1
|
Oberle HM, Ford AN, Czarny JE, Rogalla MM, Apostolides PF. Recurrent Circuits Amplify Corticofugal Signals and Drive Feedforward Inhibition in the Inferior Colliculus. J Neurosci 2023; 43:5642-5655. [PMID: 37308295 PMCID: PMC10401644 DOI: 10.1523/jneurosci.0626-23.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
The inferior colliculus (IC) is a midbrain hub critical for perceiving complex sounds, such as speech. In addition to processing ascending inputs from most auditory brainstem nuclei, the IC receives descending inputs from auditory cortex that control IC neuron feature selectivity, plasticity, and certain forms of perceptual learning. Although corticofugal synapses primarily release the excitatory transmitter glutamate, many physiology studies show that auditory cortical activity has a net inhibitory effect on IC neuron spiking. Perplexingly, anatomy studies imply that corticofugal axons primarily target glutamatergic IC neurons while only sparsely innervating IC GABA neurons. Corticofugal inhibition of the IC may thus occur largely independently of feedforward activation of local GABA neurons. We shed light on this paradox using in vitro electrophysiology in acute IC slices from fluorescent reporter mice of either sex. Using optogenetic stimulation of corticofugal axons, we find that excitation evoked with single light flashes is indeed stronger in presumptive glutamatergic neurons compared with GABAergic neurons. However, many IC GABA neurons fire tonically at rest, such that sparse and weak excitation suffices to significantly increase their spike rates. Furthermore, a subset of glutamatergic IC neurons fire spikes during repetitive corticofugal activity, leading to polysynaptic excitation in IC GABA neurons owing to a dense intracollicular connectivity. Consequently, recurrent excitation amplifies corticofugal activity, drives spikes in IC GABA neurons, and generates substantial local inhibition in the IC. Thus, descending signals engage intracollicular inhibitory circuits despite apparent constraints of monosynaptic connectivity between auditory cortex and IC GABA neurons.SIGNIFICANCE STATEMENT Descending "corticofugal" projections are ubiquitous across mammalian sensory systems, and enable the neocortex to control subcortical activity in a predictive or feedback manner. Although corticofugal neurons are glutamatergic, neocortical activity often inhibits subcortical neuron spiking. How does an excitatory pathway generate inhibition? Here we study the corticofugal pathway from auditory cortex to inferior colliculus (IC), a midbrain hub important for complex sound perception. Surprisingly, cortico-collicular transmission was stronger onto IC glutamatergic compared with GABAergic neurons. However, corticofugal activity triggered spikes in IC glutamate neurons with local axons, thereby generating strong polysynaptic excitation and feedforward spiking of GABAergic neurons. Our results thus reveal a novel mechanism that recruits local inhibition despite limited monosynaptic convergence onto inhibitory networks.
Collapse
Affiliation(s)
- Hannah M Oberle
- Neuroscience Graduate Program
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
| | - Alexander N Ford
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
| | - Jordyn E Czarny
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
| | - Meike M Rogalla
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
| | - Pierre F Apostolides
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
- Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
2
|
Oberle HM, Ford AN, Dileepkumar D, Czarny J, Apostolides PF. Synaptic mechanisms of top-down control in the non-lemniscal inferior colliculus. eLife 2022; 10:e72730. [PMID: 34989674 PMCID: PMC8735864 DOI: 10.7554/elife.72730] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/19/2021] [Indexed: 01/05/2023] Open
Abstract
Corticofugal projections to evolutionarily ancient, subcortical structures are ubiquitous across mammalian sensory systems. These 'descending' pathways enable the neocortex to control ascending sensory representations in a predictive or feedback manner, but the underlying cellular mechanisms are poorly understood. Here, we combine optogenetic approaches with in vivo and in vitro patch-clamp electrophysiology to study the projection from mouse auditory cortex to the inferior colliculus (IC), a major descending auditory pathway that controls IC neuron feature selectivity, plasticity, and auditory perceptual learning. Although individual auditory cortico-collicular synapses were generally weak, IC neurons often integrated inputs from multiple corticofugal axons that generated reliable, tonic depolarizations even during prolonged presynaptic activity. Latency measurements in vivo showed that descending signals reach the IC within 30 ms of sound onset, which in IC neurons corresponded to the peak of synaptic depolarizations evoked by short sounds. Activating ascending and descending pathways at latencies expected in vivo caused a NMDA receptor-dependent, supralinear excitatory postsynaptic potential summation, indicating that descending signals can nonlinearly amplify IC neurons' moment-to-moment acoustic responses. Our results shed light upon the synaptic bases of descending sensory control and imply that heterosynaptic cooperativity contributes to the auditory cortico-collicular pathway's role in plasticity and perceptual learning.
Collapse
Affiliation(s)
- Hannah M Oberle
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
- Neuroscience Graduate Program, University of MichiganAnn ArborUnited States
| | - Alexander N Ford
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
| | - Deepak Dileepkumar
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
| | - Jordyn Czarny
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
| | - Pierre F Apostolides
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
- Molecular and Integrative Physiology, University of Michigan Medical SchoolAnn ArborUnited States
| |
Collapse
|
3
|
|
4
|
Anbuhl KL, Benichoux V, Greene NT, Brown AD, Tollin DJ. Development of the head, pinnae, and acoustical cues to sound location in a precocial species, the guinea pig (Cavia porcellus). Hear Res 2017; 356:35-50. [PMID: 29128159 PMCID: PMC5705338 DOI: 10.1016/j.heares.2017.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/23/2017] [Accepted: 10/30/2017] [Indexed: 11/26/2022]
Abstract
The morphology of the head and pinna shape the spatial and frequency dependence of sound propagation that give rise to the acoustic cues to sound source location. During early development, the physical dimensions of the head and pinna increase rapidly. Thus, the binaural (interaural time and level differences, ITD and ILD) and monaural (spectral shape) cues are also hypothesized to change rapidly. Complex interactions between the size and shape of the head and pinna limit the accuracy of simple acoustical models (e.g. spherical) and necessitate empirical measurements. Here, we measured the cues to location in the developing guinea pig, a precocial species commonly used for studies of the auditory system. We measured directional transfer functions (DTFs) and the dimensions of the head and pinna in guinea pigs from birth (P0) through adulthood. Dimensions of the head and pinna increased by 87% and 48%, respectively, reaching adult values by ∼8 weeks (P56). The monaural acoustic gain produced by the head and pinna increased with frequency and age, with maximum gains at higher frequencies (>8 kHz) reaching values of 10-21 dB for all ages. The center frequency of monaural spectral notches also decreased with age, from higher frequencies (∼17 kHz) at P0 to lower frequencies (∼12 kHz) in adults. In all animals, ILDs and ITDs were dependent on both frequency and spatial location. Over development, the maximum ILD magnitude increased from ∼15 dB at P0 to ∼30 dB in adults (at frequencies >8 kHz), while the maximum low frequency ITDs increased from ∼185 μs at P0 to ∼300 μs in adults. These results demonstrate that the changes in the acoustical cues are directly related to changes in head and pinna morphology.
Collapse
Affiliation(s)
- Kelsey L Anbuhl
- Neuroscience Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Victor Benichoux
- Department of Physiology & Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nathaniel T Greene
- Department of Physiology & Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Andrew D Brown
- Department of Physiology & Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniel J Tollin
- Neuroscience Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Physiology & Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
5
|
Saldaña E. All the way from the cortex: a review of auditory corticosubcollicular pathways. THE CEREBELLUM 2016; 14:584-96. [PMID: 26142291 DOI: 10.1007/s12311-015-0694-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enrico Mugnaini has devoted part of his long and fruitful neuroscientific career to investigating the structural similarities between the cerebellar cortex and one of the first relay stations of the mammalian auditory pathway: the dorsal cochlear nucleus. The hypothesis of the cerebellar-like nature of the superficial layers of the dorsal cochlear nucleus received definitive support with the discovery and extensive characterization in his laboratory of unipolar brush cells, a neuron type unique to certain regions of the cerebellar cortex and to the granule cell domains of the cochlear nuclei. Paradoxically, a different line of research carried out in his laboratory revealed that, unlike the mammalian cerebellar cortex, the dorsal cochlear nucleus receives direct projections from the cerebral cortex, a fact that constitutes one of the main differences between the cerebellum and the dorsal cochlear nucleus. In an article published in 1995, Mugnaini's group described in detail the novel direct projections from the rat auditory neocortex to various subcollicular auditory centers, including the nucleus sagulum, the paralemniscal regions, the superior olivary complex, and the cochlear nuclei (Feliciano et al., Auditory Neuroscience 1995; 1:287-308). This review gives Enrico Mugnaini credit for his seminal contribution to the knowledge of auditory corticosubcollicular projections and summarizes how this growing field has evolved in the last 20 years.
Collapse
Affiliation(s)
- Enrique Saldaña
- Neurohistology Laboratory, Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, 37007, Salamanca, Spain. .,Department of Cell Biology and Pathology, Medical School, University of Salamanca, 37007, Salamanca, Spain. .,Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
6
|
Atencio CA, Schreiner CE. Functional congruity in local auditory cortical microcircuits. Neuroscience 2016; 316:402-19. [PMID: 26768399 DOI: 10.1016/j.neuroscience.2015.12.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/16/2015] [Accepted: 12/30/2015] [Indexed: 12/19/2022]
Abstract
Functional columns of primary auditory cortex (AI) are arranged in layers, each composed of highly connected fine-scale networks. The basic response properties and interactions within these local subnetworks have only begun to be assessed. We examined the functional diversity of neurons within the laminar microarchitecture of cat AI to determine the relationship of spectrotemporal processing between neighboring neurons. Neuronal activity was recorded across the cortical layers while presenting a dynamically modulated broadband noise. Spectrotemporal receptive fields (STRFs) and their nonlinear input/output functions (nonlinearities) were constructed for each neuron and compared for pairs of neurons simultaneously recorded at the same contact site. Properties of these local neuron pairs showed greater similarity than non-paired neurons within the same column for all considered parameters including firing rate, envelope-phase precision, preferred spectral and temporal modulation frequency, as well as for the threshold and transition of the response nonlinearity. This higher functional similarity of paired versus non-paired neurons was most apparent in infragranular neuron pairs, and less for local supragranular and granular pairs. The functional similarity of local paired neurons for firing rate, best temporal modulation frequency and two nonlinearity aspects was laminar dependent, with infragranular local pair-wise differences larger than for granular or supragranular layers. Synchronous spiking events between pairs of neurons revealed that simultaneous 'Bicellular' spikes, in addition to carrying higher stimulus information than non-synchronized spikes, encoded faster modulation frequencies. Bicellular functional differences to the best matched of the paired neurons could be substantial. Bicellular nonlinearities showed that synchronous spikes act to transmit stimulus information with higher fidelity and precision than non-synchronous spikes of the individual neurons, thus, likely enhancing stimulus feature selectivity in their target neurons. Overall, the well-correlated and temporally precise processing within local subnetworks of cat AI showed laminar-dependent functional diversity in spectrotemporal processing, despite high intra-columnar congruity in frequency preference.
Collapse
Affiliation(s)
- C A Atencio
- Coleman Memorial Laboratory, UCSF Center for Integrative Neuroscience, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology-HNS, University of California, San Francisco, United States.
| | - C E Schreiner
- Coleman Memorial Laboratory, UCSF Center for Integrative Neuroscience, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology-HNS, University of California, San Francisco, United States
| |
Collapse
|
7
|
Elgayar SAM, Hussein OA, Abdel-Hafez AMM, Thabet HSA. Nicotine impact on the structure of adult male guinea pig auditory cortex. ACTA ACUST UNITED AC 2015; 68:167-79. [PMID: 26686587 DOI: 10.1016/j.etp.2015.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/29/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND A growing body of evidence suggests that chronic cigarette smoking causes detrimental effects on brain morphology. AIM OF WORK To study the structural changes in auditory cortex region (Layer V), under the influence of nicotine. MATERIAL AND METHODS Three animal groups (10 each) were used; group I (control) and groups IIa and IIb received 3 and 6mg/kg nicotine respectively. The specimens from the auditory cortex were examined using light and electron microscopy and morphometry. RESULTS Neurons and blood capillaries of the auditory cortex (layer V), were influenced by chronic nicotine treatment in a dose dependent manner. The neurons and their processes revealed disorganization and dissociation of microtubules. The neuronal cells nucleoli characteristically revealed large fibrillar centers detected by silver stain and ultrastructure. The blood capillaries revealed collapse, irregular lumen, thickened basal lamina, abnormal forms of nuclei and organization of microtubules. Neuroglia revealed marked reactivity. Morphometrically, there was a significant decrease in the thickness of the auditory cortex and the number of light neurons and a significant increase in the number of dark neurons in comparison to the control. CONCLUSION Nicotine affects the integrity of the auditory cortex possibly by reducing metabolic and transcription activities.
Collapse
Affiliation(s)
- Sanaa A M Elgayar
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Ola A Hussein
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Huda S A Thabet
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
8
|
Terreros G, Delano PH. Corticofugal modulation of peripheral auditory responses. Front Syst Neurosci 2015; 9:134. [PMID: 26483647 PMCID: PMC4588004 DOI: 10.3389/fnsys.2015.00134] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/15/2015] [Indexed: 01/17/2023] Open
Abstract
The auditory efferent system originates in the auditory cortex and projects to the medial geniculate body (MGB), inferior colliculus (IC), cochlear nucleus (CN) and superior olivary complex (SOC) reaching the cochlea through olivocochlear (OC) fibers. This unique neuronal network is organized in several afferent-efferent feedback loops including: the (i) colliculo-thalamic-cortico-collicular; (ii) cortico-(collicular)-OC; and (iii) cortico-(collicular)-CN pathways. Recent experiments demonstrate that blocking ongoing auditory-cortex activity with pharmacological and physical methods modulates the amplitude of cochlear potentials. In addition, auditory-cortex microstimulation independently modulates cochlear sensitivity and the strength of the OC reflex. In this mini-review, anatomical and physiological evidence supporting the presence of a functional efferent network from the auditory cortex to the cochlear receptor is presented. Special emphasis is given to the corticofugal effects on initial auditory processing, that is, on CN, auditory nerve and cochlear responses. A working model of three parallel pathways from the auditory cortex to the cochlea and auditory nerve is proposed.
Collapse
Affiliation(s)
- Gonzalo Terreros
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile Santiago, Chile
| | - Paul H Delano
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile Santiago, Chile ; Departamento de Otorrinolaringología, Hospital Clínico de la Universidad de Chile Santiago, Chile
| |
Collapse
|
9
|
Truong DT, Rendall AR, Rosen GD, Fitch RH. Morphometric changes in subcortical structures of the central auditory pathway in mice with bilateral nodular heterotopia. Behav Brain Res 2014; 282:61-9. [PMID: 25549859 DOI: 10.1016/j.bbr.2014.12.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/17/2014] [Accepted: 12/21/2014] [Indexed: 02/09/2023]
Abstract
Malformations of cortical development (MCD) have been observed in human reading and language impaired populations. Injury-induced MCD in rodent models of reading disability show morphological changes in the auditory thalamic nucleus (medial geniculate nucleus; MGN) and auditory processing impairments, thus suggesting a link between MCD, MGN, and auditory processing behavior. Previous neuroanatomical examination of a BXD29 recombinant inbred strain (BXD29-Tlr4(lps-2J)/J) revealed MCD consisting of bilateral subcortical nodular heterotopia with partial callosal agenesis. Subsequent behavioral characterization showed a severe impairment in auditory processing-a deficient behavioral phenotype seen across both male and female BXD29-Tlr4(lps-2J)/J mice. In the present study we expanded upon the neuroanatomical findings in the BXD29-Tlr4(lps-2J)/J mutant mouse by investigating whether subcortical changes in cellular morphology are present in neural structures critical to central auditory processing (MGN, and the ventral and dorsal subdivisions of the cochlear nucleus; VCN and DCN, respectively). Stereological assessment of brain tissue of male and female BXD29-Tlr4(lps-2J)/J mice previously tested on an auditory processing battery revealed overall smaller neurons in the MGN of BXD29-Tlr4(lps-2J)/J mutant mice in comparison to BXD29/Ty coisogenic controls, regardless of sex. Interestingly, examination of the VCN and DCN revealed sexually dimorphic changes in neuronal size, with a distribution shift toward larger neurons in female BXD29-Tlr4(lps-2J)/J brains. These effects were not seen in males. Together, the combined data set supports and further expands the observed co-occurrence of MCD, auditory processing impairments, and changes in subcortical anatomy of the central auditory pathway. The current stereological findings also highlight sex differences in neuroanatomical presentation in the presence of a common auditory behavioral phenotype.
Collapse
Affiliation(s)
- Dongnhu T Truong
- Department of Psychology/Behavioral Neuroscience, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269, USA
| | - Amanda R Rendall
- Department of Psychology/Behavioral Neuroscience, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269, USA
| | - Glenn D Rosen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - R Holly Fitch
- Department of Psychology/Behavioral Neuroscience, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269, USA.
| |
Collapse
|
10
|
Mellott JG, Bickford ME, Schofield BR. Descending projections from auditory cortex to excitatory and inhibitory cells in the nucleus of the brachium of the inferior colliculus. Front Syst Neurosci 2014; 8:188. [PMID: 25339870 PMCID: PMC4186273 DOI: 10.3389/fnsys.2014.00188] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 09/16/2014] [Indexed: 01/13/2023] Open
Abstract
Descending projections from the auditory cortex (AC) terminate in subcortical auditory centers from the medial geniculate nucleus (MG) to the cochlear nucleus, allowing the AC to modulate the processing of acoustic information at many levels of the auditory system. The nucleus of the brachium of the inferior colliculus (NBIC) is a large midbrain auditory nucleus that is a target of these descending cortical projections. The NBIC is a source of several auditory projections, including an ascending projection to the MG. This ascending projection appears to originate from both excitatory and inhibitory NBIC cells, but whether the cortical projections contact either of these cell groups is unknown. In this study, we first combined retrograde tracing and immunochemistry for glutamic acid decarboxylase (GAD, a marker of GABAergic cells) to identify GABAergic and non-GABAergic NBIC projections to the MG. Our first result is that GAD-immunopositive cells constitute ~17% of the NBIC to MG projection. We then used anterograde labeling and electron microscopy to examine the AC projection to the NBIC. Our second result is that cortical boutons in the NBIC form synapses with round vesicles and asymmetric synapses, consistent with excitatory effects. Finally, we combined fluorescent anterograde labeling of corticofugal axons with immunochemistry and retrograde labeling of NBIC cells that project to the MG. These final results suggest first that AC axons contact both GAD-negative and GAD-positive NBIC cells and, second, that some of cortically-contacted cells project to the MG. Overall, the results imply that corticofugal projections can modulate both excitatory and inhibitory ascending projections from the NBIC to the auditory thalamus.
Collapse
Affiliation(s)
- Jeffrey G Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH USA
| | - Martha E Bickford
- Department of Anatomical Sciences and Neurobiology, University of Louisville Louisville, KY USA
| | - Brett R Schofield
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH USA
| |
Collapse
|
11
|
Kong L, Xiong C, Li L, Yan J. Frequency-specific corticofugal modulation of the dorsal cochlear nucleus in mice. Front Syst Neurosci 2014; 8:125. [PMID: 25071477 PMCID: PMC4076887 DOI: 10.3389/fnsys.2014.00125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 06/16/2014] [Indexed: 01/03/2023] Open
Abstract
The primary auditory cortex (AI) modulates the sound information processing in the lemniscal subcortical nuclei, including the anteroventral cochlear nucleus (AVCN), in a frequency-specific manner. The dorsal cochlear nucleus (DCN) is a non-lemniscal subcortical nucleus but it is tonotopically organized like the AVCN. However, it remains unclear how the AI modulates the sound information processing in the DCN. This study examined the impact of focal electrical stimulation of AI on the auditory responses of the DCN neurons in mice. We found that the electrical stimulation induced significant changes in the best frequency (BF) of DCN neurons. The changes in the BFs were highly specific to the BF differences between the stimulated AI neurons and the recorded DCN neurons. The DCN BFs shifted higher when the AI BFs were higher than the DCN BFs and the DCN BFs shifted lower when the AI BFs were lower than the DCN BFs. The DCN BFs showed no change when the AI and DCN BFs were similar. Moreover, the BF shifts were linearly correlated to the BF differences. Thus, our data suggest that corticofugal modulation of the DCN is also highly specific to frequency information, similar to the corticofugal modulation of the AVCN. The frequency-specificity of corticofugal modulation does not appear limited to the lemniscal ascending pathway.
Collapse
Affiliation(s)
- Lingzhi Kong
- Department of Physiology and Pharmacology, Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Colin Xiong
- Department of Physiology and Pharmacology, Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Liang Li
- Department of Psychology, Department of Machine Intelligence, Speech and Hearing Research Center, Key Laboratory on Machine Perception (Ministry of Education), PKU-IDG/McGovern Institute for Brain Research, Peking University Beijing, China
| | - Jun Yan
- Department of Physiology and Pharmacology, Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| |
Collapse
|
12
|
Budinger E, Brosch M, Scheich H, Mylius J. The subcortical auditory structures in the Mongolian gerbil: II. Frequency-related topography of the connections with cortical field AI. J Comp Neurol 2013; 521:2772-97. [DOI: 10.1002/cne.23314] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/20/2012] [Accepted: 01/23/2013] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | - Judith Mylius
- Special Laboratory for Primate Neurobiology; Leibniz Institute for Neurobiology; D-39118 Magdeburg; Germany
| |
Collapse
|
13
|
Mugnaini E, Sekerková G, Martina M. The unipolar brush cell: a remarkable neuron finally receiving deserved attention. BRAIN RESEARCH REVIEWS 2011; 66:220-45. [PMID: 20937306 PMCID: PMC3030675 DOI: 10.1016/j.brainresrev.2010.10.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 12/17/2022]
Abstract
Unipolar brush cells (UBC) are small, glutamatergic neurons residing in the granular layer of the cerebellar cortex and the granule cell domain of the cochlear nuclear complex. Recent studies indicate that this neuronal class consists of three or more subsets characterized by distinct chemical phenotypes, as well as by intrinsic properties that may shape their synaptic responses and firing patterns. Yet, all UBCs have a unique morphology, as both the dendritic brush and the large endings of the axonal branches participate in the formation of glomeruli. Although UBCs and granule cells may share the same excitatory and inhibitory inputs, the two cell types are distinctively differentiated. Typically, whereas the granule cell has 4-5 dendrites that are innervated by different mossy fibers, and an axon that divides only once to form parallel fibers after ascending to the molecular layer, the UBC has but one short dendrite whose brush engages in synaptic contact with a single mossy fiber terminal, and an axon that branches locally in the granular layer; branches of UBC axons form a non-canonical, cortex-intrinsic category of mossy fibers synapsing with granule cells and other UBCs. This is thought to generate a feed-forward amplification of single mossy fiber afferent signals that would reach the overlying Purkinje cells via ascending granule cell axons and their parallel fibers. In sharp contrast to other classes of cerebellar neurons, UBCs are not distributed homogeneously across cerebellar lobules, and subsets of UBCs also show different, albeit overlapping, distributions. UBCs are conspicuously rare in the expansive lateral cerebellar areas targeted by the cortico-ponto-cerebellar pathway, while they are a constant component of the vermis and the flocculonodular lobe. The presence of UBCs in cerebellar regions involved in the sensorimotor processes that regulate body, head and eye position, as well as in regions of the cochlear nucleus that process sensorimotor information suggests a key role in these critical functions; it also invites further efforts to clarify the cellular biology of the UBCs and their specific functions in the neuronal microcircuits in which they are embedded. High density of UBCs in specific regions of the cerebellar cortex is a feature largely conserved across mammals and suggests an involvement of these neurons in fundamental aspects of the input/output organization as well as in clinical manifestation of focal cerebellar disease.
Collapse
Affiliation(s)
- Enrico Mugnaini
- Department of Cellular and Molecular Biology, The Feinberg School of Medicine of Northwestern University, Chicago, IL, USA.
| | | | | |
Collapse
|
14
|
|
15
|
Atencio CA, Schreiner CE. Columnar connectivity and laminar processing in cat primary auditory cortex. PLoS One 2010; 5:e9521. [PMID: 20209092 PMCID: PMC2831079 DOI: 10.1371/journal.pone.0009521] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 02/10/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Radial intra- and interlaminar connections form a basic microcircuit in primary auditory cortex (AI) that extracts acoustic information and distributes it to cortical and subcortical networks. Though the structure of this microcircuit is known, we do not know how the functional connectivity between layers relates to laminar processing. METHODOLOGY/PRINCIPAL FINDINGS We studied the relationships between functional connectivity and receptive field properties in this columnar microcircuit by simultaneously recording from single neurons in cat AI in response to broadband dynamic moving ripple stimuli. We used spectrotemporal receptive fields (STRFs) to estimate the relationship between receptive field parameters and the functional connectivity between pairs of neurons. Interlaminar connectivity obtained through cross-covariance analysis reflected a consistent pattern of information flow from thalamic input layers to cortical output layers. Connection strength and STRF similarity were greatest for intralaminar neuron pairs and in supragranular layers and weaker for interlaminar projections. Interlaminar connection strength co-varied with several STRF parameters: feature selectivity, phase locking to the stimulus envelope, best temporal modulation frequency, and best spectral modulation frequency. Connectivity properties and receptive field relationships differed for vertical and horizontal connections. CONCLUSIONS/SIGNIFICANCE Thus, the mode of local processing in supragranular layers differs from that in infragranular layers. Therefore, specific connectivity patterns in the auditory cortex shape the flow of information and constrain how spectrotemporal processing transformations progress in the canonical columnar auditory microcircuit.
Collapse
Affiliation(s)
- Craig A Atencio
- Berkeley Bioengineering Graduate Group, University of California, Berkeley, California, United States of America.
| | | |
Collapse
|
16
|
Schofield BR. Projections to the inferior colliculus from layer VI cells of auditory cortex. Neuroscience 2008; 159:246-58. [PMID: 19084579 DOI: 10.1016/j.neuroscience.2008.11.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 11/07/2008] [Accepted: 11/08/2008] [Indexed: 10/21/2022]
Abstract
A large injection of a retrograde tracer into the inferior colliculus of guinea pigs labeled two bands of cells in the ipsilateral auditory cortex: a dense band of cells in layer V and a second band of cells in layer VI. On the contralateral side, labeled cells were restricted to layer V. The ipsilateral layer VI cells were distributed throughout temporal cortex, suggesting projections from multiple auditory areas. The layer VI cells included pyramidal cells as well as several varieties of non-pyramidal cells. Small tracer injections restricted to the dorsal cortex or external cortex of the inferior colliculus consistently labeled cells in layer VI. Injections restricted to the central nucleus of the inferior colliculus labeled layer VI cells only rarely. Overall, 10% of the cells in temporal cortex that project to the ipsilateral inferior colliculus were located in layer VI, suggesting that layer VI cells make a significant contribution to the corticocollicular pathway.
Collapse
Affiliation(s)
- B R Schofield
- Department of Anatomy and Neurobiology, Northeastern Ohio Universities College of Medicine, 4209 State Route 44, PO Box 95, Rootstown, OH 44272, USA.
| |
Collapse
|
17
|
Abstract
The growth of fluorescence imaging technology and the development of sensitive fluorescent retrograde tracers has provided many new approaches for analyzing neuronal circuits. Fluorescent markers provide unparalleled opportunity for combining axonal tract tracing with techniques such as immunohistochemistry or physiological recording. This unit describes the use of six different fluorescent tracers: Fast Blue, fluorescein dextran, FluoroGold, FluoroRuby, red beads, and green beads. Guidance is provided on how to choose a tracer for a particular experiment, and three methods are described for injecting the tracers, including pressure injection through a microsyringe or a micropipet, and iontophoretic injection through a micropipet. Criteria for selecting the most appropriate method are discussed. The protocols provide the information necessary to take advantage of the numerous fluorescent tracers that are available and to apply them to a wide variety of scientific questions.
Collapse
Affiliation(s)
- Brett R Schofield
- Northeastern Ohio Universities College of Medicine, Rootstown, Ohio, USA
| |
Collapse
|
18
|
Peterson DC, Schofield BR. Projections from auditory cortex contact ascending pathways that originate in the superior olive and inferior colliculus. Hear Res 2007; 232:67-77. [PMID: 17643879 PMCID: PMC2682707 DOI: 10.1016/j.heares.2007.06.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 06/08/2007] [Accepted: 06/12/2007] [Indexed: 10/23/2022]
Abstract
The superior olivary complex (SOC) and inferior colliculus (IC) are targets of cortical projections as well as sources of major ascending auditory pathways. This study examines whether the cortical projections contact cells in the SOC or IC that project to higher levels. First, we placed an anterograde tracer into the auditory cortex to label cortico-olivary axons and a retrograde tracer into the IC to label olivocollicular cells in guinea pigs. Cortical axons contacted many labeled cells in the ipsilateral SOC and fewer labeled cells in the contralateral SOC. Contacted cells projected to the ipsilateral or contralateral IC. In a second experiment, we labeled corticocollicular axons with an anterograde tracer and injected retrograde tracers into the medial geniculate (MG) to label colliculogeniculate cells. In the IC ipsilateral to the cortical injection, many cortical axons contacted colliculogeniculate cells in the dorsal cortex and external cortex of the IC. The contacted cells projected to the ipsilateral MG or, less often, to the contralateral MG. The results indicate that cortical projections are likely to contact cells in the SOC and IC that project to higher centers. This suggests that auditory cortex can modulate the ascending auditory pathways at multiple levels of the brainstem.
Collapse
Affiliation(s)
| | - Brett R. Schofield
- Correspondence to: Brett R. Schofield, PhD, Department of Neurobiology, Northeastern Ohio Universities College of Medicine, 4209 State Route 44, PO Box 95, Rootstown, OH 44272 USA, Telephone: 330-325-6655, Fax: 330-325-5916,
| |
Collapse
|
19
|
Schofield BR, Schofield RM, Sorensen KA, Motts SD. On the use of retrograde tracers for identification of axon collaterals with multiple fluorescent retrograde tracers. Neuroscience 2007; 146:773-83. [PMID: 17379419 PMCID: PMC2680684 DOI: 10.1016/j.neuroscience.2007.02.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 02/04/2007] [Accepted: 02/06/2007] [Indexed: 11/25/2022]
Abstract
A common method for identifying collateral projections is to inject different retrograde tracers into two targets and examine labeled cells for the presence of both tracers. Double-labeled cells are considered to have collateral projections to the two injection sites. This method is widely considered to underestimate the extent of collaterals. To test the efficiency of double-labeling, we mixed equal volumes of two tracers, injected them into one site in a guinea-pig brain, and counted the resulting labeled cells. Ideally, the tracers would have precisely overlapping injection sites and all labeled cells would contain both tracers. We tested several combinations of tracers: 1) Fast Blue and fluorescein dextran; 2) fluorescein dextran and FluoroGold; 3) fluorescein dextran and FluoroRuby; 4) FluoroGold and green beads; 5) FluoroGold and red beads; 6) FluoroRuby and green beads; and, 7) green beads and red beads. For each combination, a mixture was injected into the left inferior colliculus. After 1 week to allow for transport, labeled cells were counted in the right inferior colliculus and the left temporal cortex. For each mixture, the results were similar for the two areas. The percentage of cells that were double-labeled varied from 0% to 100%, depending on tracer combination. The highest efficiencies (>96%) were observed with red beads and green beads or with FluoroRuby and fluorescein dextran. The limited efficiency of other mixtures could be accounted for only in part by incomplete overlap of the two tracers at the injection site. The results indicate that the specific combination of tracers used to search for collateral projections can greatly affect the findings.
Collapse
Affiliation(s)
- B R Schofield
- Department of Neurobiology, Northeastern Ohio Universities College of Medicine, 4209 State Route 44, Rootstown, OH 44272, USA.
| | | | | | | |
Collapse
|
20
|
Kotak VC, Breithaupt AD, Sanes DH. Developmental hearing loss eliminates long-term potentiation in the auditory cortex. Proc Natl Acad Sci U S A 2007; 104:3550-5. [PMID: 17360680 PMCID: PMC1805556 DOI: 10.1073/pnas.0607177104] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Severe hearing loss during early development is associated with deficits in speech and language acquisition. Although functional studies have shown a deafness-induced alteration of synaptic strength, it is not known whether long-term synaptic plasticity depends on auditory experience. In this study, sensorineural hearing loss (SNHL) was induced surgically in developing gerbils at postnatal day 10, and excitatory synaptic plasticity was examined subsequently in a brain slice preparation that preserves the thalamorecipient auditory cortex. Extracellular stimuli were applied at layer 6 (L6), whereas evoked excitatory synaptic potentials (EPSPs) were recorded from L5 neurons by using a whole-cell current clamp configuration. In control neurons, the conditioning stimulation of L6 significantly altered EPSP amplitude for at least 1 h. Approximately half of neurons displayed long-term potentiation (LTP), whereas the other half displayed long-term depression (LTD). In contrast, SNHL neurons displayed only LTD after the conditioning stimulation of L6. Finally, the vast majority of neurons recorded from control prehearing animals (postnatal days 9-11) displayed LTD after L6 stimulation. Thus, normal auditory experience may be essential for the maturation of synaptic plasticity mechanisms.
Collapse
Affiliation(s)
- Vibhakar C. Kotak
- *Center for Neural Science and
- To whom correspondence may be addressed. E-mail: or
| | | | - Dan H. Sanes
- *Center for Neural Science and
- Department of Biology, New York University, New York, NY 10003
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|