1
|
Pérez-Segovia A, Cojuc-Konigsberg G, Reul-Linares E, Hernández-Paredes EN, Chapa-Ibargüengoitia M, Ramírez-Sandoval JC. Kidney growth progression patterns in autosomal dominant polycystic kidney disease. Arch Med Res 2024; 56:103099. [PMID: 39393160 DOI: 10.1016/j.arcmed.2024.103099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/13/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Prognosis for autosomal dominant polycystic kidney disease (ADPKD), the main inherited cause of kidney failure, relies on estimating cystic growth using linear formulas derived from height-adjusted total kidney volume (Ht-TKV). However, nonlinear renal growth patterns may occur in typical ADPKD. AIMS To determine kidney outcomes of subjects diagnosed with typical ADPKD exhibiting nonlinear, and unpredictable cystic growth during follow-up. METHODS Retrospective cohort study. We categorized TKV changes in individuals with typical ADPKD according to observed kidney growth trajectories. Ht-TKV was calculated from consecutive CT or MRI using the ellipsoid method. We compared estimated glomerular filtration rate (eGFR) trajectories with linear mixed models. RESULTS We included 83 individuals with ADPKD (67% women; age 47 ± 12 years; follow-up 5.2 years [IQR 2.8-9.0]). Three kidney growth patterns were observed: slow progression (24%, <3%/year linear increase), fast progression (39%, ≥3%/year linear increase), and atypical progression (37%, nonlinear growth). Adjusted ht-TKV change in mL/m/year was +1.4 (IQR -4.5 to +10.0), +40.3 (+16.9 to +89.3), and +32.8 (+15.9 to +85.9) for slow, fast, and atypical progressors, respectively (p < 0.001). Atypical progressors exhibited a significantly greater decline in eGFR in mL/min/m²/year (-7.9, 95% CI -6.5, -3.9) compared to slow (-0.5, 95% CI -3.1 to +0.5) and fast progressors (-3.4, 95% CI -7.9, -2.0; between-group p < 0.001). Atypical progressors had a higher proportion of acute complications, including hemorrhages, infections, and urolithiasis (84%), compared to slow (20%) and fast progressors (31%) (p < 0.001). CONCLUSION In typical ADPKD, nonlinear, abrupt, and unpredictable cyst growth occurs frequently, leading to a higher risk of acute complications and kidney function decline.
Collapse
Affiliation(s)
- Aaron Pérez-Segovia
- Department of Radiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Gabriel Cojuc-Konigsberg
- Departament of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Estefania Reul-Linares
- Departament of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Elisa Naomi Hernández-Paredes
- Departament of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Mónica Chapa-Ibargüengoitia
- Department of Radiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Juan C Ramírez-Sandoval
- Department of Radiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
2
|
Nakatani S, Kawano H, Sato M, Hoshino J, Nishio S, Miura K, Sekine A, Suwabe T, Hidaka S, Kataoka H, Ishikawa E, Shimazu K, Uchiyama K, Fujimaru T, Moriyama T, Kurashige M, Shimabukuro W, Hattanda F, Kimura T, Ushio Y, Manabe S, Watanabe H, Mitobe M, Seta K, Shimada Y, Kai H, Katayama K, Ichikawa D, Hayashi H, Hanaoka K, Mochizuki T, Nakanishi K, Tsuchiya K, Horie S, Isaka Y, Muto S. Protocol for the nationwide registry of patients with polycystic kidney disease: japanese national registry of PKD (JRP). Clin Exp Nephrol 2024; 28:1004-1015. [PMID: 38734869 DOI: 10.1007/s10157-024-02509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD) are major genetic polycystic kidney diseases that can progress to end-stage kidney disease (ESKD). Longitudinal data on the clinical characteristics associated with clinical outcomes in polycystic kidney disease (PKD), including the development of ESKD and cardiovascular disease (CVD) are lacking in Japan. To address this unmet need the authors are establishing a novel, web-based, Nationwide Cohort Registry Study-the Japanese Registry of PKD (JRP). METHODS The JRP is a prospective cohort study for ADPKD (aim to recruit n = 1000 patients), and both a retrospective and prospective study for ARPKD (aim to recruit n = 100). In the prospective registry, patients will be followed-up for 10 years every 6 months and 12 months for patients with ADPKD and ARPKD, respectively. Data collection will be recorded on Research Electronic Data Capture (REDCap) starting on April 1, 2024, with recruitment ending on March 31, 2029. (jRCT 1030230618). RESULTS Data to be collected include: baseline data, demographics, diagnostic and genetic information, radiological and laboratory findings, and therapeutic interventions. During follow-up, clinical events such as development of ESKD, hospitalization, occurrence of extra kidney complications including CVD events, and death will be recorded, as well as patient-reported health-related quality of life for patients with ADPKD. CONCLUSIONS The JRP is the first nationwide registry study for patients with ADPKD and ARPKD in Japan, providing researchers with opportunities to advance knowledge and treatments for ADPKD and ARPKD, and to inform disease management and future clinical practice.
Collapse
Affiliation(s)
- Shinya Nakatani
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Haruna Kawano
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Advanced Informatics for Genetic Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mai Sato
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, Tokyo, Japan
| | - Junichi Hoshino
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Saori Nishio
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kenichiro Miura
- Department of Pediatric Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | | | | | - Sumi Hidaka
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kanagawa, Japan
| | - Hiroshi Kataoka
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Eiji Ishikawa
- Department of Nephrology, Saiseikai Matsusaka General Hospital, Mie, Japan
| | - Keiji Shimazu
- Department of Nephrology, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Kiyotaka Uchiyama
- Department of Nephrology, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Takuya Fujimaru
- Department of Nephrology, St. Luke's International Hospital, Tokyo, Japan
| | - Tomofumi Moriyama
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Mahiro Kurashige
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Wataru Shimabukuro
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Fumihiko Hattanda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoki Kimura
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yusuke Ushio
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Shun Manabe
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hirofumi Watanabe
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Michihiro Mitobe
- Department of Nephrology, Takeda General Hospital, Fukushima, Japan
| | - Koichi Seta
- Department of Nephrology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yosuke Shimada
- Intelligent Systems Laboratory, SECOM CO., LTD, Mitaka, Tokyo, Japan
- Infection Control Science, Juntendo University Graduate School, Bunkyo, Tokyo, Japan
| | - Hirayasu Kai
- Ibaraki Clinical Education and Training Center, Institute of Medicine, University of Tsukuba Ibaraki, Tsukuba, Japan
| | - Kan Katayama
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Daisuke Ichikawa
- Department of Nephrology and Hypertension, St Marianna University School of Medicine, Kanagawa, Japan
| | - Hiroki Hayashi
- Department of Nephrology, Fujita Health University School of Medicine, Aichi, Japan
| | - Kazushige Hanaoka
- Department of General Internal Medicine, School of Medicine, Daisan Hospital The Jikei University, Tokyo, Japan
| | | | - Koichi Nakanishi
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Ken Tsuchiya
- Department of Blood Purification, Tokyo Women's Medical University, Tokyo, Japan
| | - Shigeo Horie
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoru Muto
- Department of Urology, Juntendo University Nerima Hospital, 3-1-10, Takanodai, Nerima-ku, Tokyo, 177-8521, Japan.
| |
Collapse
|
3
|
Nishimoto IH, Santos AG, Bianchini JM, Santos LGB, Martini MCR, Silva VDS, Martin LC. Predictors of autosomal dominant polycystic kidney disease progression: a Brazilian single-center cohort. J Bras Nefrol 2024; 46:e20230040. [PMID: 38935976 PMCID: PMC11210993 DOI: 10.1590/2175-8239-jbn-2023-0040en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/24/2024] [Indexed: 06/29/2024] Open
Abstract
INTRODUCTION Identifying risk factors for autosomal dominant polycystic kidney disease (ADPKD) progression is important. However, studies that have evaluated this subject using a Brazilian sample is sparce. Therefore, the aim of this study was to identify risk factors for renal outcomes and death in a Brazilian cohort of ADPKD patients. METHODS Patients had the first medical appointment between January 2002 and December 2014, and were followed up until December 2019. Associations between clinical and laboratory variables with the primary outcome (sustained decrease of at least 57% in the eGFR from baseline, need for dialysis or renal transplantation) and the secondary outcome (death from any cause) were analyzed using a multiple Cox regression model. Among 80 ADPKD patients, those under 18 years, with glomerular filtration rate <30 mL/min/1.73 m2, and/or those with missing data were excluded. There were 70 patients followed. RESULTS The factors independently associated with the renal outcomes were total kidney length - adjusted Hazard Ratio (HR) with a 95% confidence interval (95% CI): 1.137 (1.057-1.224), glomerular filtration rate - HR (95% CI): 0.970 (0.949-0.992), and serum uric acid level - HR (95% CI): 1.643 (1.118-2.415). Diabetes mellitus - HR (95% CI): 8.115 (1.985-33.180) and glomerular filtration rate - HR (95% CI): 0.957 (0.919-0.997) were associated with the secondary outcome. CONCLUSIONS These findings corroborate the hypothesis that total kidney length, glomerular filtration rate and serum uric acid level may be important prognostic predictors of ADPKD in a Brazilian cohort, which could help to select patients who require closer follow up.
Collapse
Affiliation(s)
- Igor Hitoshi Nishimoto
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Escola de
Medicina, Botucatu, SP, Brazil
| | - Andrey Gonçalves Santos
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Escola de
Medicina, Botucatu, SP, Brazil
| | | | | | | | - Vanessa dos Santos Silva
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Escola de
Medicina, Departamento de Medicina Interna, Botucatu, SP, Brazil
| | - Luis Cuadrado Martin
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Escola de
Medicina, Departamento de Medicina Interna, Botucatu, SP, Brazil
| |
Collapse
|
4
|
Morioka F, Nakatani S, Uedono H, Tsuda A, Mori K, Emoto M. Short-Term Dapagliflozin Administration in Autosomal Dominant Polycystic Kidney Disease-A Retrospective Single-Arm Case Series Study. J Clin Med 2023; 12:6341. [PMID: 37834985 PMCID: PMC10573882 DOI: 10.3390/jcm12196341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/01/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Treatment with sodium-glucose cotransporter-2 (SGLT2) inhibitors may have pleiotropic and beneficial effects in terms of ameliorating of risk factors for the progression of autosomal dominant polycystic kidney disease (ADPKD). However, there is insufficient evidence regarding the use of these drugs in patients with ADPKD, as they were excluded from several clinical trials conducted to explore kidney protection provided by SGLT2 inhibitors. This retrospective single-arm case series study was performed to investigate the effects of dapagliflozin, a selective SGLT2 inhibitor administered at 10 mg/day, on changes in height-adjusted kidney volume (htTKV) and estimated glomerular filtration rate (eGFR) in ADPKD patients. During a period of 102 ± 20 days (range 70-156 days), eGFR was decreased from 47.9 (39.7-56.9) to 40.8 (33.7-44.5) mL/min/1.73 m2 (p < 0.001), while htTKV was increased from 599 (423-707) to 617 (446-827) mL/m (p = 0.002) (n = 20). The annual increase in htTKV rate was significantly promoted, and urinary phosphate change was found to be correlated with the change in htTKV (rs = 0.575, p = 0.020). In the examined patients, eGFR was decreased and htTKV increased during short-term administration of dapagliflozin. To confirm the possibility of the effects of dapagliflozin on ADPKD, additional interventional studies are required.
Collapse
Affiliation(s)
- Fumiyuki Morioka
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (F.M.); (H.U.); (A.T.); (M.E.)
| | - Shinya Nakatani
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (F.M.); (H.U.); (A.T.); (M.E.)
| | - Hideki Uedono
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (F.M.); (H.U.); (A.T.); (M.E.)
| | - Akihiro Tsuda
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (F.M.); (H.U.); (A.T.); (M.E.)
| | - Katsuhito Mori
- Department of Nephrology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan;
| | - Masanori Emoto
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (F.M.); (H.U.); (A.T.); (M.E.)
- Department of Nephrology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan;
| |
Collapse
|
5
|
Kimura T, Kawano H, Muto S, Muramoto N, Takano T, Lu Y, Eguchi H, Wada H, Okazaki Y, Ide H, Horie S. PKD1 Mutation Is a Biomarker for Autosomal Dominant Polycystic Kidney Disease. Biomolecules 2023; 13:1020. [PMID: 37509056 PMCID: PMC10377076 DOI: 10.3390/biom13071020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) occurs in 1 in 500-4000 people worldwide. Genetic mutation is a biomarker for predicting renal dysfunction in patients with ADPKD. In this study, we performed a genetic analysis of Japanese patients with ADPKD to investigate the prognostic utility of genetic mutations in predicting renal function outcomes. METHODS Patients clinically diagnosed with ADPKD underwent a panel genetic test for germline mutations in PKD1 and PKD2. This study was conducted with the approval of the Ethics Committee of Juntendo University (no. 2019107). RESULTS Of 436 patients, 366 (83.9%) had genetic mutations. Notably, patients with PKD1 mutation had a significantly decreased ΔeGFR/year compared to patients with PKD2 mutation, indicating a progression of renal dysfunction (-3.50 vs. -2.04 mL/min/1.73 m2/year, p = 0.066). Furthermore, PKD1 truncated mutations had a significantly decreased ΔeGFR/year compared to PKD1 non-truncated mutations in the population aged over 65 years (-6.56 vs. -2.16 mL/min/1.73 m2/year, p = 0.049). Multivariate analysis showed that PKD1 mutation was a more significant risk factor than PKD2 mutation (odds ratio, 1.81; 95% confidence interval, 1.11-3.16; p = 0.020). CONCLUSIONS The analysis of germline mutations can predict renal prognosis in Japanese patients with ADPKD, and PKD1 mutation is a biomarker of ADPKD.
Collapse
Affiliation(s)
- Tomoki Kimura
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - Haruna Kawano
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
- Department of Advanced Informatics for Genetic Diseases, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - Satoru Muto
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
- Department of Advanced Informatics for Genetic Diseases, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
- Department of Urology, Juntendo University Nerima Hospital, Tokyo 177-8521, Japan
| | - Nobuhito Muramoto
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
- Human Disease Models, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Toshiaki Takano
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - Yan Lu
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - Hidetaka Eguchi
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - Hiroo Wada
- Department of Public Health, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - Hisamitsu Ide
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
- Department of Digital Therapeutics, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - Shigeo Horie
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
- Department of Advanced Informatics for Genetic Diseases, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
- Department of Digital Therapeutics, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| |
Collapse
|
6
|
Bais T, Gansevoort RT, Meijer E. Drugs in Clinical Development to Treat Autosomal Dominant Polycystic Kidney Disease. Drugs 2022; 82:1095-1115. [PMID: 35852784 PMCID: PMC9329410 DOI: 10.1007/s40265-022-01745-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 12/16/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by progressive cyst formation that ultimately leads to kidney failure in most patients. Approximately 10% of patients who receive kidney replacement therapy suffer from ADPKD. To date, a vasopressin V2 receptor antagonist (V2RA) is the only drug that has been proven to attenuate disease progression. However, aquaresis-related adverse events limit its widespread use. Data on the renoprotective effects of somatostatin analogues differ largely between studies and medications. This review discusses new drugs that are investigated in clinical trials to treat ADPKD, such as cystic fibrosis transmembrane conductance regulator (CFTR) modulators and micro RNA inhibitors, and drugs already marketed for other indications that are being investigated for off-label use in ADPKD, such as metformin. In addition, potential methods to improve the tolerability of V2RAs are discussed, as well as methods to select patients with (likely) rapid disease progression and issues regarding the translation of preclinical data into clinical practice. Since ADPKD is a complex disease with a high degree of interindividual heterogeneity, and the mechanisms involved in cyst growth also have important functions in various physiological processes, it may prove difficult to develop drugs that target cyst growth without causing major adverse events. This is especially important since long-standing treatment is necessary in this chronic disease. This review therefore also discusses approaches to targeted therapy to minimize systemic side effects. Hopefully, these developments will advance the treatment of ADPKD.
Collapse
|
7
|
Park HC, Hong Y, Yeon JH, Ryu H, Kim YC, Lee J, Kim YH, Chae DW, Chung W, Ahn C, Oh KH, Oh YK. Mayo imaging classification is a good predictor of rapid progress among Korean patients with autosomal dominant polycystic kidney disease: results from the KNOW-CKD study. Kidney Res Clin Pract 2022; 41:432-441. [PMID: 35286789 PMCID: PMC9346394 DOI: 10.23876/j.krcp.21.261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022] Open
Abstract
Background Mayo imaging classification (MIC) is a useful biomarker to predict disease progression in autosomal dominant polycystic kidney disease (ADPKD). This study was performed to validate MIC in the prediction of renal outcome in a prospective Korean ADPKD cohort and evaluate clinical parameters associated with rapid disease progression. Methods A total of 178 ADPKD patients were enrolled and prospectively observed for an average duration of 6.2 ± 1.9 years. Rapid progressor was defined as MIC 1C through 1E while slow progressor was defined as 1A through 1B. Renal composite outcome (doubling of serum creatinine, 50% decline of estimated glomerular filtration rate [eGFR], or initiation of renal replacement therapy) as well as the annual percent change of height-adjusted total kidney volume (mHTKV-α) and eGFR decline (mGFR-α) were compared between groups. Results A total of 110 patients (61.8%) were classified as rapid progressors. These patients were younger and showed a higher proportion of male patients. Rapid progressor was an independent predictor for renal outcome (hazard ratio, 4.09; 95% confidence interval, 1.23–13.54; p = 0.02). The mGFR-α was greater in rapid progressors (–3.58 mL/min per year in 1C, –3.7 in 1D, and –4.52 in 1E) compared with that in slow progressors (–1.54 in 1A and –2.06 in 1B). The mHTKV-α was faster in rapid progressors (5.3% per year in 1C, 9.4% in 1D, and 11.7% in 1E) compared with that in slow progressors (1.2% in 1A and 3.8% in 1B). Conclusion MIC is a good predictive tool to define rapid progressors in Korean ADPKD patients.
Collapse
Affiliation(s)
- Hayne Cho Park
- Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
- Kidney Research Institute, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Yeji Hong
- Rehabilitation Medical Research Center, Korea Workers’ Compensation and Welfare Service Incheon Hospital, Incheon, Republic of Korea
| | - Jeong-Heum Yeon
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyunjin Ryu
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yong-Chul Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Joongyub Lee
- Department of Prevention and Management, Inha University School of Medicine, Incheon, Republic of Korea
| | - Yeong Hoon Kim
- Department of Internal Medicine, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Dong-Wan Chae
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - WooKyung Chung
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Curie Ahn
- Department of Internal Medicine, National Medical Center, Seoul, Republic of Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yun Kyu Oh
- Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
- Correspondence: Yun Kyu Oh Department of Internal Medicine, SMG-SNU Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul 07061, Republic of Korea. E-mail:
| |
Collapse
|
8
|
Abstract
Introduction Valid prediction models or predictors of disease progression in children and young patients with autosomal dominant polycystic kidney disease (ADPKD) are lacking. Although total kidney volume (TKV) and Mayo imaging classification are generally used to predict disease progression in patients with ADPKD, it remains unclear whether germline mutation types are associated with these factors. We therefore investigated the association between mutation type and TKV and Mayo imaging classification among patients with ADPKD. Methods A total of 129 patients with ADPKD who underwent genetic analyses were enrolled in the study. The associations between the severity of PKD (TKV ≥ 1000 ml and Mayo classes 1C–1E) and the PKD1 mutation types (nonsense mutation, frameshift or splicing mutation, and substitution) were evaluated. Results Among the mutation types, only PKD1 splicing/frameshift mutation had significant associations with TKV ≥ 1000 ml in sex-adjusted and multivariable logistic analyses. Similarly, only the PKD1 splicing/frameshift mutation was significantly associated with Mayo 1C–1E in sex-adjusted and multivariable logistic analyses. PKD1 nonsense mutation, PKD1 substitution, or PKD1 mutation position had no significant association with TKV ≥ 1000 ml or Mayo 1C–1E. Conclusion Kidney cyst severity differs according to the mutation types in PKD1. Patients with PKD1 splicing mutations or PKD1 frameshift mutations are associated with TKV ≥ 1000 ml or Mayo 1C–1E. Detailed assessment of mutation types may be useful for predicting renal prognosis in patients with ADPKD and may especially contribute to the care of a high-risk group of children with ADPKD.
Collapse
|