1
|
Galindo-Torres P, Rosas C, Ramos-Rodríguez S, Galindo-Sánchez CE. Chronic thermal stress on Octopus maya embryos down-regulates epigenome-related genes and those involved in the nervous system development and morphogenesis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101332. [PMID: 39366120 DOI: 10.1016/j.cbd.2024.101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/06/2024]
Abstract
Red Octopus maya is strongly influenced by temperature. Recent studies have reported negative reproduction effects on males and females when exposed to temperatures higher than 27 °C. Embryos under thermal stress show morphological and physiological alterations; similar phenotypes have been reported in embryos from stressed females, evidencing transgenerational consequences. Transcriptomic profiles were characterized along embryo development during normal-under thermal stress and epigenetic alterations through DNA methylation and damage quantification. Total RNA in organogenesis, activation, and growth stages in control and thermal stress were sequenced with Illumina RNA-Seq. Similarly, total DNA was used for DNA methylation and damage quantification between temperatures and embryo stages. Differential gene expression analyses showed that embryos express genes associated with oxygen transport, morphogenesis, nervous system, neuroendocrine cell differentiation, spermatogenesis, and male sex differentiation. Conversely, embryos turn off genes involved mainly in nervous system development, morphogenesis, and gene expression regulation when exposed to thermal stress - consistent with O. maya embryo phenotypes showing abnormal arms, eyes, and body development. No significant differences were observed in quantifying DNA methylation between temperatures but they were for DNA damage quantification. Epigenetic alterations are hypothesized to occur since several genes found downregulated belong to the epigenetic machinery but at histone tail level.
Collapse
Affiliation(s)
- Pavel Galindo-Torres
- Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Carretera Tijuana-Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, Mexico.
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigacion (UMDI), Facultad de Ciencias, Universidad Nacional Autonoma de Mexico (UNAM), Puerto DE Abrigo s/n, Sisal, Hunucma, Yucatan CP97355, Mexico.
| | - Sadot Ramos-Rodríguez
- Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Carretera Tijuana-Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, Mexico.
| | - Clara E Galindo-Sánchez
- Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Carretera Tijuana-Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, Mexico.
| |
Collapse
|
2
|
Roggenbuck EC, Hall EA, Hanson IB, Roby AA, Zhang KK, Alkatib KA, Carter JA, Clewner JE, Gelfius AL, Gong S, Gordon FR, Iseler JN, Kotapati S, Li M, Maysun A, McCormick EO, Rastogi G, Sengupta S, Uzoma CU, Wolkov MA, Clowney EJ. Let's talk about sex: Mechanisms of neural sexual differentiation in Bilateria. WIREs Mech Dis 2024; 16:e1636. [PMID: 38185860 DOI: 10.1002/wsbm.1636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024]
Abstract
In multicellular organisms, sexed gonads have evolved that facilitate release of sperm versus eggs, and bilaterian animals purposefully combine their gametes via mating behaviors. Distinct neural circuits have evolved that control these physically different mating events for animals producing eggs from ovaries versus sperm from testis. In this review, we will describe the developmental mechanisms that sexually differentiate neural circuits across three major clades of bilaterian animals-Ecdysozoa, Deuterosomia, and Lophotrochozoa. While many of the mechanisms inducing somatic and neuronal sex differentiation across these diverse organisms are clade-specific rather than evolutionarily conserved, we develop a common framework for considering the developmental logic of these events and the types of neuronal differences that produce sex-differentiated behaviors. This article is categorized under: Congenital Diseases > Stem Cells and Development Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Emma C Roggenbuck
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elijah A Hall
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Isabel B Hanson
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Alyssa A Roby
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine K Zhang
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Kyle A Alkatib
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph A Carter
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jarred E Clewner
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Anna L Gelfius
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Shiyuan Gong
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Finley R Gordon
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jolene N Iseler
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Samhita Kotapati
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Marilyn Li
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Areeba Maysun
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elise O McCormick
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Geetanjali Rastogi
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Srijani Sengupta
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Chantal U Uzoma
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Madison A Wolkov
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Morishita F, Horiguchi T, Akuta H, Ueki T, Imamura T. Concomitant downregulation of neuropeptide genes in a marine snail with consecutive sexual maturation after a nuclear disaster in Japan. Front Endocrinol (Lausanne) 2023; 14:1129666. [PMID: 36967776 PMCID: PMC10036341 DOI: 10.3389/fendo.2023.1129666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 03/12/2023] Open
Abstract
Consecutive sexual maturation (CSM), an abnormal reproductive phenomenon of a marine snail, Reishia clavigera, has occurred since 2017 in the vicinity of the Fukushima Daiichi Nuclear Power Plant after the nuclear disaster there. We hypothesized that alterations in animal physiology mediated through genetic/epigenetic changes could sensitively reflect environmental pollution. Understanding the mechanism of this rapid biological response should enable us to quantitatively evaluate long-lasting effects of the nuclear disaster. To determine the molecular basis for CSM, we conducted transcriptome profiling in the ganglia of normal and CSM snails. We assembled the short-read cDNA sequences obtained by Illumina sequencing, and succeeded in characterizing more than 60,000 gene models that include 88 kinds of neuropeptide precursors by BLAST search and experimental curation. GO-enrichment analysis of the differentially expressed genes demonstrated that severe downregulation of neuropeptide-related genes occurred concomitantly with CSM. In particular, significant decreases of the transcripts of 37 genes among 88 neuropeptide precursor genes, including those for myomodulin, PentaFVamide, maturation-associated peptide-5A and conopressin, were commonly observed in female and male CSM snails. By contrast, microseminoprotein precursor was the only exceptional case where the expression was increased in CSM snails. These results indicate that down-regulation of neuropeptide precursors is a remarkable feature of CSM. We also found that factors involved in epigenetic modification rather than transcription factors showed altered patterns of expression upon CSM. Comprehensive expression panels of snail neuropeptide precursors made in this study will be useful tools for environmental assessment as well as for studying marine reproductive biology.
Collapse
Affiliation(s)
- Fumihiro Morishita
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Department of Biological Science, Faculty of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- *Correspondence: Fumihiro Morishita, ; Takuya Imamura,
| | - Toshihiro Horiguchi
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Hiroto Akuta
- Department of Biological Science, Faculty of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Tatsuya Ueki
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Department of Biological Science, Faculty of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Takuya Imamura
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Department of Biological Science, Faculty of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- *Correspondence: Fumihiro Morishita, ; Takuya Imamura,
| |
Collapse
|
4
|
Ventura-López C, López-Galindo L, Rosas C, Sánchez-Castrejón E, Galindo-Torres P, Pascual C, Rodríguez-Fuentes G, Juárez OE, Galindo-Sánchez CE. Sex-specific role of the optic gland in octopus maya: A transcriptomic analysis. Gen Comp Endocrinol 2022; 320:114000. [PMID: 35217062 DOI: 10.1016/j.ygcen.2022.114000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/17/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
Abstract
The optic glands (OG) of cephalopods are a source of molecules associated with the control of reproductive traits and lifecycle events such as sexual maturation, reproductive behavior, feeding, parental care, and senescence. However, little is known about the role of the optic gland in Octopus maya adults during mating and egg laying. RNA sequencing, de novo transcriptome assembly, ubiquity and differential expression analysis were performed. First, we analyzed the expression patterns of transcripts commonly associated with OG regulatory functions to describe their possible role once the maturation of the gonad is complete. The transcriptomic profiles of the optic gland of both sexes were compared with emphasis on the signaling pathways involved in the dimorphism of reproductive traits. Results suggest that in the OG of males, the reproductive condition (mated or non-mated) did not affect the general expression profile. In contrast, more differentially expressed genes were observed in females. In mated females, the mRNA metabolic process and the response to norepinephrine were enriched, suggesting a high cellular activity in preparation for the laying of the embryos. Whereas in egg-laying females, energetic and metabolic processes were the most represented, including the oxidation-reduction process. Finally, the gene expression patterns in senescence females suggest a physiological response to starvation as well as upregulation of genes involved retrotransposon activity. In conclusion, more substantial fluctuations in gene expression were observed in the optic glands of the fertilized females compared to the males. Such differences might be associated with the regulation of the egg-laying and the onset of senescence.
Collapse
Affiliation(s)
- Claudia Ventura-López
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Tijuana - Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, México.
| | - Laura López-Galindo
- Instituto de Investigaciones Oceanológicas (IIO), Universidad Autónoma de Baja California (UABC), Carretera Ensenada-Tijuana No. 3917, Fraccionamiento Playitas, Ensenada, Baja California CP 22860, Mexico
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación (UMDI), Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Puerto de Abrigo s/n, Sisal, Hunucma, Yucatan CP97355, Mexico
| | - Edna Sánchez-Castrejón
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Tijuana - Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, México.
| | - Pavel Galindo-Torres
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Tijuana - Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, México.
| | - Cristina Pascual
- Unidad Multidisciplinaria de Docencia e Investigación (UMDI), Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Puerto de Abrigo s/n, Sisal, Hunucma, Yucatan CP97355, Mexico
| | - Gabriela Rodríguez-Fuentes
- Unidad de Química en Sisal, Facultad de Química Universidad Nacional Autónoma de México (UNAM), Puerto de Abrigo s/n, Sisal, Hunucma, Yucatan CP97355, Mexico
| | - Oscar E Juárez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Tijuana - Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, México.
| | - Clara E Galindo-Sánchez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Tijuana - Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, México.
| |
Collapse
|
5
|
Juárez OE, Arreola-Meraz L, Sánchez-Castrejón E, Avila-Poveda OH, López-Galindo LL, Rosas C, Galindo-Sánchez CE. Oviducal gland transcriptomics of Octopus maya through physiological stages and the negative effects of temperature on fertilization. PeerJ 2022; 10:e12895. [PMID: 35378931 PMCID: PMC8976471 DOI: 10.7717/peerj.12895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/16/2022] [Indexed: 01/11/2023] Open
Abstract
Background Elevated temperatures reduce fertilization and egg-laying rates in the octopus species. However, the molecular mechanisms that control the onset of fertilization and egg-laying in the octopus' oviducal gland are still unclear; and the effect of temperature on the expression of key reproductive genes is unknown. This study aims to better understand the molecular bases of octopus fertilization and egg-laying, and how they are affected by elevated temperatures. Method RNA-seq of oviducal glands was performed for samples before, during, and after fertilization and their transcriptomic profiles were compared. Also, at the fertilization stage, the optimal and thermal-stress conditions were contrasted. Expression levels of key reproductive genes were validated via RT-qPCR. Results In mated females before egg-laying, genes required for the synthesis of spermine, spermidine, which may prevent premature fertilization, and the myomodulin neuropeptide were upregulated. Among the genes with higher expression at the fertilization stage, we found those encoding the receptors of serotonin, dopamine, and progesterone; genes involved in the assembly and motility of the sperm flagellum; genes that participate in the interaction between male and female gametes; and genes associated with the synthesis of eggshell mucoproteins. At temperatures above the optimal range for reproduction, mated females reduced the fertilization rate. This response coincided with the upregulation of myomodulin and APGW-amide neuropeptides. Also, genes associated with fertilization like LGALS3, VWC2, and Pcsk1 were downregulated at elevated temperatures. Similarly, in senescent females, genes involved in fertilization were downregulated but those involved in the metabolism of steroid hormones like SRD5A1 were highly expressed.
Collapse
Affiliation(s)
- Oscar E. Juárez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Ensenada, Baja California, México
| | - Lousiana Arreola-Meraz
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Ensenada, Baja California, México
| | - Edna Sánchez-Castrejón
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Ensenada, Baja California, México
| | - Omar Hernando Avila-Poveda
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Mazatlán, Sinaloa, México,Programa Investigadoras e Investigadores por México, Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | - Laura L. López-Galindo
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación - Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, México
| | - Clara E. Galindo-Sánchez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Ensenada, Baja California, México
| |
Collapse
|
6
|
Winters GC, Polese G, Di Cosmo A, Moroz LL. Mapping of neuropeptide Y expression in Octopus brains. J Morphol 2020; 281:790-801. [PMID: 32384206 DOI: 10.1002/jmor.21141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 12/31/2022]
Abstract
Neuropeptide Y (NPY) is an evolutionarily conserved neurosecretory molecule implicated in a diverse complement of functions across taxa and in regulating feeding behavior and reproductive maturation in Octopus. However, little is known about the precise molecular circuitry of NPY-mediated behaviors and physiological processes, which likely involve a complex interaction of multiple signal molecules in specific brain regions. Here, we examined the expression of NPY throughout the Octopus central nervous system. The sequence analysis of Octopus NPY precursor confirmed the presence of both, signal peptide and putative active peptides, which are highly conserved across bilaterians. In situ hybridization revealed distinct expression of NPY in specialized compartments, including potential "integration centers," where visual, tactile, and other behavioral circuitries converge. These centers integrating separate circuits may maintain and modulate learning and memory or other behaviors not yet attributed to NPY-dependent modulation in Octopus. Extrasomatic localization of NPY mRNA in the neurites of specific neuron populations in the brain suggests a potential demand for immediate translation at synapses and a crucial temporal role for NPY in these cell populations. We also documented the presence of NPY mRNA in a small cell population in the olfactory lobe, which is a component of the Octopus feeding and reproductive control centers. However, the molecular mapping of NPY expression only partially overlapped with that produced by immunohistochemistry in previous studies. Our study provides a precise molecular map of NPY mRNA expression that can be used to design and test future hypotheses about molecular signaling in various Octopus behaviors.
Collapse
Affiliation(s)
- Gabrielle C Winters
- Department of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Gianluca Polese
- Department of Biology, Di Cosmo Laboratory, University of Napoli Federico II, Naples, Italy
| | - Anna Di Cosmo
- Department of Biology, Di Cosmo Laboratory, University of Napoli Federico II, Naples, Italy
| | - Leonid L Moroz
- Department of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, Florida, USA.,Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, Florida, USA
| |
Collapse
|
7
|
Juárez OE, López-Galindo L, Pérez-Carrasco L, Lago-Lestón A, Rosas C, Di Cosmo A, Galindo-Sánchez CE. Octopus maya white body show sex-specific transcriptomic profiles during the reproductive phase, with high differentiation in signaling pathways. PLoS One 2019; 14:e0216982. [PMID: 31095623 PMCID: PMC6522055 DOI: 10.1371/journal.pone.0216982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
White bodies (WB), multilobulated soft tissue that wraps the optic tracts and optic lobes, have been considered the hematopoietic organ of the cephalopods. Its glandular appearance and its lobular morphology suggest that different parts of the WB may perform different functions, but a detailed functional analysis of the octopus WB is lacking. The aim of this study is to describe the transcriptomic profile of WB to better understand its functions, with emphasis on the difference between sexes during reproductive events. Then, validation via qPCR was performed using different tissues to find out tissue-specific transcripts. High differentiation in signaling pathways was observed in the comparison of female and male transcriptomic profiles. For instance, the expression of genes involved in the androgen receptor-signaling pathway were detected only in males, whereas estrogen receptor showed higher expression in females. Highly expressed genes in males enriched oxidation-reduction and apoptotic processes, which are related to the immune response. On the other hand, expression of genes involved in replicative senescence and the response to cortisol were only detected in females. Moreover, the transcripts with higher expression in females enriched a wide variety of signaling pathways mediated by molecules like neuropeptides, integrins, MAPKs and receptors like TNF and Toll-like. In addition, these putative neuropeptide transcripts, showed higher expression in females' WB and were not detected in other analyzed tissues. These results suggest that the differentiation in signaling pathways in white bodies of O. maya influences the physiological dimorphism between females and males during the reproductive phase.
Collapse
Affiliation(s)
- Oscar E. Juárez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Zona Playitas, Ensenada, Baja California, México
| | - Laura López-Galindo
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Zona Playitas, Ensenada, Baja California, México
| | - Leonel Pérez-Carrasco
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Zona Playitas, Ensenada, Baja California, México
| | - Asunción Lago-Lestón
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Zona Playitas, Ensenada, Baja California, México
| | - Carlos Rosas
- Unidad Académica Sisal, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán, México
| | - Anna Di Cosmo
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Napoli, Italia
| | - Clara E. Galindo-Sánchez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Zona Playitas, Ensenada, Baja California, México
| |
Collapse
|
8
|
Transcriptome analysis for identifying possible causes of post-reproductive death of Sepia esculenta based on brain tissue. Genes Genomics 2019; 41:629-645. [PMID: 30941725 DOI: 10.1007/s13258-019-00811-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND The subpeduncle lobe/olfactory lobe-optic gland axis is called the endocrine regulation center of cephalopods. However, little is known about the mechanism of the subpeduncle lobe/olfactory lobe-optic gland axis regulate the sexual maturation and post-reproductive death of Sepia esculenta Hoyle. OBJECTIVES The primary objective of this study was to provide basic information for revealing the mechanism of the subpeduncle lobe/olfactory lobe-optic axis regulating the rapid post-reproductive death of S. esculenta. METHODS In this paper, Illumina sequencing based transcriptome analysis was performed on the brain tissue of female S. esculenta in the three key developmental stages: growth stage (BG), spawning stage (BS), and post-reproductive death stage (BA). RESULTS A total of 66.19 Gb Illumina sequencing data were obtained. A comparative analysis of the three stages showed 2609, 3333, and 170 differentially expressed genes (DEGs) in BG-vs-BA, BG-vs-BA, and BS-vs-BA, respectively. The Gene Ontology (GO) enrichment analysis of DEGs revealed that the regulation of cyclin-dependent protein serine/threonine kinase activity, oxidative phosphorylation, and respiratory chain were significantly enriched. The significant enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway identified pathways associated with the regulation of death, such as the mammalian target of rapamycin (mTOR) signaling pathway, AMPK signaling pathway, oxidative phosphorylation, and cell cycle. CONCLUSION The post-reproductive death of S. esculenta was found to be a complex energy steady-state regulation network system. The mTOR acted as an energy receptor and had a key role in regulating energy homeostasis.
Collapse
|
9
|
Zhang M, Wang Y, Li Y, Li W, Li R, Xie X, Wang S, Hu X, Zhang L, Bao Z. Identification and Characterization of Neuropeptides by Transcriptome and Proteome Analyses in a Bivalve Mollusc Patinopecten yessoensis. Front Genet 2018; 9:197. [PMID: 29922332 PMCID: PMC5996578 DOI: 10.3389/fgene.2018.00197] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 05/15/2018] [Indexed: 11/28/2022] Open
Abstract
Neuropeptides play essential roles in regulation of reproduction and growth in marine molluscs. But their function in marine bivalves – a group of animals of commercial importance – is largely unexplored due to the lack of systematic identification of these molecules. In this study, we sequenced and analyzed the transcriptome of nerve ganglia of Yesso scallop Patinopecten yessoensis, from which 63 neuropeptide genes were identified based on BLAST and de novo prediction approaches, and 31 were confirmed by proteomic analysis using the liquid chromatography-tandem mass spectrometry (LC-MS/MS). Fifty genes encode known neuropeptide precursors, of which 20 commonly exist in bilaterians and 30 are protostome specific. Three neuropeptides that have not yet been reported in bivalves were identified, including calcitonin/DH31, lymnokinin and pleurin. Characterization of glycoprotein hormones, insulin-like peptides, allatostatins, RFamides, and some reproduction, cardioactivity or feeding related neuropeptides reveals scallop neuropeptides have conserved molluscan neuropeptide domains, but some (e.g., GPB5, APGWamide and ELH) are characterized with bivalve-specific features. Thirteen potentially novel neuropeptides were identified, including 10 that may also exist in other protostomes, and 3 (GNamide, LRYamide, and Vamide) that may be scallop specific. In addition, we found neuropeptides potentially related to scallop shell growth and eye functioning. This study represents the first comprehensive identification of neuropeptides in scallop, and would contribute to a complete understanding on the roles of various neuropeptides in endocrine regulation in bivalve molluscs.
Collapse
Affiliation(s)
- Meiwei Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yangfan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yangping Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Wanru Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Ruojiao Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Xinran Xie
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
10
|
Kim KS, Kim TH, Kim MA, Lee JS, Sohn YC. Expression profile and reproductive regulation of APGWamide in Pacific abalone (Haliotis discus hannai). Comp Biochem Physiol A Mol Integr Physiol 2018; 222:26-35. [PMID: 29679684 DOI: 10.1016/j.cbpa.2018.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 12/30/2022]
Abstract
Neuropeptides in the central nervous system regulate reproductive activities in vertebrates. Ala-Pro-Gly-Trp-NH2 (APGWamide), a neuromediator expressed in the neural ganglia of mollusks, controls sexual maturation and reproduction. To clarify the role of APGWamide in sexual behavior regulation and gamete cell maturation in mollusks, we cloned the cDNA of APGWamide precursor (Hdh-APGWamide) and examined the spatiotemporal expression of the transcript in the Pacific abalone Haliotis discus hannai. The 222-amino acid sequence of the precursor deduced from the cDNA sequence showed typical features of gastropod APGWamide precursors. Phylogenetic analysis revealed that Hdh-APGWamide is classified with other gastropod APGWamide precursors, which form a separate branch from those of the bivalves. Hdh-APGWamide mRNA was highly expressed in the neural ganglia in both sexes. In females, the three ganglia (pleuro-pedal ganglion, PPG; branchial ganglion, and cerebral ganglion) showed similar expression in immature and mature animals, whereas in males, the level in the PPG only was higher at maturity (P < 0.05). In vivo injection of APGWamide or 5-hydroxytryptamine (10-3 M) increased the frequency of spawning and the number of released sperm cells by mature males (P < 0.05), while concentrations above 10-7 M enhanced germinal vesicle breakdown in fully developed cultured oocytes (P < 0.05). Thus, the phylogenetic branch of the APGWamide precursor gene in Haliotidae was separate from the other branches under the phylum Mollusca, and this gene exhibited ganglion-specific expression, indicating that it may induce final maturation and spawning in both sexes of Haliotis spp.
Collapse
Affiliation(s)
- Kyeong Seop Kim
- Department of Marine Molecular Biosciences, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 25457, Republic of Korea
| | - Tae Ha Kim
- Department of Marine Molecular Biosciences, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 25457, Republic of Korea
| | - Mi Ae Kim
- East Coast Life Sciences Institute, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 25457, Republic of Korea
| | - Jung Sick Lee
- Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Young Chang Sohn
- Department of Marine Molecular Biosciences, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 25457, Republic of Korea.
| |
Collapse
|
11
|
Kaser-Eichberger A, Trost A, Strohmaier C, Bogner B, Runge C, Bruckner D, Hohberger B, Jünemann A, Kofler B, Reitsamer HA, Schrödl F. Distribution of the neuro-regulatory peptide galanin in the human eye. Neuropeptides 2017; 64:85-93. [PMID: 27914762 DOI: 10.1016/j.npep.2016.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023]
Abstract
Galanin (GAL) is a neuro-regulatory peptide involved in many physiological and pathophysiological processes. While data of GAL origin/distribution in the human eye are rather fragmentary and since recently the presence of GAL-receptors in the normal human eye has been reported, we here systematically search for sources of ocular GAL in the human eye. Human eyes (n=14) were prepared for single- and double-immunohistochemistry of GAL and neurofilaments (NF). Cross- and flat-mount sections were achieved; confocal laser-scanning microscopy was used for documentation. In the anterior eye, GAL-immunoreactivity (GAL-IR) was detected in basal layers of corneal epithelium, endothelium, and in nerve fibers and keratinocytes of the corneal stroma. In the conjunctiva, GAL-IR was seen throughout all epithelial cell layers. In the iris, sphincter and dilator muscle and endothelium of iris vessels displayed GAL-IR. It was also detected in stromal cells containing melanin granules, while these were absent in others. In the ciliary body, ciliary muscle and pigmented as well as non-pigmented ciliary epithelium displayed GAL-IR. In the retina, GAL-IR was detected in cells associated with the ganglion cell layer, and in endothelial cells of retinal blood vessels. In the choroid, nerve fibers of the choroidal stroma as well as fibers forming boutons and surrounding choroidal blood vessels displayed GAL-IR. Further, the majority of intrinsic choroidal neurons were GAL-positive, as revealed by co-localization-experiments with NF, while a minority displayed NF- or GAL-IR only. GAL-IR was also detected in choroidal melanocytes, as identified by the presence of intracellular melanin-granules, as well as in cells lacking melanin-granules, most likely representing macrophages. GAL-IR was detected in numerous cells and tissues throughout the anterior and posterior eye and might therefore be an important regulatory peptide for many aspects of ocular control. Upcoming studies in diseased tissue will help to clarify the role of GAL in ocular homeostasis.
Collapse
Affiliation(s)
- Alexandra Kaser-Eichberger
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria.
| | - Andrea Trost
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Clemens Strohmaier
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Barbara Bogner
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Christian Runge
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Daniela Bruckner
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Bettina Hohberger
- Dept. of Ophthalmology, University Erlangen-Nuremberg, Erlangen, Germany
| | - Anselm Jünemann
- Dept. of Ophthalmology, University Rostock, Rostock, Germany
| | - Barbara Kofler
- Laura-Bassi Centre of Expertise, THERAPEP, Research Program of Receptor Biochemistry and Tumor Metabolism, Dept. of Pediatrics, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Herbert A Reitsamer
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria; Director of the Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Falk Schrödl
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria; Dept. of Anatomy, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
12
|
Polese G, Bertapelle C, Di Cosmo A. Olfactory organ of Octopus vulgaris: morphology, plasticity, turnover and sensory characterization. Biol Open 2016; 5:611-9. [PMID: 27069253 PMCID: PMC4874359 DOI: 10.1242/bio.017764] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/24/2016] [Indexed: 01/25/2023] Open
Abstract
The cephalopod olfactory organ was described for the first time in 1844 by von Kölliker, who was attracted to the pair of small pits of ciliated cells on each side of the head, below the eyes close to the mantle edge, in both octopuses and squids. Several functional studies have been conducted on decapods but very little is known about octopods. The morphology of the octopus olfactory system has been studied, but only to a limited extent on post-hatching specimens, and the only paper on adult octopus gives a minimal description of the olfactory organ. Here, we describe the detailed morphology of young male and female Octopus vulgaris olfactory epithelium, and using a combination of classical morphology and 3D reconstruction techniques, we propose a new classification for O. vulgaris olfactory sensory neurons. Furthermore, using specific markers such as olfactory marker protein (OMP) and proliferating cell nuclear antigen (PCNA) we have been able to identify and differentially localize both mature olfactory sensory neurons and olfactory sensory neurons involved in epithelium turnover. Taken together, our data suggest that the O. vulgaris olfactory organ is extremely plastic, capable of changing its shape and also proliferating its cells in older specimens.
Collapse
Affiliation(s)
- Gianluca Polese
- Department of Biology, University of Napoli Federico II, Napoli, NA 80126, Italy
| | - Carla Bertapelle
- Department of Biology, University of Napoli Federico II, Napoli, NA 80126, Italy
| | - Anna Di Cosmo
- Department of Biology, University of Napoli Federico II, Napoli, NA 80126, Italy
| |
Collapse
|
13
|
Minakata H, Tsutsui K. Oct-GnRH, the first protostomian gonadotropin-releasing hormone-like peptide and a critical mini-review of the presence of vertebrate sex steroids in molluscs. Gen Comp Endocrinol 2016; 227:109-14. [PMID: 26319132 DOI: 10.1016/j.ygcen.2015.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/07/2015] [Accepted: 07/28/2015] [Indexed: 11/21/2022]
Abstract
In protostome and deuterosome invertebrates, neurosecretory cells play major roles in the endocrine system. The optic glands of cephalopods are indicators of sexual maturation. In mature octopuses, optic glands enlarge and secrete a gonadotropic hormone. A peptide with structural features similar to that of vertebrate gonadotropin-releasing hormone (GnRH) was isolated from the octopus, Octopus vulgaris, and was named oct-GnRH. The discovery of oct-GnRH has triggered structural determinations and predictions of other mollusc GnRH-like peptides in biochemical and in silico studies. Interestingly, cephalopods studied so far are characterized by a single molecular form of oct-GnRH with a C-terminal -Pro-Gly-NH2 sequence, which is critical for gonadotropin-releasing activity in vertebrates. Other molluscan GnRH-like peptides lack the C-terminal -Pro-Gly-NH2 sequence but have -X-NH2 or -Pro-Gly although all protostome GnRH-like peptides have yet to be sequenced. In marine molluscs, relationships between GnRH-like peptides and sex steroids have been studied to verify the hypothesis that molluscs have vertebrate-type sex steroid system. However, it is currently questionable whether such sex steroids are present and whether they play endogenous roles in the reproductive system of molluscs. Because molluscs uptake and store steroids from the environment and fishes release sex steroids into the external environment, it is impossible to rule out the contamination of vertebrate sex steroids in molluscs. The function of key enzymes of steroidogenesis within molluscs remains unclear. Thus, evidence to deny the existence of the vertebrate-type sex steroid system in molluscs has been accumulated. The elucidation of substances, which regulate the maturation and maintenance of gonads and other reproductive functions in molluscs will require rigorous and progressive scientific study.
Collapse
Affiliation(s)
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan
| |
Collapse
|
14
|
Holden-Dye L, Fiorito G, Ponte G. Invertebrate neuroscience and CephsInAction at the Mediterranean Society for Neuroscience Meeting Cagliari 2015. INVERTEBRATE NEUROSCIENCE 2015; 15:6. [PMID: 26386979 DOI: 10.1007/s10158-015-0182-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Invertebrate neuroscience, and in particular cephalopod research, is well represented in the Mediterranean region. Therefore, the recent meeting of the Mediterranean Society for Neuroscience in Santa Margherita di Pula, Sardinia (12-15 June 2015) provided an excellent opportunity for invertebrate contributions. Furthermore, the Chair of an EU COST Action for cephalopod research (FA1301; www.cephsinaction.org ), Giovanna Ponte, together with Graziano Fiorito from the Stazione Zoologica, Naples, aligned a meeting of research groups working in the field of cephalopod neurophysiology from across Europe to coincide with the neuroscience meeting. This provided an exciting forum for exchange of ideas. Here we provide brief highlights of both events and an explanation of the activities of the COST Action for the broader invertebrate neuroscience community.
Collapse
Affiliation(s)
- Lindy Holden-Dye
- Centre for Biological Sciences, Building 85, Highfield Campus, Southampton, SO17 1BJ, UK.
| | - Graziano Fiorito
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Giovanna Ponte
- Cephalopod Research (CephRes), Via dei Fiorentini, 80133, Naples, Italy
| |
Collapse
|
15
|
Avila-Poveda OH, Montes-Pérez RC, Koueta N, Benítez-Villalobos F, Ramírez-Pérez JS, Jimenez-Gutierrez L, Rosas C. Seasonal changes of progesterone and testosterone concentrations throughout gonad maturation stages of the Mexican octopus,Octopus maya(Octopodidae: Octopus). MOLLUSCAN RESEARCH 2015. [DOI: 10.1080/13235818.2015.1045055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Nagasawa K, Oouchi H, Itoh N, Takahashi KG, Osada M. In Vivo Administration of Scallop GnRH-Like Peptide Influences on Gonad Development in the Yesso Scallop, Patinopecten yessoensis. PLoS One 2015; 10:e0129571. [PMID: 26030928 PMCID: PMC4451010 DOI: 10.1371/journal.pone.0129571] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/11/2015] [Indexed: 11/29/2022] Open
Abstract
Existing research on the role of gonadotropin-releasing hormone (GnRH) in bivalve reproduction is inadequate, even though a few bivalve GnRH orthologs have been cloned. The objective of this paper was to elucidate the in vivo effect of GnRH administration in Yesso scallop reproduction. We performed in vivo administration of scallop GnRH (py-GnRH) synthetic peptide into the developing gonad, and analyzed its effect on gonad development for 6 weeks during the reproductive season. The resulting sex ratio in the GnRH administered (GnRH(+)) group might be male biased, whereas the control (GnRH(-)) group had an equal sex ratio throughout the experiment. The gonad index (GI) of males in the GnRH(+) group increased from week 2 to 24.8% at week 6. By contrast the GI of the GnRH(-) group peaked in week 4 at 16.6%. No significant difference was seen in female GI between the GnRH(+) and GnRH(-) groups at any sampling point. Oocyte diameter in the GnRH(+) group remained constant (about 42–45 μm) throughout the experiment, while in the GnRH(-) group it increased from 45 to 68 μm i.e. normal oocyte growth. The number of spermatogonia in the germinal acini of males in the GnRH(+) group increased from week 4 to 6. Hermaphrodites appeared in the GnRH(+) group in weeks 2 and 4. Their gonads contained many apoptotic cells including oocytes. In conclusion, this study suggests that py-GnRH administration could have a potential to accelerate spermatogenesis and cause an inhibitory effect on oocyte growth in scallops.
Collapse
Affiliation(s)
- Kazue Nagasawa
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1–1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, Japan
| | - Hitoshi Oouchi
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1–1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, Japan
| | - Naoki Itoh
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Keisuke G. Takahashi
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1–1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, Japan
| | - Makoto Osada
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1–1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, Japan
- * E-mail:
| |
Collapse
|
17
|
Polese G, Bertapelle C, Di Cosmo A. Role of olfaction in Octopus vulgaris reproduction. Gen Comp Endocrinol 2015; 210:55-62. [PMID: 25449183 DOI: 10.1016/j.ygcen.2014.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 11/25/2022]
Abstract
The olfactory system in any animal is the primary sensory system that responds to chemical stimuli emanating from a distant source. In aquatic animals "Odours" are molecules in solution that guide them to locate food, partners, nesting sites, and dangers to avoid. Fish, crustaceans and aquatic molluscs possess sensory systems that have anatomical similarities to the olfactory systems of land-based animals. Molluscs are a large group of aquatic and terrestrial animals that rely heavily on chemical communication with a generally dispersed sense of touch and chemical sensitivity. Cephalopods, the smallest class among extant marine molluscs, are predators with high visual capability and well developed vestibular, auditory, and tactile systems. Nevertheless they possess a well developed olfactory organ, but to date almost nothing is known about the mechanisms, functions and modulation of this chemosensory structure in octopods. Cephalopod brains are the largest of all invertebrate brains and across molluscs show the highest degree of centralization. The reproductive behaviour of Octopus vulgaris is under the control of a complex set of signal molecules such as neuropeptides, neurotransmitters and sex steroids that guide the behaviour from the level of individuals in evaluating mates, to stimulating or deterring copulation, to sperm-egg chemical signalling that promotes fertilization. These signals are intercepted by the olfactory organs and integrated in the olfactory lobes in the central nervous system. In this context we propose a model in which the olfactory organ and the olfactory lobe of O. vulgaris could represent the on-off switch between food intake and reproduction.
Collapse
Affiliation(s)
- Gianluca Polese
- University of Napoli "Federico II", Department of Biology, via Cinthia, Campus MSA, ed. 7, 80126 Napoli, Italy.
| | - Carla Bertapelle
- University of Napoli "Federico II", Department of Biology, via Cinthia, Campus MSA, ed. 7, 80126 Napoli, Italy.
| | - Anna Di Cosmo
- University of Napoli "Federico II", Department of Biology, via Cinthia, Campus MSA, ed. 7, 80126 Napoli, Italy.
| |
Collapse
|