1
|
Vijayakumar S, DiGuiseppi JA, Dabestani PJ, Ryan WG, Quevedo RV, Li Y, Diers J, Tu S, Fleegel J, Nguyen C, Rhoda LM, Imami AS, Hamoud ARA, Lovas S, McCullumsmith RE, Zallocchi M, Zuo J. In silico transcriptome screens identify epidermal growth factor receptor inhibitors as therapeutics for noise-induced hearing loss. SCIENCE ADVANCES 2024; 10:eadk2299. [PMID: 38896614 PMCID: PMC11186505 DOI: 10.1126/sciadv.adk2299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Noise-induced hearing loss (NIHL) is a common sensorineural hearing impairment that lacks U.S. Food and Drug Administration-approved drugs. To fill the gap in effective screening models, we used an in silico transcriptome-based drug screening approach, identifying 22 biological pathways and 64 potential small molecule treatments for NIHL. Two of these, afatinib and zorifertinib [epidermal growth factor receptor (EGFR) inhibitors], showed efficacy in zebrafish and mouse models. Further tests with EGFR knockout mice and EGF-morpholino zebrafish confirmed their protective role against NIHL. Molecular studies in mice highlighted EGFR's crucial involvement in NIHL and the protective effect of zorifertinib. When given orally, zorifertinib was found in the perilymph with favorable pharmacokinetics. In addition, zorifertinib combined with AZD5438 (a cyclin-dependent kinase 2 inhibitor) synergistically prevented NIHL in zebrafish. Our results underscore the potential for in silico transcriptome-based drug screening in diseases lacking efficient models and suggest EGFR inhibitors as potential treatments for NIHL, meriting clinical trials.
Collapse
Affiliation(s)
- Sarath Vijayakumar
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Joseph A. DiGuiseppi
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Parinaz Jila Dabestani
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - William G. Ryan
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA.
| | - Rene Vielman Quevedo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Yuju Li
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Jack Diers
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Shu Tu
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Jonathan Fleegel
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Cassidy Nguyen
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Lauren M. Rhoda
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Ali Sajid Imami
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA.
| | | | - Sándor Lovas
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA.
- Neurosciences Institute, ProMedica, Toledo, OH 43606, USA
| | - Marisa Zallocchi
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Jian Zuo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
- Ting Therapeutics, University of California San Diego, 9310 Athena Circle, San Diego, CA 92037, USA
| |
Collapse
|
2
|
Wang T, Ling AH, Billings SE, Hosseini DK, Vaisbuch Y, Kim GS, Atkinson PJ, Sayyid ZN, Aaron KA, Wagh D, Pham N, Scheibinger M, Zhou R, Ishiyama A, Moore LS, Maria PS, Blevins NH, Jackler RK, Alyono JC, Kveton J, Navaratnam D, Heller S, Lopez IA, Grillet N, Jan TA, Cheng AG. Single-cell transcriptomic atlas reveals increased regeneration in diseased human inner ear balance organs. Nat Commun 2024; 15:4833. [PMID: 38844821 PMCID: PMC11156867 DOI: 10.1038/s41467-024-48491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Mammalian inner ear hair cell loss leads to permanent hearing and balance dysfunction. In contrast to the cochlea, vestibular hair cells of the murine utricle have some regenerative capacity. Whether human utricular hair cells regenerate in vivo remains unknown. Here we procured live, mature utricles from organ donors and vestibular schwannoma patients, and present a validated single-cell transcriptomic atlas at unprecedented resolution. We describe markers of 13 sensory and non-sensory cell types, with partial overlap and correlation between transcriptomes of human and mouse hair cells and supporting cells. We further uncover transcriptomes unique to hair cell precursors, which are unexpectedly 14-fold more abundant in vestibular schwannoma utricles, demonstrating the existence of ongoing regeneration in humans. Lastly, supporting cell-to-hair cell trajectory analysis revealed 5 distinct patterns of dynamic gene expression and associated pathways, including Wnt and IGF-1 signaling. Our dataset constitutes a foundational resource, accessible via a web-based interface, serving to advance knowledge of the normal and diseased human inner ear.
Collapse
Affiliation(s)
- Tian Wang
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Otolaryngology - Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, PR China
| | - Angela H Ling
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sara E Billings
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Davood K Hosseini
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yona Vaisbuch
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Grace S Kim
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Patrick J Atkinson
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Zahra N Sayyid
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ksenia A Aaron
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dhananjay Wagh
- Stanford Genomics Facility, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nicole Pham
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Mirko Scheibinger
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ruiqi Zhou
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Akira Ishiyama
- Department of Head and Neck Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Lindsay S Moore
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Peter Santa Maria
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nikolas H Blevins
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Robert K Jackler
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jennifer C Alyono
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - John Kveton
- Department of Surgery, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Dhasakumar Navaratnam
- Department of Surgery, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Stefan Heller
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ivan A Lopez
- Department of Head and Neck Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Nicolas Grillet
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Taha A Jan
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Alan G Cheng
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
3
|
Zhu BC, Yang WH, Huang M, Wang JG, Liang Y, Lei ZZ, Zhang SS, Wang Y, Sun XD, Gong Y, Xue CM, Hua GD. Sensorineural hearing loss induced by gefitinib: A CARE-compliant case report and literature reviews. Medicine (Baltimore) 2023; 102:e36010. [PMID: 37960757 PMCID: PMC10637413 DOI: 10.1097/md.0000000000036010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
RATIONALE Gefitinib is a potent and selective orally active growth factor receptor (EGFR)-tyrosine kinase inhibitor that is commonly used to treat advanced non-small cell lung cancer patients with activating EGFR mutations. Hearing impairment with gefitinib was sparsely reported. In this report, we describe a case of sensorineural deafness associated with the administration of gefitinib, with a Naranjo score of 7. PATIENT CONCERNS An 81-year-old female was diagnosed with lung adenocarcinoma with bone metastasis and an EGFR-activating mutation. The patient was prescribed gefitinib tablets at a daily dose of 250 mg for lung adenocarcinoma treatment. However, the patient experienced moderate to severe bilateral sensorineural deafness, primarily in her right ear, after taking gefitinib. Following the cessation of gefitinib administration, the patient exhibited partial restoration of auditory function. Upon resuming the medication, she experienced a worsening of deafness. DIAGNOSES The otoscopic audiogram and hearing test indicated moderate to severe bilateral sensorineural deafness. INTERVENTIONS The otolaryngologist recommended bilateral hearing aids to enhance hearing function. OUTCOMES Throughout our follow-up period, the patient did not receive a hearing aid implant. LESSONS This article first reported the ototoxicity caused by gefitinib. While rare, our report highlights that gefitinib-induced sensorineural deafness is possible and its mechanisms are still unclear. This adverse reaction should be monitored closely during clinical application of gefitinib to improve patient outcomes.
Collapse
Affiliation(s)
- Bao-chen Zhu
- Department of Pharmacy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wen-hua Yang
- Department of Pharmacy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mao Huang
- Department of Respiratory, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jin-gui Wang
- Department of Pharmacy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Liang
- Department of Pharmacy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhen-zhen Lei
- Department of Pharmacy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Sha-sha Zhang
- Department of Pharmacy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Wang
- Department of Pharmacy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-di Sun
- Department of Pharmacy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Gong
- Department of Pharmacy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chun-miao Xue
- Department of Pharmacy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guo-dong Hua
- Department of Pharmacy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Vijayakumar S, DiGuiseppi JA, Dabestani J, Ryan WG, Vielman Quevedo R, Li Y, Diers J, Tu S, Fleegel J, Nguyen C, Rhoda LM, Imami AS, Hamoud AAR, Lovas S, McCullumsmith R, Zallocchi M, Zuo J. In Silico Transcriptome-based Screens Identify Epidermal Growth Factor Receptor Inhibitors as Therapeutics for Noise-induced Hearing Loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544128. [PMID: 37333346 PMCID: PMC10274759 DOI: 10.1101/2023.06.07.544128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Noise-Induced Hearing Loss (NIHL) represents a widespread disease for which no therapeutics have been approved by the Food and Drug Administration (FDA). Addressing the conspicuous void of efficacious in vitro or animal models for high throughput pharmacological screening, we utilized an in silico transcriptome-oriented drug screening strategy, unveiling 22 biological pathways and 64 promising small molecule candidates for NIHL protection. Afatinib and zorifertinib, both inhibitors of the Epidermal Growth Factor Receptor (EGFR), were validated for their protective efficacy against NIHL in experimental zebrafish and murine models. This protective effect was further confirmed with EGFR conditional knockout mice and EGF knockdown zebrafish, both demonstrating protection against NIHL. Molecular analysis using Western blot and kinome signaling arrays on adult mouse cochlear lysates unveiled the intricate involvement of several signaling pathways, with particular emphasis on EGFR and its downstream pathways being modulated by noise exposure and Zorifertinib treatment. Administered orally, Zorifertinib was successfully detected in the perilymph fluid of the inner ear in mice with favorable pharmacokinetic attributes. Zorifertinib, in conjunction with AZD5438 - a potent inhibitor of cyclin dependent kinase 2 - produced synergistic protection against NIHL in the zebrafish model. Collectively, our findings underscore the potential application of in silico transcriptome-based drug screening for diseases bereft of efficient screening models and posit EGFR inhibitors as promising therapeutic agents warranting clinical exploration for combatting NIHL. Highlights In silico transcriptome-based drug screens identify pathways and drugs against NIHL.EGFR signaling is activated by noise but reduced by zorifertinib in mouse cochleae.Afatinib, zorifertinib and EGFR knockout protect against NIHL in mice and zebrafish.Orally delivered zorifertinib has inner ear PK and synergizes with a CDK2 inhibitor.
Collapse
|
5
|
Wichova H, Shew M, Nelson-Brantley J, Warnecke A, Prentiss S, Staecker H. MicroRNA Profiling in the Perilymph of Cochlear Implant Patients: Identifying Markers that Correlate to Audiological Outcomes. J Am Acad Audiol 2022; 32:627-635. [PMID: 35609590 DOI: 10.1055/s-0041-1742234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
HYPOTHESIS MicroRNA (miRNA) expression profiles from human perilymph correlate to post cochlear implantation (CI) hearing outcomes. BACKGROUND The high inter-individual variability in speech perception among cochlear implant recipients is still poorly understood. MiRNA expression in perilymph can be used to characterize the molecular processes underlying inner ear disease and to predict performance with a cochlear implant. METHODS Perilymph collected during CI from 17 patients was analyzed using microarrays. MiRNAs were identified and multivariable analysis using consonant-nucleus-consonant testing at 6 and 18 months post implant activation was performed. Variables analyzed included age, gender, preoperative pure tone average (PTA), and preoperative speech discrimination (word recognition [WR]). Gene ontology analysis was performed to identify potential functional implications of changes in the identified miRNAs. RESULTS Distinct miRNA profiles correlated to preoperative PTA and WR. Patients classified as poor performers showed downregulation of six miRNAs that potentially regulate pathways related to neuronal function and cell survival. CONCLUSION Individual miRNA profiles can be identified in microvolumes of perilymph. Distinct non-coding RNA expression profiles correlate to preoperative hearing and postoperative cochlear implant outcomes.
Collapse
Affiliation(s)
| | - Matthew Shew
- Department of Otolaryngology Head and Neck Surgery, Washington University School of Medicine in St. Louis, Missouri
| | - Jennifer Nelson-Brantley
- Department of Anatomy and Cell Biology, School of Medicine, University of Kanas, Kansas City, Kansas
| | - Athanasia Warnecke
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Sandra Prentiss
- Department of Otolaryngology Head and Neck Surgery, University of Miami School of Medicine, Miami, Florida
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City Kansas
| |
Collapse
|
6
|
MicroRNA Signature and Cellular Characterization of Undifferentiated and Differentiated House Ear Institute-Organ of Corti 1 (HEI-OC1) Cells. J Assoc Res Otolaryngol 2022; 23:467-489. [PMID: 35546217 PMCID: PMC9094604 DOI: 10.1007/s10162-022-00850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expressions and control a wide variety of cellular functions. House Ear Institute-Organ of Corti 1 (HEI-OC1) cells are widely used to screen ototoxic drugs and to investigate cellular and genetic alterations in response to various conditions. HEI-OC1 cells are almost exclusively studied under permissive conditions that promote cell replication at the expense of differentiation. Many researchers suggest that permissive culture condition findings are relevant to understanding human hearing disorders. The mature human cochlea however consists of differentiated cells and lacks proliferative capacity. This study therefore aimed to compare the miRNA profiles and cellular characteristics of HEI-OC1 cells cultured under permissive (P-HEI-OC1) and non-permissive (NP-HEI-OC1) conditions. A significant increase in the level of expression of tubulin β1 class VI (Tubb1), e-cadherin (Cdh1), espin (Espn), and SRY (sex determining region Y)-box2 (Sox2) mRNAs was identified in non-permissive cells compared with permissive cells (P < 0.05, Kruskal–Wallis H test, 2-sided). miR-200 family, miR-34b/c, and miR-449a/b functionally related cluster miRNAs, rodent-specific maternally imprinted gene Sfmbt2 intron 10th cluster miRNAs (-466a/ -467a), and miR-17 family were significantly (P < 0.05, Welch’s t-test, 2-tailed) differentially expressed in non-permissive cells when compared with permissive cells. Putative target genes were significantly predominantly enriched in mitogen-activated protein kinase (MAPK), epidermal growth factor family of receptor tyrosine kinases (ErbB), and Ras signaling pathways in non-permissive cells compared with permissive cells. This distinct miRNA signature of differentiated HEI-OC1 cells could help in understanding miRNA-mediated cellular responses in the adult cochlea.
Collapse
|
7
|
Growth Hormone and the Auditory Pathway: Neuromodulation and Neuroregeneration. Int J Mol Sci 2021; 22:ijms22062829. [PMID: 33799503 PMCID: PMC7998811 DOI: 10.3390/ijms22062829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
Growth hormone (GH) plays an important role in auditory development during the embryonic stage. Exogenous agents such as sound, noise, drugs or trauma, can induce the release of this hormone to perform a protective function and stimulate other mediators that protect the auditory pathway. In addition, GH deficiency conditions hearing loss or central auditory processing disorders. There are promising animal studies that reflect a possible regenerative role when exogenous GH is used in hearing impairments, demonstrated in in vivo and in vitro studies, and also, even a few studies show beneficial effects in humans presented and substantiated in the main text, although they should not exaggerate the main conclusions.
Collapse
|
8
|
White PM. Perspectives on Human Hearing Loss, Cochlear Regeneration, and the Potential for Hearing Restoration Therapies. Brain Sci 2020; 10:E756. [PMID: 33092183 PMCID: PMC7589617 DOI: 10.3390/brainsci10100756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/23/2022] Open
Abstract
Most adults who acquire hearing loss find it to be a disability that is poorly corrected by current prosthetics. This gap drives current research in cochlear mechanosensory hair cell regeneration and in hearing restoration. Birds and fish can spontaneously regenerate lost hair cells through a process that has become better defined in the last few years. Findings from these studies have informed new research on hair cell regeneration in the mammalian cochlea. Hair cell regeneration is one part of the greater problem of hearing restoration, as hearing loss can stem from a myriad of causes. This review discusses these issues and recent findings, and places them in the greater social context of need and community.
Collapse
Affiliation(s)
- Patricia M White
- Department of Neuroscience, Ernest J. Del Monte Institute for Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA
| |
Collapse
|
9
|
EGF and a GSK3 Inhibitor Deplete Junctional E-cadherin and Stimulate Proliferation in the Mature Mammalian Ear. J Neurosci 2020; 40:2618-2632. [PMID: 32079647 DOI: 10.1523/jneurosci.2630-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/02/2020] [Accepted: 02/09/2020] [Indexed: 11/21/2022] Open
Abstract
Sensory hair cell losses underlie the vast majority of permanent hearing and balance deficits in humans, but many nonmammalian vertebrates can fully recover from hearing impairments and balance dysfunctions because supporting cells (SCs) in their ears retain lifelong regenerative capacities that depend on proliferation and differentiation as replacement hair cells. Most SCs in vertebrate ears stop dividing during embryogenesis; and soon after birth, vestibular SCs in mammals transition to lasting quiescence as they develop massively thickened circumferential F-actin bands at their E-cadherin-rich adherens junctions. Here, we report that treatment with EGF and a GSK3 inhibitor thinned the circumferential F-actin bands throughout the sensory epithelium of cultured utricles that were isolated from adult mice of either sex. That treatment also caused decreases in E-cadherin, β-catenin, and YAP in the striola, and stimulated robust proliferation of mature, normally quiescent striolar SCs. The findings suggest that E-cadherin-rich junctions, which are not present in the SCs of the fish, amphibians, and birds which readily regenerate hair cells, are responsible in part for the mammalian ear's vulnerability to permanent balance and hearing deficits.SIGNIFICANCE STATEMENT Millions of people are affected by hearing and balance deficits that arise when loud sounds, ototoxic drugs, infections, and aging cause hair cell losses. Such deficits are permanent for humans and other mammals, but nonmammals can recover hearing and balance after supporting cells regenerate replacement hair cells. Mammalian supporting cells lose the capacity to proliferate around the time they develop unique, exceptionally reinforced, E-cadherin-rich intercellular junctions. Here, we report the discovery of a pharmacological treatment that thins F-actin bands, depletes E-cadherin, and stimulates proliferation in long-quiescent supporting cells within a balance epithelium from adult mice. The findings suggest that high E-cadherin in those supporting cell junctions may be responsible, in part, for the permanence of hair cell loss in mammals.
Collapse
|
10
|
Kojima K, Nishida AT, Tashiro K, Hirota K, Nishio T, Murata M, Kato N, Kawaguchi S, Zine A, Ito J, Van De Water TR. Isolation and Characterization of Mammalian Otic Progenitor Cells that Can Differentiate into Both Sensory Epithelial and Neuronal Cell Lineages. Anat Rec (Hoboken) 2020; 303:451-460. [PMID: 31943808 DOI: 10.1002/ar.24335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023]
Abstract
The mammalian inner ear mediates hearing and balance and during development generates both cochleo-vestibular ganglion neurons and sensory epithelial receptor cells, that is, hair cells and support cells. Cell marking experiments have shown that both hair cells and support cells can originate from a common progenitor. Here, we demonstrate the lineage potential of individual otic epithelial cell clones using three cell lines established by a combination of limiting dilution and gene-marking techniques from an embryonic day 12 (E12) rat otocyst. Cell-type specific marker analyses of these clonal lines under proliferation and differentiation culture conditions demonstrate that during differentiation immature cell markers (Nanog and Nestin) were downregulated and hair cell (Myosin VIIa and Math1), support cell (p27Kip1 and cytokeratin) and neuronal cell (NF-H and NeuroD) markers were upregulated. Our results suggest that the otic epithelium of the E12 mammalian inner ear possess multipotent progenitor cells able to generate cell types of both sensory epithelial and neural cell lineages when cultured under a differentiation culture condition. Understanding the molecular mechanisms of proliferation and differentiation of multipotent otic progenitor cells may provide insights that could contribute to the development of a novel cell therapy with a potential to initiate or stimulate the sensorineural repair of damaged inner ear sensory receptors. Anat Rec, 303:451-460, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Ken Kojima
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,University of Miami Ear Institute, Department of Otolaryngology, University of Miami School of Medicine, Miami, Florida.,Department of Integrative Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akiko T Nishida
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for Molecular Biology and Genetics, Kyoto University, Kyoto, Japan
| | - Kei Tashiro
- Center for Molecular Biology and Genetics, Kyoto University, Kyoto, Japan
| | - Kiichi Hirota
- BioMedical Special Research Unit, Human Stress Signal Research Center, National Institute of Advanced Industrial Science and Technology, Ikeda, Japan
| | - Takeshi Nishio
- Department of Integrative Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Miyahiko Murata
- Department of Integrative Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuo Kato
- Department of Integrative Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Saburo Kawaguchi
- Department of Integrative Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Azel Zine
- Institute of Neuroscience, INSERM U. 583, University of Montpellier I, Montpellier, France
| | - Juichi Ito
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Thomas R Van De Water
- University of Miami Ear Institute, Department of Otolaryngology, University of Miami School of Medicine, Miami, Florida
| |
Collapse
|
11
|
Kang H, Choi SJ, Park KH, Lee CK, Moon JS. Impaired Glycolysis Promotes AlcoholExposure-Induced Apoptosis in HEI-OC1 Cells via Inhibition of EGFR Signaling. Int J Mol Sci 2020; 21:ijms21020476. [PMID: 31940844 PMCID: PMC7014033 DOI: 10.3390/ijms21020476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Glucose metabolism is an important metabolic pathway in the auditory system. Chronic alcohol exposure can cause metabolic dysfunction in auditory cells during hearing loss. While alcohol exposure has been linked to hearing loss, the mechanism by which impaired glycolysis promotes cytotoxicity and cell death in auditory cells remains unclear. Here, we show that the inhibition of epidermal growth factor receptor (EGFR)-induced glycolysis is a critical mechanism for alcohol exposure-induced apoptosis in HEI-OC1 cells. The cytotoxicity via apoptosis was significantly increased by alcohol exposure in HEI-OC1 cells. The glycolytic activity and the levels of hexokinase 1 (HK1) were significantly suppressed by alcohol exposure in HEI-OC1 cells. Mechanistic studies showed that the levels of EGFR and AKT phosphorylation were reduced by alcohol exposure in HEI-OC1 cells. Notably, HK1 expression and glycolytic activity was suppressed by EGFR inhibition in HEI-OC1 cells. These results suggest that impaired glycolysis promotes alcohol exposure-induced apoptosis in HEI-OC1 cells via the inhibition of EGFR signaling.
Collapse
Affiliation(s)
- Hyunsook Kang
- Department of Otorhinoaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (H.K.); (S.J.C.); (K.H.P.)
| | - Seong Jun Choi
- Department of Otorhinoaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (H.K.); (S.J.C.); (K.H.P.)
| | - Kye Hoon Park
- Department of Otorhinoaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (H.K.); (S.J.C.); (K.H.P.)
| | - Chi-Kyou Lee
- Department of Otorhinoaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (H.K.); (S.J.C.); (K.H.P.)
- Correspondence: (C.-K.L.); (J.-S.M.); Tel.: +82-41-413-5004 (C.-K.L.); +82-41-413-5022 (J.-S.M.)
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea
- Correspondence: (C.-K.L.); (J.-S.M.); Tel.: +82-41-413-5004 (C.-K.L.); +82-41-413-5022 (J.-S.M.)
| |
Collapse
|
12
|
Samarajeewa A, Lenz DR, Xie L, Chiang H, Kirchner R, Mulvaney JF, Edge ASB, Dabdoub A. Transcriptional response to Wnt activation regulates the regenerative capacity of the mammalian cochlea. Development 2018; 145:dev.166579. [PMID: 30389848 PMCID: PMC6288390 DOI: 10.1242/dev.166579] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/25/2018] [Indexed: 01/04/2023]
Abstract
Lack of sensory hair cell (HC) regeneration in mammalian adults is a major contributor to hearing loss. In contrast, the neonatal mouse cochlea retains a transient capacity for regeneration, and forced Wnt activation in neonatal stages promotes supporting cell (SC) proliferation and induction of ectopic HCs. We currently know little about the temporal pattern and underlying mechanism of this age-dependent regenerative response. Using an in vitro model, we show that Wnt activation promotes SC proliferation following birth, but prior to postnatal day (P) 5. This age-dependent decline in proliferation occurs despite evidence that the Wnt pathway is postnatally active and can be further enhanced by Wnt stimulators. Using an in vivo mouse model and RNA sequencing, we show that proliferation in the early neonatal cochlea is correlated with a unique transcriptional response that diminishes with age. Furthermore, we find that augmenting Wnt signaling through the neonatal stages extends the window for HC induction in response to Notch signaling inhibition. Our results suggest that the downstream transcriptional response to Wnt activation, in part, underlies the regenerative capacity of the mammalian cochlea. Summary: Canonical Wnt activation in the mammalian cochlea elicits a unique, age-dependent transcriptional response, which in part regulates the regenerative capacity of supporting cells during cochlear maturation.
Collapse
Affiliation(s)
- Anshula Samarajeewa
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON, M5S 1A8, Canada
| | - Danielle R Lenz
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Lihong Xie
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto ON, M4N 3M5, Canada.,Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning Guangxi, 530021, China
| | - Hao Chiang
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Rory Kirchner
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Joanna F Mulvaney
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto ON, M4N 3M5, Canada
| | - Albert S B Edge
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Alain Dabdoub
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON, M5S 1A8, Canada .,Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto ON, M4N 3M5, Canada.,Department of Otolaryngology - Head & Neck Surgery, University of Toronto, Toronto ON, M5G 2C4, Canada
| |
Collapse
|
13
|
Zhang J, Wang Q, Abdul-Aziz D, Mattiacio J, Edge ASB, White PM. ERBB2 signaling drives supporting cell proliferation in vitro and apparent supernumerary hair cell formation in vivo in the neonatal mouse cochlea. Eur J Neurosci 2018; 48:3299-3316. [PMID: 30270571 DOI: 10.1111/ejn.14183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/07/2018] [Accepted: 09/03/2018] [Indexed: 12/29/2022]
Abstract
In mammals, cochlear hair cells are not regenerated once they are lost, leading to permanent hearing deficits. In other vertebrates, the adjacent supporting cells act as a stem cell compartment, in that they both proliferate and differentiate into de novo auditory hair cells. Although there is evidence that mammalian cochlear supporting cells can differentiate into new hair cells, the signals that regulate this process are poorly characterized. We hypothesize that signaling from the epidermal growth factor receptor (EGFR) family may play a role in cochlear regeneration. We focus on one such member, ERBB2, and report the effects of expressing a constitutively active ERBB2 receptor in neonatal mouse cochlear supporting cells, using viruses and transgenic expression. Lineage tracing with fluorescent reporter proteins was used to determine the relationships between cells with active ERBB2 signaling and cells that divided or differentiated into hair cells. In vitro, individual supporting cells harbouring a constitutively active ERBB2 receptor appeared to signal to their neighbouring supporting cells, inducing them to down-regulate a supporting cell marker and to proliferate. In vivo, we found supernumerary hair cell-like cells near supporting cells that expressed ERBB2 receptors. Both supporting cell proliferation and hair cell differentiation were largely reproduced in vitro using small molecules that we show also activate ERBB2. Our data suggest that signaling from the receptor tyrosine kinase ERBB2 can drive the activation of secondary signaling pathways to regulate regeneration, suggesting a new model where an interplay of cell signaling regulates regeneration by endogenous stem-like cells.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Department of Biology, School of Arts and Sciences, University of Rochester, Rochester, New York
| | - Quan Wang
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
| | - Dunia Abdul-Aziz
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
| | - Jonelle Mattiacio
- Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, New York
| | - Albert S B Edge
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts.,Harvard Stem Cell Institute, Cambridge, Massachusetts
| | - Patricia M White
- Department of Neuroscience, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester, New York
| |
Collapse
|
14
|
Gnedeva K, Jacobo A, Salvi JD, Petelski AA, Hudspeth AJ. Elastic force restricts growth of the murine utricle. eLife 2017; 6. [PMID: 28742024 PMCID: PMC5550282 DOI: 10.7554/elife.25681] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 07/21/2017] [Indexed: 12/30/2022] Open
Abstract
Dysfunctions of hearing and balance are often irreversible in mammals owing to the inability of cells in the inner ear to proliferate and replace lost sensory receptors. To determine the molecular basis of this deficiency we have investigated the dynamics of growth and cellular proliferation in a murine vestibular organ, the utricle. Based on this analysis, we have created a theoretical model that captures the key features of the organ’s morphogenesis. Our experimental data and model demonstrate that an elastic force opposes growth of the utricular sensory epithelium during development, confines cellular proliferation to the organ’s periphery, and eventually arrests its growth. We find that an increase in cellular density and the subsequent degradation of the transcriptional cofactor Yap underlie this process. A reduction in mechanical constraints results in accumulation and nuclear translocation of Yap, which triggers proliferation and restores the utricle’s growth; interfering with Yap’s activity reverses this effect. DOI:http://dx.doi.org/10.7554/eLife.25681.001
Collapse
Affiliation(s)
- Ksenia Gnedeva
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, United States.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, United States
| | - Adrian Jacobo
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, United States
| | - Joshua D Salvi
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, United States
| | - Aleksandra A Petelski
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, United States
| | - A J Hudspeth
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, United States
| |
Collapse
|
15
|
Burns JC, Stone JS. Development and regeneration of vestibular hair cells in mammals. Semin Cell Dev Biol 2017; 65:96-105. [PMID: 27864084 PMCID: PMC5423856 DOI: 10.1016/j.semcdb.2016.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
Vestibular sensation is essential for gaze stabilization, balance, and perception of gravity. The vestibular receptors in mammals, Type I and Type II hair cells, are located in five small organs in the inner ear. Damage to hair cells and their innervating neurons can cause crippling symptoms such as vertigo, visual field oscillation, and imbalance. In adult rodents, some Type II hair cells are regenerated and become re-innervated after damage, presenting opportunities for restoring vestibular function after hair cell damage. This article reviews features of vestibular sensory cells in mammals, including their basic properties, how they develop, and how they are replaced after damage. We discuss molecules that control vestibular hair cell regeneration and highlight areas in which our understanding of development and regeneration needs to be deepened.
Collapse
Affiliation(s)
- Joseph C Burns
- Decibel Therapeutics, 215 First St., Suite 430, Cambridge, MA 02142, USA.
| | - Jennifer S Stone
- Department of Otolaryngology/Head and Neck Surgery and The Virginia Merrill Bloedel Hearing Research Center, University of Washington School of Medicine, Box 357923, Seattle, WA 98195-7923, USA.
| |
Collapse
|
16
|
Kelley MW, Stone JS. Development and Regeneration of Sensory Hair Cells. AUDITORY DEVELOPMENT AND PLASTICITY 2017. [DOI: 10.1007/978-3-319-21530-3_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Chow CL, Trivedi P, Pyle MP, Matulle JT, Fettiplace R, Gubbels SP. Evaluation of Nestin Expression in the Developing and Adult Mouse Inner Ear. Stem Cells Dev 2016; 25:1419-32. [PMID: 27474107 DOI: 10.1089/scd.2016.0176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Adult stem cells are undifferentiated cells with the capacity to proliferate and form mature tissue-specific cell types. Nestin is an intermediate filament protein used to identify cells with stem cell characteristics. Its expression has been observed in a population of cells in developing and adult cochleae. In vitro studies using rodent cochlear tissue have documented the potential of nestin-expressing cells to proliferate and form hair and supporting cells. In this study, nestin coupled to green fluorescent protein (GFP) transgenic mice were used to provide a more complete characterization of the spatial and temporal expression of nestin in the inner ear, from organogenesis to adulthood. During development, nestin is expressed in the spiral ganglion cell region and in multiple cell types in the organ of Corti, including nascent hair and supporting cells. In adulthood, its expression is reduced but persists in the spiral ganglion, in a cell population medial to and below the inner hair cells, and in Deiters' cells in the cochlear apex. Moreover, nestin-expressing cells can proliferate in restricted regions of the inner ear during development shown by coexpression with Ki67 and MCM2 and by 5-ethynyl-2'-deoxyuridine incorporation. Results suggest that nestin may label progenitor cells during inner ear development and may not be a stem cell marker in the mature organ of Corti; however, nestin-positive cells in the spiral ganglion exhibit some stem cell characteristics. Future studies are necessary to determine if these cells possess any latent stem cell-like qualities that may be targeted as a regenerative approach to treat neuronal forms of hearing loss.
Collapse
Affiliation(s)
- Cynthia L Chow
- 1 Department of Communication Sciences and Disorders, University of Wisconsin-Madison , Madison, Wisconsin.,2 Waisman Center, University of Wisconsin-Madison , Madison, Wisconsin.,3 Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| | - Parul Trivedi
- 2 Waisman Center, University of Wisconsin-Madison , Madison, Wisconsin
| | - Madeline P Pyle
- 2 Waisman Center, University of Wisconsin-Madison , Madison, Wisconsin
| | - Jacob T Matulle
- 2 Waisman Center, University of Wisconsin-Madison , Madison, Wisconsin
| | - Robert Fettiplace
- 4 Department of Neuroscience, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| | - Samuel P Gubbels
- 2 Waisman Center, University of Wisconsin-Madison , Madison, Wisconsin.,3 Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin.,5 Department of Otolaryngology, University of Colorado School of Medicine , Aurora, Colorado
| |
Collapse
|
18
|
Tang J, Qian Y, Li H, Kopecky BJ, Ding D, Ou HC, DeCook R, Chen X, Sun Z, Kobel M, Bao J. Canertinib induces ototoxicity in three preclinical models. Hear Res 2015; 328:59-66. [PMID: 26163095 DOI: 10.1016/j.heares.2015.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/23/2015] [Accepted: 07/03/2015] [Indexed: 12/16/2022]
Abstract
Neuregulin-1 (NRG1) ligand and its epidermal growth factor receptor (EGFR)/ERBB family regulate normal cellular proliferation and differentiation in many tissues including the cochlea. Aberrant NRG1 and ERBB signaling cause significant hearing impairment in mice. Dysregulation of the same signaling pathway in humans is involved in certain types of cancers such as breast cancer or non-small cell lung cancer (NSCLC). A new irreversible pan-ERBB inhibitor, canertinib, has been tested in clinical trials for the treatment of refractory NSCLC. Its possible ototoxicity was unknown. In this study, a significant dose-dependent canertinib ototoxicity was observed in a zebrafish model. Canertinib ototoxicity was further confirmed in two mouse models with different genetic backgrounds. The data strongly suggested an evolutionally preserved ERBB molecular mechanism underlying canertinib ototoxicity. Thus, these results imply that clinical monitoring of hearing loss should be considered for clinical testing of canertinib or other pan-ERBB inhibitors.
Collapse
Affiliation(s)
- Jian Tang
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yi Qian
- Department of Cardio-Thoracic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi 214041, China
| | - Hui Li
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Benjamin J Kopecky
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Henry C Ou
- Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA; Department of Otolaryngology, University of Washington, Seattle, WA, USA
| | - Rhonda DeCook
- Department of Statistics and Actuarial Science, University of Iowa, Iowa City, IA 52242, USA
| | - Xiaojie Chen
- Gateway Biotechnology Inc., St. Louis, MO 63108, USA
| | - Zhenyu Sun
- Department of Cardio-Thoracic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi 214041, China
| | - Megan Kobel
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Jianxin Bao
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| |
Collapse
|
19
|
Chow CL, Guo W, Trivedi P, Zhao X, Gubbels SP. Characterization of a unique cell population marked by transgene expression in the adult cochlea of nestin-CreER(T2)/tdTomato-reporter mice. J Comp Neurol 2015; 523:1474-87. [PMID: 25611038 DOI: 10.1002/cne.23747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/18/2014] [Accepted: 01/13/2015] [Indexed: 02/06/2023]
Abstract
Hair cells in the adult mammalian cochlea cannot spontaneously regenerate after damage, resulting in the permanency of hearing loss. Stem cells have been found to be present in the cochlea of young rodents; however, there has been little evidence for their existence into adulthood. We used nestin-CreER(T2)/tdTomato-reporter mice to trace the lineage of putative nestin-expressing cells and their progeny in the cochleae of adult mice. Nestin, an intermediate filament found in neural progenitor cells during early development and adulthood, is regarded as a multipotent and neural stem cell marker. Other investigators have reported its presence in postnatal and young adult rodents; however, there are discrepancies among these reports. Using lineage tracing, we documented a robust population of tdTomato-expressing cells and evaluated these cells at a series of adult time points. Upon activation of the nestin promoter, tdTomato was observed just below and medial to the inner hair cell layer. All cells colocalized with the stem cell and cochlear-supporting-cell marker Sox2 as well as the supporting cell and Schwann cell marker Sox10; however, they did not colocalize with the Schwann cell marker Krox20, spiral ganglion marker NF200, nor glial fibrillary acidic acid (GFAP)-expressing supporting cell marker. The cellular identity of this unique population of tdTomato-expressing cells in the adult cochlea of nestin-CreER(T2)/tdTomato mice remains unclear; however, these cells may represent a type of supporting cell on the neural aspect of the inner hair cell layer.
Collapse
Affiliation(s)
- Cynthia L Chow
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, Wisconsin, 53706.,Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Weixiang Guo
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Parul Trivedi
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705.,Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Samuel P Gubbels
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705.,Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, Madison, Wisconsin, 53792
| |
Collapse
|
20
|
Head JR, Gacioch L, Pennisi M, Meyers JR. Activation of canonical Wnt/β-catenin signaling stimulates proliferation in neuromasts in the zebrafish posterior lateral line. Dev Dyn 2013; 242:832-46. [PMID: 23606225 DOI: 10.1002/dvdy.23973] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 03/22/2013] [Accepted: 03/23/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The posterior lateral line in zebrafish develops from a migrating primordium that deposits clusters of cells that differentiate into neuromasts at regular intervals along the trunk. The deposition of these neuromasts is known to be coordinated by Wnt and FGF signals that control the proliferation, migration, and organization of the primordium. However, little is known about the control of proliferation in the neuromasts following their deposition. RESULTS We show that pharmacological activation of the Wnt/β-catenin signaling pathway with 1-azakenpaullone upregulates proliferation in neuromasts post-deposition. This results in increased size of the neuromasts and overproduction of sensory hair cells. We also show that activation of Wnt signaling returns already quiescent supporting cells to a proliferative state in mature neuromasts. Additionally, activation of Wnt signaling increases the number of supporting cells that return to the cell cycle in response to hair cell damage and the number of regenerated hair cells. Finally, we show that inhibition of Wnt signaling by overexpression of dkk1b suppresses proliferation during both differentiation and regeneration. CONCLUSIONS These data suggest that Wnt/β-catenin signaling is both necessary and sufficient for the control of proliferation of lateral line progenitors during development, ongoing growth of the neuromasts, and hair cell regeneration.
Collapse
Affiliation(s)
- Jeffery R Head
- Neuroscience Program, Colgate University, Hamilton, New York, USA
| | | | | | | |
Collapse
|
21
|
Coupling the cell cycle to development and regeneration of the inner ear. Semin Cell Dev Biol 2013; 24:507-13. [PMID: 23665151 DOI: 10.1016/j.semcdb.2013.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 04/23/2013] [Indexed: 12/19/2022]
Abstract
Cell cycle exit and acquirement of a postmitotic state is essential for the proper development of organs. In the present review, we examine the role of the cell cycle control in the sensory epithelia of the mammalian inner ear. We describe the roles of the core cell cycle regulators in the proliferation of prosensory cells and in the initiation and maintenance of terminal mitosis of the sensory epithelia. We also discuss how other intracellular signalling may influence the cell cycle. Finally, we address the question of whether manipulations of the cell cycle may have the potential to create replacement cells for the damaged inner sensory epithelia.
Collapse
|
22
|
Inner ear supporting cells: rethinking the silent majority. Semin Cell Dev Biol 2013; 24:448-59. [PMID: 23545368 DOI: 10.1016/j.semcdb.2013.03.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/21/2013] [Indexed: 11/21/2022]
Abstract
Sensory epithelia of the inner ear contain two major cell types: hair cells and supporting cells. It has been clear for a long time that hair cells play critical roles in mechanoreception and synaptic transmission. In contrast, until recently the more abundant supporting cells were viewed as serving primarily structural and homeostatic functions. In this review, we discuss the growing information about the roles that supporting cells play in the development, function and maintenance of the inner ear, their activities in pathological states, their potential for hair cell regeneration, and the mechanisms underlying these processes.
Collapse
|
23
|
Burns JC, Corwin JT. A historical to present-day account of efforts to answer the question: "what puts the brakes on mammalian hair cell regeneration?". Hear Res 2013; 297:52-67. [PMID: 23333259 PMCID: PMC3594491 DOI: 10.1016/j.heares.2013.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 12/20/2012] [Accepted: 01/07/2013] [Indexed: 12/17/2022]
Abstract
Hearing and balance deficits often affect humans and other mammals permanently, because their ears stop producing hair cells within a few days after birth. But production occurs throughout life in the ears of sharks, bony fish, amphibians, reptiles, and birds allowing them to replace lost hair cells and quickly recover after temporarily experiencing the kinds of sensory deficits that are irreversible for mammals. Since the mid 1970s, researchers have been asking what puts the brakes on hair cell regeneration in mammals. Here we evaluate the headway that has been made and assess current evidence for alternative mechanistic hypotheses that have been proposed to account for the limits to hair cell regeneration in mammals.
Collapse
Affiliation(s)
- Joseph C Burns
- Department of Neuroscience, University of Virginia, School of Medicine, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
24
|
Hair cell replacement in adult mouse utricles after targeted ablation of hair cells with diphtheria toxin. J Neurosci 2013; 32:15093-105. [PMID: 23100430 DOI: 10.1523/jneurosci.1709-12.2012] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We developed a transgenic mouse to permit conditional and selective ablation of hair cells in the adult mouse utricle by inserting the human diphtheria toxin receptor (DTR) gene into the Pou4f3 gene, which encodes a hair cell-specific transcription factor. In adult wild-type mice, administration of diphtheria toxin (DT) caused no significant hair cell loss. In adult Pou4f3(+/DTR) mice, DT treatment reduced hair cell numbers to 6% of normal by 14 days post-DT. Remaining hair cells were located primarily in the lateral extrastriola. Over time, hair cell numbers increased in these regions, reaching 17% of untreated Pou4f3(+/DTR) mice by 60 days post-DT. Replacement hair cells were morphologically distinct, with multiple cytoplasmic processes, and displayed evidence for active mechanotransduction channels and synapses characteristic of type II hair cells. Three lines of evidence suggest replacement hair cells were derived via direct (nonmitotic) transdifferentiation of supporting cells: new hair cells did not incorporate BrdU, supporting cells upregulated the pro-hair cell gene Atoh1, and supporting cell numbers decreased over time. This study introduces a new method for efficient conditional hair cell ablation in adult mouse utricles and demonstrates that hair cells are spontaneously regenerated in vivo in regions where there may be ongoing hair cell turnover.
Collapse
|
25
|
MYC gene delivery to adult mouse utricles stimulates proliferation of postmitotic supporting cells in vitro. PLoS One 2012; 7:e48704. [PMID: 23119091 PMCID: PMC3484123 DOI: 10.1371/journal.pone.0048704] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/01/2012] [Indexed: 01/01/2023] Open
Abstract
The inner ears of adult humans and other mammals possess a limited capacity for regenerating sensory hair cells, which can lead to permanent auditory and vestibular deficits. During development and regeneration, undifferentiated supporting cells within inner ear sensory epithelia can self-renew and give rise to new hair cells; however, these otic progenitors become depleted postnatally. Therefore, reprogramming differentiated supporting cells into otic progenitors is a potential strategy for restoring regenerative potential to the ear. Transient expression of the induced pluripotency transcription factors, Oct3/4, Klf4, Sox2, and c-Myc reprograms fibroblasts into neural progenitors under neural-promoting culture conditions, so as a first step, we explored whether ectopic expression of these factors can reverse supporting cell quiescence in whole organ cultures of adult mouse utricles. Co-infection of utricles with adenoviral vectors separately encoding Oct3/4, Klf4, Sox2, and the degradation-resistant T58A mutant of c-Myc (c-MycT58A) triggered significant levels of supporting cell S-phase entry as assessed by continuous BrdU labeling. Of the four factors, c-MycT58A alone was both necessary and sufficient for the proliferative response. The number of BrdU-labeled cells plateaued between 5–7 days after infection, and then decreased ∼60% by 3 weeks, as many cycling cells appeared to enter apoptosis. Switching to differentiation-promoting culture medium at 5 days after ectopic expression of c-MycT58A temporarily attenuated the loss of BrdU-labeled cells and accompanied a very modest but significant expansion of the sensory epithelium. A small number of the proliferating cells in these cultures labeled for the hair cell marker, myosin VIIA, suggesting they had begun differentiating towards a hair cell fate. The results indicate that ectopic expression of c-MycT58A in combination with methods for promoting cell survival and differentiation may restore regenerative potential to supporting cells within the adult mammalian inner ear.
Collapse
|
26
|
Kopecky B, Fritzsch B. The myc road to hearing restoration. Cells 2012; 1:667-98. [PMID: 24710525 PMCID: PMC3901154 DOI: 10.3390/cells1040667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/12/2012] [Accepted: 09/14/2012] [Indexed: 01/01/2023] Open
Abstract
Current treatments for hearing loss, the most common neurosensory disorder, do not restore perfect hearing. Regeneration of lost organ of Corti hair cells through forced cell cycle re-entry of supporting cells or through manipulation of stem cells, both avenues towards a permanent cure, require a more complete understanding of normal inner ear development, specifically the balance of proliferation and differentiation required to form and to maintain hair cells. Direct successful alterations to the cell cycle result in cell death whereas regulation of upstream genes is insufficient to permanently alter cell cycle dynamics. The Myc gene family is uniquely situated to synergize upstream pathways into downstream cell cycle control. There are three Mycs that are embedded within the Myc/Max/Mad network to regulate proliferation. The function of the two ear expressed Mycs, N-Myc and L-Myc were unknown less than two years ago and their therapeutic potentials remain speculative. In this review, we discuss the roles the Mycs play in the body and what led us to choose them to be our candidate gene for inner ear therapies. We will summarize the recently published work describing the early and late effects of N-Myc and L-Myc on hair cell formation and maintenance. Lastly, we detail the translational significance of our findings and what future work must be performed to make the ultimate hearing aid: the regeneration of the organ of Corti.
Collapse
Affiliation(s)
- Benjamin Kopecky
- Department of Biology, 143 Biology Building, University of Iowa, Iowa City, IA 52242, USA.
| | - Bernd Fritzsch
- Department of Biology, 143 Biology Building, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
27
|
Abstract
The regeneration of mechanoreceptive hair cells occurs throughout life in non-mammalian vertebrates and allows them to recover from hearing and balance deficits that affect humans and other mammals permanently. The irreversibility of comparable deficits in mammals remains unexplained, but often has been attributed to steep embryonic declines in cellular production. However, recent results suggest that gravity-sensing hair cells in murine utricles may increase in number during neonatal development, raising the possibility that young mice might retain sufficient cellular plasticity for mitotic hair cell regeneration. To test for this we used neomycin to kill hair cells in utricles cultured from mice of different ages and found that proliferation increased tenfold in damaged utricles from the youngest neonates. To kill hair cells in vivo, we generated a novel mouse model that uses an inducible, hair cell-specific CreER allele to drive expression of diphtheria toxin fragment A (DTA). In newborns, induction of DTA expression killed hair cells and resulted in significant, mitotic hair cell replacement in vivo, which occurred days after the normal cessation of developmental mitoses that produce hair cells. DTA expression induced in 5-d-old mice also caused hair cell loss, but no longer evoked mitotic hair cell replacement. These findings show that regeneration limits arise in vivo during the postnatal period when the mammalian balance epithelium's supporting cells differentiate unique cytological characteristics and lose plasticity, and they support the notion that the differentiation of those cells may directly inhibit regeneration or eliminate an essential, but as yet unidentified pool of stem cells.
Collapse
|
28
|
White PM, Stone JS, Groves AK, Segil N. EGFR signaling is required for regenerative proliferation in the cochlea: conservation in birds and mammals. Dev Biol 2012; 363:191-200. [PMID: 22230616 DOI: 10.1016/j.ydbio.2011.12.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 12/19/2011] [Accepted: 12/22/2011] [Indexed: 11/27/2022]
Abstract
Proliferation and transdifferentiaton of supporting cells in the damaged auditory organ of birds lead to robust regeneration of sensory hair cells. In contrast, regeneration of lost auditory hair cells does not occur in deafened mammals, resulting in permanent hearing loss. In spite of this failure of regeneration in mammals, we have previously shown that the perinatal mouse supporting cells harbor a latent potential for cell division. Here we show that in a subset of supporting cells marked by p75, EGFR signaling is required for proliferation, and this requirement is conserved between birds and mammals. Purified p75+ mouse supporting cells express receptors and ligands for the EGF signaling pathway, and their proliferation in culture can be blocked with the EGFR inhibitor AG1478. Similarly, in cultured chicken basilar papillae, supporting cell proliferation in response to hair cell ablation requires EGFR signaling. In addition, we show that EGFR signaling in p75+ mouse supporting cells is required for the down-regulation of the cell cycle inhibitor p27(Kip1) (CDKN1b) to enable cell cycle re-entry. Taken together, our data suggest that a conserved mechanism involving EGFR signaling governs proliferation of auditory supporting cells in birds and mammals and may represent a target for future hair cell regeneration strategies.
Collapse
Affiliation(s)
- Patricia M White
- Division of Cell Biology and Genetics, House Research Institute, 2100 W 3rd St., Los Angeles, CA 90057, USA
| | | | | | | |
Collapse
|
29
|
Loponen H, Ylikoski J, Albrecht JH, Pirvola U. Restrictions in cell cycle progression of adult vestibular supporting cells in response to ectopic cyclin D1 expression. PLoS One 2011; 6:e27360. [PMID: 22073316 PMCID: PMC3206952 DOI: 10.1371/journal.pone.0027360] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/14/2011] [Indexed: 11/19/2022] Open
Abstract
Sensory hair cells and supporting cells of the mammalian inner ear are quiescent cells, which do not regenerate. In contrast, non-mammalian supporting cells have the ability to re-enter the cell cycle and produce replacement hair cells. Earlier studies have demonstrated cyclin D1 expression in the developing mouse supporting cells and its downregulation along maturation. In explant cultures of the mouse utricle, we have here focused on the cell cycle control mechanisms and proliferative potential of adult supporting cells. These cells were forced into the cell cycle through adenoviral-mediated cyclin D1 overexpression. Ectopic cyclin D1 triggered robust cell cycle re-entry of supporting cells, accompanied by changes in p27(Kip1) and p21(Cip1) expressions. Main part of cell cycle reactivated supporting cells were DNA damaged and arrested at the G2/M boundary. Only small numbers of mitotic supporting cells and rare cells with signs of two successive replications were found. Ectopic cyclin D1-triggered cell cycle reactivation did not lead to hyperplasia of the sensory epithelium. In addition, a part of ectopic cyclin D1 was sequestered in the cytoplasm, reflecting its ineffective nuclear import. Combined, our data reveal intrinsic barriers that limit proliferative capacity of utricular supporting cells.
Collapse
Affiliation(s)
- Heidi Loponen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Jeffrey H. Albrecht
- Division of Gastroenterology, Hennepin County Medical Center, Minneapolis, Minnesota, United States of America
| | - Ulla Pirvola
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Collado MS, Burns JC, Meyers JR, Corwin JT. Variations in shape-sensitive restriction points mirror differences in the regeneration capacities of avian and mammalian ears. PLoS One 2011; 6:e23861. [PMID: 21909368 PMCID: PMC3166124 DOI: 10.1371/journal.pone.0023861] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 07/26/2011] [Indexed: 01/05/2023] Open
Abstract
When inner ear hair cells die, humans and other mammals experience permanent hearing and balance deficits, but non-mammalian vertebrates quickly recover these senses after epithelial supporting cells give rise to replacement hair cells. A postnatal decline in cellular plasticity appears to limit regeneration in mammalian balance organs, where declining proliferation responses are correlated with decreased spreading of supporting cells on artificial and native substrates. By culturing balance epithelia on substrates that differed in flexibility, we assessed spreading effects independent of age, showing a strong correlation between shape change and supporting cell proliferation. Then we made excision wounds in utricles cultured from young and old chickens and mice and compared quantified levels of spreading and proliferation. In utricles from young mice, and both young and old chickens, wounds re-epithelialized in <24 hours, while those in utricles from mature mice took three times longer. More cells changed shape in the fastest healing wounds, which accounted for some differences in the levels of proliferation, but inter-species and age-related differences in shape-sensitive restriction points, i.e., the cellular thresholds for shape changes that promote S-phase, were evident and may be particularly influential in the responses to hair cell losses in vivo.
Collapse
Affiliation(s)
- Maria Sol Collado
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America.
| | | | | | | |
Collapse
|
31
|
Defourny J, Lallemend F, Malgrange B. Structure and development of cochlear afferent innervation in mammals. Am J Physiol Cell Physiol 2011; 301:C750-61. [PMID: 21753183 DOI: 10.1152/ajpcell.00516.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In mammals, sensorineural deafness results from damage to the auditory receptors of the inner ear, the nerve pathways to the brain or the cortical area that receives sound information. In this review, we first focused on the cellular and molecular events taking part to spiral ganglion axon growth, extension to the organ of Corti, and refinement. In the second half, we considered the functional maturation of synaptic contacts between sensory hair cells and their afferent projections. A better understanding of all these processes could open insights into novel therapeutic strategies aimed to re-establish primary connections from sound transducers to the ascending auditory nerve pathways.
Collapse
|
32
|
Nonneuronal cells regulate synapse formation in the vestibular sensory epithelium via erbB-dependent BDNF expression. Proc Natl Acad Sci U S A 2010; 107:17005-10. [PMID: 20837532 DOI: 10.1073/pnas.1008938107] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent studies indicate that molecules released by glia can induce synapse formation. However, what induces glia to produce such signals, their identity, and their in vivo relevance remain poorly understood. Here we demonstrate that supporting cells of the vestibular organ--cells that have many characteristics of glia--promote synapse formation only when induced by neuron-derived signals. Furthermore, we identify BDNF as the synaptogenic signal produced by these nonneuronal cells. Mice in which erbB signaling has been eliminated in supporting cells have vestibular dysfunction caused by failure of synapse formation between hair cells and sensory neurons. This phenotype correlates with reduced BDNF expression in supporting cells and is rescued by reexpression of BDNF in these cells. Furthermore, knockdown of BDNF expression in supporting cells postnatally phenocopies the loss of erbB signaling. These results indicate that vestibular supporting cells contribute in vivo to vestibular synapse formation and that this is mediated by reciprocal signals between sensory neurons and supporting cells involving erbB receptors and BDNF.
Collapse
|
33
|
Watanabe F, Kirkegaard M, Matsumoto S, Gont C, Mannström P, Ulfendahl M, Fridberger A. Signaling through erbB receptors is a critical functional regulator in the mature cochlea. Eur J Neurosci 2010; 32:717-24. [DOI: 10.1111/j.1460-9568.2010.07347.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
34
|
Jin D, Ohlemiller KK, Lei D, Dong E, Role L, Ryugo DK, Bao J. Age-related neuronal loss in the cochlea is not delayed by synaptic modulation. Neurobiol Aging 2010; 32:2321.e13-23. [PMID: 20580130 DOI: 10.1016/j.neurobiolaging.2010.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 04/25/2010] [Accepted: 05/12/2010] [Indexed: 02/07/2023]
Abstract
Age-related synaptic change is associated with the functional decline of the nervous system. It is unknown whether this synaptic change is the cause or the consequence of neuronal cell loss. We have addressed this question by examining mice genetically engineered to over- or underexpress neuregulin-1 (NRG1), a direct modulator of synaptic transmission. Transgenic mice overexpressing NRG1 in spiral ganglion neurons (SGNs) showed improvements in hearing thresholds, whereas NRG1 -/+ mice show a complementary worsening of thresholds. However, no significant change in age-related loss of SGNs in either NRG1 -/+ mice or mice overexpressing NRG1 was observed, while a negative association between NRG1 expression level and survival of inner hair cells during aging was observed. Subsequent studies provided evidence that modulating NRG1 levels changes synaptic transmission between SGNs and hair cells. One of the most dramatic examples of this was the reversal of lower hearing thresholds by "turning-off" NRG1 overexpression. These data demonstrate for the first time that synaptic modulation is unable to prevent age-related neuronal loss in the cochlea.
Collapse
Affiliation(s)
- David Jin
- Department of Otolaryngology, Washington University, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Sensory hair cells of the inner ear are responsible for translating auditory or vestibular stimuli into electrical energy that can be perceived by the nervous system. Although hair cells are exquisitely mechanically sensitive, they can be easily damaged by excessive stimulation by ototoxic drugs and by the effects of aging. In mammals, auditory hair cells are never replaced, such that cumulative damage to the ear causes progressive and permanent deafness. In contrast, non-mammalian vertebrates are capable of replacing lost hair cells, which has led to efforts to understand the molecular and cellular basis of regenerative responses in different vertebrate species. In this review, we describe recent progress in understanding the limits to hair cell regeneration in mammals and discuss the obstacles that currently exist for therapeutic approaches to hair cell replacement.
Collapse
Affiliation(s)
- Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, BCM 295, 1 Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
36
|
Abraira VE, Satoh T, Fekete DM, Goodrich LV. Vertebrate Lrig3-ErbB interactions occur in vitro but are unlikely to play a role in Lrig3-dependent inner ear morphogenesis. PLoS One 2010; 5:e8981. [PMID: 20126551 PMCID: PMC2813878 DOI: 10.1371/journal.pone.0008981] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 01/08/2010] [Indexed: 11/19/2022] Open
Abstract
Background The Lrig genes encode a family of transmembrane proteins that have been implicated in tumorigenesis, psoriasis, neural crest development, and complex tissue morphogenesis. Whether these diverse phenotypes reflect a single underlying cellular mechanism is not known. However, Lrig proteins contain evolutionarily conserved ectodomains harboring both leucine-rich repeats and immunoglobulin domains, suggesting an ability to bind to common partners. Previous studies revealed that Lrig1 binds to and inhibits members of the ErbB family of receptor tyrosine kinases by inducing receptor internalization and degradation. In addition, other receptor tyrosine kinase binding partners have been identified for both Lrig1 and Lrig3, leaving open the question of whether defective ErbB signaling is responsible for the observed mouse phenotypes. Methodology/Principal Findings Here, we report that Lrig3, like Lrig1, is able to interact with ErbB receptors in vitro. We examined the in vivo significance of these interactions in the inner ear, where Lrig3 controls semicircular canal formation by determining the timing and extent of Netrin1 expression in the otic vesicle epithelium. We find that ErbB2 and ErbB3 are present in the early otic epithelium, and that Lrig3 acts cell-autonomously here, as would be predicted if Lrig3 regulates ErbB2/B3 activity. However, inhibition of ErbB activation in the chick otic vesicle has no detectable effect on Netrin gene expression or canal morphogenesis. Conclusions/Significance Our results suggest that although both Lrig1 and Lrig3 can interact with ErbB receptors in vitro, modulation of Neuregulin signaling is unlikely to contribute to Lrig3-dependent processes of inner ear morphogenesis. These results highlight the similar binding properties of Lrig1 and Lrig3 and underscore the need to determine how these two family members bind to and regulate different receptors to affect diverse aspects of cell behavior in vivo.
Collapse
Affiliation(s)
- Victoria E. Abraira
- Department of Neurobiology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Takunori Satoh
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Donna M. Fekete
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Lisa V. Goodrich
- Department of Neurobiology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
37
|
McCullar JS, Ty S, Campbell S, Oesterle EC. Activin potentiates proliferation in mature avian auditory sensory epithelium. J Neurosci 2010; 30:478-90. [PMID: 20071511 PMCID: PMC2975606 DOI: 10.1523/jneurosci.5154-09.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 11/12/2009] [Indexed: 01/17/2023] Open
Abstract
Humans and other mammals are highly susceptible to permanent hearing and balance deficits due to an inability to regenerate sensory hair cells lost to inner ear trauma. In contrast, nonmammalian vertebrates, such as birds, robustly regenerate replacement hair cells and restore hearing and balance functions to near-normal levels. There is considerable interest in understanding the cellular mechanisms responsible for this difference in regenerative capacity. Here we report on involvement of the TGFbeta superfamily type II activin receptors, Acvr2a and Acvr2b, in regulating proliferation in mature avian auditory sensory epithelium. Cultured, posthatch avian auditory sensory epithelium treated with Acvr2a and Acvr2b inhibitors shows decreased proliferation of support cells, the cell type that gives rise to new hair cells. Conversely, addition of activin A, an Acvr2a/b ligand, potentiates support cell proliferation. Neither treatment (inhibitor or ligand) affected hair cell survival, suggesting a specific effect of Acvr2a/b signaling on support cell mitogenicity. Using immunocytochemistry, Acvr2a, Acvr2b, and downstream Smad effector proteins were differentially localized in avian and mammalian auditory sensory epithelia. Collectively, these data suggest that signaling through Acvr2a/b promotes support cell proliferation in mature avian auditory sensory epithelium and that this signaling pathway may be incomplete, or actively blocked, in the adult mammalian ear.
Collapse
Affiliation(s)
- Jennifer S. McCullar
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195-7923
| | - Sidya Ty
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195-7923
| | - Sean Campbell
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195-7923
| | - Elizabeth C. Oesterle
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195-7923
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW In evaluating strategies to preserve or regenerate the cochlea, understanding the process of labyrinthine injury on a cellular and molecular level is crucial. Examination of inner ear injury reveals mechanism-specific types of damage, often at specific areas within the cochlea. Site-specific interventions can then be considered. RECENT FINDINGS The review will briefly summarize the historical perspective of advancements in hearing science through 2006. Areas of research covered include hair cell protection, hair cell regeneration, spiral ganglion cell regeneration, and stria vascularis metabolic regulation. SUMMARY The review will briefly summarize the early development of a few such site-specific interventions for inner ear functional rehabilitation, for work done prior to 2006. The outstanding reviews of cutting edge research from this year's and last year's Hearing Science section of Current Opinion in Otolaryngology - Head and Neck Surgery can then be understood and appreciated in a more informed manner.
Collapse
|
39
|
Breuskin I, Bodson M, Thelen N, Thiry M, Borgs L, Nguyen L, Lefebvre PP, Malgrange B. Sox10 promotes the survival of cochlear progenitors during the establishment of the organ of Corti. Dev Biol 2009; 335:327-39. [PMID: 19748502 DOI: 10.1016/j.ydbio.2009.09.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 09/04/2009] [Accepted: 09/04/2009] [Indexed: 01/01/2023]
Abstract
Transcription factors of the SoxE family are critical players that underlie various embryological processes. However, little is known about their function during inner ear development. Here, we show that Sox10 is initially expressed throughout the otic vesicle epithelium and becomes later restricted to supporting cells as cell differentiation proceeds in the organ of Corti. Morphological analyses of Sox10 mutant mice reveal a significant shortening of the cochlear duct likely resulting from the progressive depletion of cochlear progenitors. While Sox10 appears dispensable for the differentiation and patterning of the inner ear prosensory progenitors, our data support a critical role for this transcription factor in the promotion of their survival. We provide genetic evidences that Sox10, in a concentration-dependant manner, could play a role in the regulation of Jagged1, a gene known to be important for inner ear prosensory development. Together, our results demonstrate that Sox10 regulates the biology of early cochlear progenitors during inner ear development, but, in contrast to neural crest-derived cells, this transcription factor is dispensable for their differentiation. Evidence also suggests that this effect occurs via the activation of the Jagged1 gene.
Collapse
|
40
|
|
41
|
Koutras AK, Mastronikolis NS, Jeffry Evans T, Papadeas ES, Makatsoris T, Kalofonos HP. Irreversible ototoxicity associated with the use of erlotinib in a patient with pancreatic cancer. Acta Oncol 2009; 47:1171-3. [PMID: 18615326 DOI: 10.1080/02841860802213328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
McCullar JS, Oesterle EC. Cellular targets of estrogen signaling in regeneration of inner ear sensory epithelia. Hear Res 2009; 252:61-70. [PMID: 19450430 PMCID: PMC2975607 DOI: 10.1016/j.heares.2009.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/16/2009] [Accepted: 01/22/2009] [Indexed: 01/19/2023]
Abstract
Estrogen signaling in auditory and vestibular sensory epithelia is a newly emerging focus propelled by the role of estrogen signaling in many other proliferative systems. Understanding the pathways with which estrogen interacts can provide a means to identify how estrogen may modulate proliferative signaling in inner ear sensory epithelia. Reviewed herein are two signaling families, EGF and TGFbeta. Both pathways are involved in regulating proliferation of supporting cells in mature vestibular sensory epithelia and have well characterized interactions with estrogen signaling in other systems. It is becoming increasingly clear that elucidating the complexity of signaling in regeneration will be necessary for development of therapeutics that can initiate regeneration and prevent progression to a pathogenic state.
Collapse
Affiliation(s)
- Jennifer S. McCullar
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, CHDD CD176, P.O. Box 357923, Seattle, WA 98195, USA
| | - Elizabeth C. Oesterle
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, CHDD CD176, P.O. Box 357923, Seattle, WA 98195, USA
| |
Collapse
|
43
|
Zheng Y, Rayner M, Feng L, Hu X, Zheng X, Bearth E, Lin J. EGF Mediates Survival of Rat Cochlear Sensory Cells via an NF-κB Dependent Mechanism In Vitro. ACTA ACUST UNITED AC 2008; 2:9-15. [PMID: 19920873 DOI: 10.2174/1874082000802010009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The survival of cochlear epithelial cells is of considerable importance, biologically. However, little is known about the growth factor(s) that are involved in the survival of cochlear sensory epithelial cells. In this study, we demonstrated that epidermal growth factor (EGF) plays a role in the survival of cochlear epithelial cells. Firstly, the presence of the EGF signaling pathway was demonstrated in the developing cochlear tissues of rats and a sensory epithelial cell line (OC1): -- epidermal growth factor receptor (EGFR), mitogen-activated protein kinase kinase (MAPKK), I kappa B alpha (IκBα), nuclear factor kappa B (NF-κB), and B cell lymphoma 2 (Bcl-2). Secondly, the addition of EGF to OC1 increased the promoter activity of NF-κB and cell viability but not cell cycle progression and cell number increase -- which suggests that EGF is for cellular survival rather than cell proliferation of OC1. Finally, pyrrolidine dithiocarbamate (PDTC, an inhibitor of NF-κB) and inhibitor kappa B alpha (IκBα) mutant (IκBαM, a specific inhibitor of NF-κB) abrogated the EGF-induced NF-κB activity and cell survival. These data suggest that EGF plays a role in the survival of cochlear sensory epithelial cells through the EGFR/MAPKK/IκBα/NF-κB/Bcl-2 pathway.
Collapse
Affiliation(s)
- Yiqing Zheng
- Departments of Otolaryngology, University of Minnesota School of Medicine, Minneapolis, MN
| | | | | | | | | | | | | |
Collapse
|
44
|
Pfannenstiel S, Praetorius M. [Protection and regeneration of sensory epithelia of the inner ear]. HNO 2008; 56:13-20. [PMID: 18210008 DOI: 10.1007/s00106-007-1631-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dysfunctions of the inner ear such as hearing impairment due to noise exposure or presbycusis and vertigo are often caused by loss of hair cells in the sensory epithelium. There is still no specific therapy, just technical aids. Options for protecting and regenerating hair cells are explained here. The inhibition of apoptosis via caspases is presently the main target of research. They are involved in damage caused by aminoglycosides, cisplatin, or noise exposure. Bcl-2, growth factors, and oxidative stress are discussed. In regeneration the transdifferentiation of supporting cells to hair cells is explained. This can be achieved with local gene therapy using math1. Approach and media for the application are discussed, while viral vectors such as the adenovector seem the most promising in research.
Collapse
Affiliation(s)
- S Pfannenstiel
- Sektion Otologie und Neuro-Otologie, Hals-Nasen-Ohrenklinik,Universitätsklinikum, Im Neuenheimer Feld 400 , 69120, Heidelberg, Deutschland
| | | |
Collapse
|
45
|
Puligilla C, Feng F, Ishikawa K, Bertuzzi S, Dabdoub A, Griffith AJ, Fritzsch B, Kelley MW. Disruption of fibroblast growth factor receptor 3 signaling results in defects in cellular differentiation, neuronal patterning, and hearing impairment. Dev Dyn 2007; 236:1905-17. [PMID: 17557302 PMCID: PMC3904742 DOI: 10.1002/dvdy.21192] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Deletion of fibroblast growth factor receptor 3 (Fgfr3) leads to hearing impairment in mice due to defects in the development of the organ of Corti, the sensory epithelium of the Cochlea. To examine the role of FGFR3 in auditory development, cochleae from Fgfr3(-/-) mice were examined using anatomical and physiological methods. Deletion of Fgfr3 leads to the absence of inner pillar cells and an increase in other cell types, suggesting that FGFR3 regulates cell fate. Defects in outer hair cell differentiation were also observed and probably represent the primary basis for hearing loss. Furthermore, innervation defects were detected consistent with changes in the fiber guidance properties of pillar cells. To elucidate the mechanisms underlying the effects of FGFR3, we examined the expression of Bmp4, a known target. Bmp4 was increased in Fgfr3(-/-) cochleae, and exogenous application of bone morphogenetic protein 4 (BMP4) onto cochlear explants induced a significant increase in the outer hair cells, suggesting the Fgf and Bmp signaling act in concert to pattern the cochlea.
Collapse
|
46
|
|
47
|
Gu R, Montcouquiol M, Marchionni M, Corwin JT. Proliferative responses to growth factors decline rapidly during postnatal maturation of mammalian hair cell epithelia. Eur J Neurosci 2007; 25:1363-72. [PMID: 17425563 DOI: 10.1111/j.1460-9568.2007.05414.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Millions of lives are affected by hearing and balance deficits that arise as a consequence of sensory hair cell loss. Those deficits affect mammals permanently, but hearing and balance recover in nonmammals after epithelial supporting cells divide and produce replacement hair cells. Hair cells are not effectively replaced in mammals, but balance epithelia cultured from the ears of rodents and adult humans can respond to hair cell loss with low levels of supporting cell proliferation. We have sought to stimulate vestibular proliferation; and we report here that treatment with glial growth factor 2 (rhGGF2) yields a 20-fold increase in cell proliferation within sheets of pure utricular hair cell epithelium explanted from adult rats into long-term culture. In epithelia from neonates, substantially greater proliferation responses are evoked by rhGGF2 alone, insulin alone and to a lesser degree by serum even during short-term cultures, but all these responses progressively decline during the first 2 weeks of postnatal maturation. Thus, sheets of utricular epithelium from newborn rats average > 40% labelling when cultured for 72 h with bromo-deoxyuridine (BrdU) and either rhGGF2 or insulin. Those from 5- and 6-day-olds average 8-15%, 12-day-olds average < 1% and after 72 h there is little or no labelling in epithelia from 27- and 35-day-olds. These cells are the mammalian counterparts of the progenitors that produce replacement hair cells in nonmammals, so the postnatal quiescence described here is likely to be responsible for at least part of the mammalian ear's unique vulnerability to permanent sensory deficits.
Collapse
Affiliation(s)
- Rende Gu
- Department of Neuroscience, University of Virginia, School of Medicine, HSC Box 801392, MR-4 Bldg., Rm 5150, Lane Road, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
48
|
Meyers JR, Corwin JT. Shape change controls supporting cell proliferation in lesioned mammalian balance epithelium. J Neurosci 2007; 27:4313-25. [PMID: 17442815 PMCID: PMC6672306 DOI: 10.1523/jneurosci.5023-06.2007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mature mammals are uniquely vulnerable to permanent auditory and vestibular deficits, because the cell proliferation that produces replacement hair cells in other vertebrates is limited in mammals. To investigate the cellular mechanisms responsible for that difference, we created excision lesions in the sensory epithelium of embryonic and 2-week-old mouse utricles. Lesions in embryonic utricles closed in <24 h via localized expansion of supporting cells, which then reentered the cell cycle. Pharmacological treatments combined with time-lapse microscopy demonstrated that the healing depended on Rho-mediated contraction of an actin ring at the leading edge of the lesion. In contrast, lesions in utricles from 2-week-old and older mice remained open even after 48 h. Supporting cells in those utricles remained compact and columnar and had significantly stouter cortical actin belts than those in embryonic sensory epithelia. This suggests that cytoskeletal changes may underlie the age-related loss of proliferation in mammalian ears by limiting the capacity for mature supporting cells to change shape. In mature utricles, exogenous stimulation with lysophosphatidic acid overcame this maturational block and induced closure of lesions, promoting supporting cell expansion and subsequent proliferation. After lysophosphatidic acid treatment, 85% of the mature supporting cells that had spread to a planar area >300 microm2 entered S-phase, whereas only 10% of those cells that had a planar area <100 microm2 entered S-phase. Together, these results indicate that cellular shape change can overcome the normal postnatal cessation of supporting cell proliferation that appears to limit regeneration in mammalian vestibular epithelia.
Collapse
Affiliation(s)
- Jason R Meyers
- Neuroscience Graduate Program and Department of Neuroscience, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | |
Collapse
|
49
|
Davies D, Magnus C, Corwin JT. Developmental changes in cell-extracellular matrix interactions limit proliferation in the mammalian inner ear. Eur J Neurosci 2007; 25:985-98. [PMID: 17331195 DOI: 10.1111/j.1460-9568.2007.05355.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hair cell losses can produce severe hearing and balance deficits in mammals and nonmammals alike, but nonmammals recover after epithelial supporting cells divide and give rise to replacement hair cells. Here, we describe cellular changes that appear to underlie the permanence of hair cell deficits in mammalian vestibular organs. In sensory epithelia isolated from the utricles of embryonic day 18 (E18) mice, supporting cells readily spread and proliferated, but spreading and proliferation were infrequent in supporting cells from postnatal day 6 (P6) mice. Cellular spreading and proliferation were dependent on alpha6 integrin, which disappeared from lateral cell membranes by P6 and colocalized with beta4 integrin near the basement membrane at both ages. In the many well-spread, proliferating E18 supporting cells, beta4 was localized at cell borders, but it was localized to hemidesmosome-like structures in the columnar, nondividing supporting cells that were prevalent in P6 cultures. We treated cultures with phorbol myristate acetate (PMA) to activate protein kinase C (PKC) in an initial test of the possibility that maturational changes in supporting cell cytoskeletons or their anchorage might restrict the proliferation of these progenitor cells in the developing mammalian inner ear. That treatment triggered the disassembly of the hemidesmosome-like beta4 structures and resulted in significantly increased cellular spreading and S-phase entry in the P6 epithelia. The results suggest that maturational changes in cytoskeletal organization and anchorage restrict proliferation of mammalian supporting cells whose counterparts are the progenitors of replacement hair cells in nonmammals, thereby leaving mammals vulnerable to persistent sensory deficits caused by hair cell loss.
Collapse
Affiliation(s)
- Dawn Davies
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
50
|
Morris JK, Maklad A, Hansen LA, Feng F, Sorensen C, Lee KF, Macklin WB, Fritzsch B. A disorganized innervation of the inner ear persists in the absence of ErbB2. Brain Res 2006; 1091:186-99. [PMID: 16630588 PMCID: PMC3075922 DOI: 10.1016/j.brainres.2006.02.090] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Revised: 02/22/2006] [Accepted: 02/23/2006] [Indexed: 01/19/2023]
Abstract
ErbB2 protein is essential for the development of Schwann cells and for the normal fiber growth and myelin formation of peripheral nerves. We have investigated the fate of the otocyst-derived inner ear sensory neurons in the absence of ErbB2 using ErbB2 null mutants. Afferent innervation of the ear sensory epithelia shows numerous fibers overshooting the organ of Corti, followed by a reduction of those fibers in near term embryos. This suggests that mature Schwann cells do not play a role in targeting or maintaining the inner ear innervation. Comparable to the overshooting of nerve fibers, sensory neurons migrate beyond their normal locations into unusual positions in the modiolus. They may miss a stop signal provided by the Schwann cells that are absent as revealed with detailed histology. Reduction of overshooting afferents may be enhanced by a reduction of the neurotrophin Ntf3 transcript to about 25% of wild type. Ntf3 transcript reductions are comparable to an adult model that uses a dominant negative form of ErbB4 expressed in the supporting cells and Schwann cells of the organ of Corti. ErbB2 null mice retain afferents to inner hair cells possibly because of the prominent expression of the neurotrophin Bdnf in developing hair cells. Despite the normal presence of Bdnf transcript, afferent fibers are disoriented near the organ of Corti. Efferent fibers do not form an intraganglionic spiral bundle in the absence of spiral ganglia and appear reduced and disorganized. This suggests that either ErbB2 mediated alterations in sensory neurons or the absence of Schwann cells affects efferent fiber growth to the organ of Corti.
Collapse
Affiliation(s)
- Jacqueline K. Morris
- Department of Biology and Geology, Baldwin-Wallace College, Berea, OH 44017, USA
| | - Adel Maklad
- Department of Anatomy, University of Mississippi Medical Center, Jackson, MS, USA
| | - Laura A. Hansen
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA
| | - Feng Feng
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA
| | - Christian Sorensen
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA
| | - Kuo-Fen Lee
- Peptide Biology Laboratories, The Salk Institute for Biological Sciences, La Jolla, CA 92037, USA
| | - Wendy B. Macklin
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Bernd Fritzsch
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA
- Corresponding author.
| |
Collapse
|