and are associated with increased cardiovascular mortality in renal patients. Decreased Klotho expression occurs as renal function declines. Despite its expression being absent in myocardial tissue, several studies have demonstrated that this antiaging factor plays a cardioprotective role, especially under elevated FGF-23 levels. The present review aims to collect the recent knowledge about the FGF-23-Klotho axis in the connection between kidney and heart, focusing on their specific role as new therapeutic targets in CRS.
Collapse
Affiliation(s)
- José Alberto Navarro-García
- Cardiorenal Translational Laboratory, Institute of Research i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Laura González-Lafuente
- Cardiorenal Translational Laboratory, Institute of Research i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Luis M Ruilope
- Cardiorenal Translational Laboratory, Institute of Research i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain.,School of Doctoral Studies and Research, European University of Madrid, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Institute of Research i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
8
|
Shishkova DK, Velikanova EA, Bogdanov LA, Sinitsky MY, Kostyunin AE, Tsepokina AV, Gruzdeva OV, Mironov AV, Mukhamadiyarov RA, Glushkova TV, Krivkina EO, Matveeva VG, Hryachkova ON, Markova VE, Dyleva YA, Belik EV, Frolov AV, Shabaev AR, Efimova OS, Popova AN, Malysheva VY, Kolmykov RP, Sevostyanov OG, Russakov DM, Dolganyuk VF, Gutakovsky AK, Zhivodkov YA, Kozhukhov AS, Brusina EB, Ismagilov ZR, Barbarash OL, Yuzhalin AE, Kutikhin AG. Calciprotein Particles Link Disturbed Mineral Homeostasis with Cardiovascular Disease by Causing Endothelial Dysfunction and Vascular Inflammation. Int J Mol Sci 2021; 22:ijms222212458. [PMID: 34830334 PMCID: PMC8626027 DOI: 10.3390/ijms222212458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
An association between high serum calcium/phosphate and cardiovascular events or death is well-established. However, a mechanistic explanation of this correlation is lacking. Here, we examined the role of calciprotein particles (CPPs), nanoscale bodies forming in the human blood upon its supersaturation with calcium and phosphate, in cardiovascular disease. The serum of patients with coronary artery disease or cerebrovascular disease displayed an increased propensity to form CPPs in combination with elevated ionised calcium as well as reduced albumin levels, altogether indicative of reduced Ca2+-binding capacity. Intravenous administration of CPPs to normolipidemic and normotensive Wistar rats provoked intimal hyperplasia and adventitial/perivascular inflammation in both balloon-injured and intact aortas in the absence of other cardiovascular risk factors. Upon the addition to primary human arterial endothelial cells, CPPs induced lysosome-dependent cell death, promoted the release of pro-inflammatory cytokines, stimulated leukocyte adhesion, and triggered endothelial-to-mesenchymal transition. We concluded that CPPs, which are formed in the blood as a result of altered mineral homeostasis, cause endothelial dysfunction and vascular inflammation, thereby contributing to the development of cardiovascular disease.
Collapse
Affiliation(s)
- Daria K. Shishkova
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Elena A. Velikanova
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Leo A. Bogdanov
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Maxim Yu. Sinitsky
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Alexander E. Kostyunin
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Anna V. Tsepokina
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Olga V. Gruzdeva
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Andrey V. Mironov
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Rinat A. Mukhamadiyarov
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Tatiana V. Glushkova
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Evgenia O. Krivkina
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Vera G. Matveeva
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Oksana N. Hryachkova
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Victoria E. Markova
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Yulia A. Dyleva
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Ekaterina V. Belik
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Alexey V. Frolov
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Amin R. Shabaev
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Olga S. Efimova
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences, 18 Sovetskiy Avenue, 650000 Kemerovo, Russia; (O.S.E.); (A.N.P.); (V.Y.M.); (R.P.K.); (Z.R.I.)
| | - Anna N. Popova
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences, 18 Sovetskiy Avenue, 650000 Kemerovo, Russia; (O.S.E.); (A.N.P.); (V.Y.M.); (R.P.K.); (Z.R.I.)
| | - Valentina Yu. Malysheva
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences, 18 Sovetskiy Avenue, 650000 Kemerovo, Russia; (O.S.E.); (A.N.P.); (V.Y.M.); (R.P.K.); (Z.R.I.)
| | - Roman P. Kolmykov
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences, 18 Sovetskiy Avenue, 650000 Kemerovo, Russia; (O.S.E.); (A.N.P.); (V.Y.M.); (R.P.K.); (Z.R.I.)
| | - Oleg G. Sevostyanov
- Institute of Fundamental Sciences, Kemerovo State University, 6 Krasnaya Street, 650000 Kemerovo, Russia; (O.G.S.); (D.M.R.); (V.F.D.)
| | - Dmitriy M. Russakov
- Institute of Fundamental Sciences, Kemerovo State University, 6 Krasnaya Street, 650000 Kemerovo, Russia; (O.G.S.); (D.M.R.); (V.F.D.)
| | - Viatcheslav F. Dolganyuk
- Institute of Fundamental Sciences, Kemerovo State University, 6 Krasnaya Street, 650000 Kemerovo, Russia; (O.G.S.); (D.M.R.); (V.F.D.)
| | - Anton K. Gutakovsky
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, 13 Akademika Lavrentieva Avenue, 630090 Novosibirsk, Russia; (A.K.G.); (Y.A.Z.); (A.S.K.)
| | - Yuriy A. Zhivodkov
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, 13 Akademika Lavrentieva Avenue, 630090 Novosibirsk, Russia; (A.K.G.); (Y.A.Z.); (A.S.K.)
| | - Anton S. Kozhukhov
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, 13 Akademika Lavrentieva Avenue, 630090 Novosibirsk, Russia; (A.K.G.); (Y.A.Z.); (A.S.K.)
| | - Elena B. Brusina
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Zinfer R. Ismagilov
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences, 18 Sovetskiy Avenue, 650000 Kemerovo, Russia; (O.S.E.); (A.N.P.); (V.Y.M.); (R.P.K.); (Z.R.I.)
| | - Olga L. Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Arseniy E. Yuzhalin
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Anton G. Kutikhin
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
- Correspondence: ; Tel.: +7-960-907-7067
| |
Collapse
|
9
|
Tiong MK, Smith ER, Toussaint ND, Al-Khayyat HF, Holt SG. Reduction of Calciprotein Particles in Adults Receiving Infliximab for Chronic Inflammatory Disease. JBMR Plus 2021; 5:e10497. [PMID: 34189386 PMCID: PMC8216135 DOI: 10.1002/jbm4.10497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/22/2021] [Indexed: 01/13/2023] Open
Abstract
Patients with chronic inflammatory diseases (CID) experience accelerated loss of bone mineral density, which is often accompanied by increased vascular calcification. These disturbances can be attenuated by therapies for inflammation, such as the tumor necrosis factor inhibitor infliximab. Calciprotein particles (CPP) are circulating colloidal aggregates of calcium and phosphate together with the mineral-binding protein fetuin-A, which have emerged as potential mediators of vascular calcification. The precise origins of serum CPP are unclear, but bone turnover may be an important source. In this longitudinal observational study, we studied patients with CID undergoing treatment with infliximab to assess the temporal relationship between bone turnover and circulating CPP. Ten patients with active CID receiving infliximab induction therapy and an additional 3 patients with quiescent CID on maintenance infliximab therapy were studied for 8 weeks with repeated measures of bone turnover markers as well as CPP (calciprotein monomers [CPM], primary CPP [CPP-I], and secondary CPP [CPP-II]). Therapeutic response was appraised using validated disease activity scores. At baseline, those with active CID had elevated markers of bone resorption and suppressed bone formation markers as well as higher CPM and CPP-I compared with those with quiescent CID. In responders, there was an early but transient reduction in resorption markers by week 1, but a more sustained increase in bone formation markers compared with non-responders at week 8. This was accompanied by reductions in CPM (β = -6.5 × 103 AU [95% CI -11.1, -1.8], p = 0.006) and CPP-I (β = -23.4 × 104 particles/mL [95% CI -34.8, -11.9], p < 0.001). In contrast, no significant changes in any markers were observed in non-responders or those receiving maintenance therapy. Thus, CPP have a dynamic association with changes in bone turnover in response to infliximab therapy, adding to accumulating evidence of the role of bone as a determinant of systemic levels. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mark K Tiong
- Department of Nephrology The Royal Melbourne Hospital Parkville Australia.,Department of Medicine (RMH) University of Melbourne Parkville Australia
| | - Edward R Smith
- Department of Nephrology The Royal Melbourne Hospital Parkville Australia.,Department of Medicine (RMH) University of Melbourne Parkville Australia
| | - Nigel D Toussaint
- Department of Nephrology The Royal Melbourne Hospital Parkville Australia.,Department of Medicine (RMH) University of Melbourne Parkville Australia
| | - Hasan F Al-Khayyat
- Department of Nephrology The Royal Melbourne Hospital Parkville Australia
| | - Stephen G Holt
- Department of Nephrology The Royal Melbourne Hospital Parkville Australia.,Department of Medicine (RMH) University of Melbourne Parkville Australia.,SEHA Kidney Care Abu Dhabi Health Services Company Abu Dhabi United Arab Emirates.,Khalifa University Abu Dhabi United Arab Emirates
| |
Collapse
|
10
|
Kutikhin AG, Feenstra L, Kostyunin AE, Yuzhalin AE, Hillebrands JL, Krenning G. Calciprotein Particles: Balancing Mineral Homeostasis and Vascular Pathology. Arterioscler Thromb Vasc Biol 2021; 41:1607-1624. [PMID: 33691479 PMCID: PMC8057528 DOI: 10.1161/atvbaha.120.315697] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Anton G. Kutikhin
- Laboratory for Vascular Biology, Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., A.E.K., A.E.Y.)
| | - Lian Feenstra
- Department of Pathology and Medical Biology, Division of Pathology (L.F., J.-L.H.), University Medical Center Groningen, University of Groningen, the Netherlands
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology (L.F., G.K.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Alexander E. Kostyunin
- Laboratory for Vascular Biology, Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., A.E.K., A.E.Y.)
| | - Arseniy E. Yuzhalin
- Laboratory for Vascular Biology, Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., A.E.K., A.E.Y.)
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology (L.F., J.-L.H.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology (L.F., G.K.), University Medical Center Groningen, University of Groningen, the Netherlands
- Sulfateq B.V., Admiraal de Ruyterlaan 5, 9726 GN, Groningen, the Netherlands (G.K.)
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Calciprotein particles (CPP) are formed in supersaturated solutions of calcium, phosphate and the mineral-binding protein fetuin-A. CPP have garnered considerable interest as potential mediators of mineral stress, but little consideration has been given to their origin, clearance and role in metabolism. RECENT FINDINGS CPP are made whilst buffering the mineral absorbed from the intestine after a meal or during remodelling of bone matrix. The postprandial rise in circulating CPP rise may be sensed by osteoblasts/osteocytes in bone, stimulating the secretion of the master phosphatonin fibroblast growth factor 23. Amorphous calcium phosphate-containing CPP are rapidly cleared by endothelial cells in the liver whereas crystalline apatite-containing CPP are filtered by phagocytic cells of the reticuloendothelial system. Impaired excretory function in kidney disease may lead to accumulation of CPP and its precursors with possible pathological sequalae. Inability to stabilize CPP in fetuin-A-deficiency states can result in intraluminal precipitation and inflammatory cascades if other mineralisation regulatory networks are compromised. SUMMARY CPP allow efficient transport and clearance of bulk calcium phosphate as colloids without risk of precipitation. As circulating factors, CPP may couple dietary mineral exposure with endocrine control of mineral metabolism in bone, signalling the need to dispose of excess phosphate from the body.
Collapse
|
12
|
Jahnen-Dechent W, Büscher A, Köppert S, Heiss A, Kuro-O M, Smith ER. Mud in the blood: the role of protein-mineral complexes and extracellular vesicles in biomineralisation and calcification. J Struct Biol 2020; 212:107577. [PMID: 32711043 DOI: 10.1016/j.jsb.2020.107577] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022]
Abstract
Protein-mineral interaction is known to regulate biomineral stability and morphology. We hypothesise that fluid phases produce highly dynamic protein-mineral complexes involved in physiology and pathology of biomineralisation. Here, we specifically focus on calciprotein particles, complexes of vertebrate mineral-binding proteins and calcium phosphate present in the systemic circulation and abundant in extracellular fluids - hence the designation of the ensuing protein-mineral complexes as "mud in the blood". These complexes exist amongst other extracellular particles that we collectively refer to as "the particle zoo".
Collapse
Affiliation(s)
- Willi Jahnen-Dechent
- Helmholtz-Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany.
| | - Andrea Büscher
- Helmholtz-Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| | - Sina Köppert
- Helmholtz-Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| | - Alexander Heiss
- The Research Institute for Precious Metals and Metals Chemistry (fem), Schwaebisch Gmuend, Germany
| | - Makoto Kuro-O
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne, Parkville, Australia
| |
Collapse
|
13
|
Effect of Sevelamer on Calciprotein Particles in Hemodialysis Patients: The Sevelamer Versus Calcium to Reduce Fetuin-A-Containing Calciprotein Particles in Dialysis (SCaRF) Randomized Controlled Trial. Kidney Int Rep 2020; 5:1432-1447. [PMID: 32954068 PMCID: PMC7486191 DOI: 10.1016/j.ekir.2020.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 01/03/2023] Open
Abstract
Introduction Calciprotein particles (CPPs) are potentially modifiable mediators of phosphate toxicity in patients with kidney disease. We compared the effects of calcium carbonate (CC) and the non–calcium-based phosphate binder sevelamer on CPP levels in patients undergoing hemodialysis (HD). We hypothesized that treatment with sevelamer would achieve greater reductions in amorphous calcium phosphate–containing CPP (CPP-1) and hydroxyapatite-containing CPP (CPP-2) owing to reduced calcium loading and anti-inflammatory pleiotropic effects. Methods We conducted an open-label, randomized controlled trial (RCT) in which 31 stable prevalent HD patients were allocated to receive either sevelamer hydrochloride (SH), sevelamer carbonate (SC), or CC for 24 weeks. Dual primary endpoints were the between groups differences in serum CPP-1 and CPP-2 levels at 24 weeks in SH + SC–treated versus CC-treated patients. Effects on aortic pulse wave velocity (aPWV), inflammatory cytokines (interleukin-6 and -8), and effects across individual treatment arms were also assessed. Results Serum CPP-1, but not CPP-2, levels were lower in those randomly assigned to the sevelamer (SH + SC) group compared with the CC group at 24 weeks (–70%, 95% confidence interval [CI] –90% to –15%, P = 0.02). In subgroup analysis, this effect was confined to those receiving SC (–83.4%, 95% CI –95.7% to –36.8%, P = 0.01). aPWV and interleukin-8 levels were also lower in those who received sevelamer compared with CC at 24 weeks (–2.0 m/s, 95% CI –2.9 to –1.1; –57%, 95% CI –73% to –30%, respectively, both P = 0.01). Conventional markers of mineral metabolism remained stable across all treatment groups. Discussion Compared with treatment with CC, use of sevelamer for 24 weeks was associated with lower serum CPP-1 levels and a reduction in aPWV and systemic inflammation.
Collapse
|
14
|
Calciprotein Particles and Serum Calcification Propensity: Hallmarks of Vascular Calcifications in Patients with Chronic Kidney Disease. J Clin Med 2020; 9:jcm9051287. [PMID: 32365608 PMCID: PMC7288330 DOI: 10.3390/jcm9051287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular complications are one of the leading causes of mortality worldwide and are strongly associated with atherosclerosis and vascular calcification (VC). Patients with chronic kidney disease (CKD) have a higher prevalence of VC as renal function declines, which will result in increased mortality. Serum calciprotein particles (CPPs) are colloidal nanoparticles that have a prominent role in the initiation and progression of VC. The T50 test is a novel test that measures the conversion of primary to secondary calciprotein particles indicating the tendency of serum to calcify. Therefore, we accomplished a comprehensive review as the first integrated approach to clarify fundamental aspects that influence serum CPP levels and T50, and to explore the effects of CPP and calcification propensity on various chronic disease outcomes. In addition, new topics were raised regarding possible clinical uses of T50 in the assessment of VC, particularly in patients with CKD, including possible opportunities in VC management. The relationships between serum calcification propensity and cardiovascular and all-cause mortality were also addressed. The review is the outcome of a comprehensive search on available literature and could open new directions to control VC.
Collapse
|