1
|
David S, Pinter K, Nguyen KK, Lee DS, Lei Z, Sokolova Y, Sheets L, Kindt KS. Kif1a and intact microtubules maintain synaptic-vesicle populations at ribbon synapses in zebrafish hair cells. J Physiol 2024. [PMID: 39373584 DOI: 10.1113/jp286263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Sensory hair cells of the inner ear utilize specialized ribbon synapses to transmit sensory stimuli to the central nervous system. This transmission necessitates rapid and sustained neurotransmitter release, which depends on a large pool of synaptic vesicles at the hair-cell presynapse. While previous work in neurons has shown that kinesin motor proteins traffic synaptic material along microtubules to the presynapse, the mechanisms of this process in hair cells remain unclear. Our study demonstrates that the kinesin motor protein Kif1a, along with an intact microtubule network, is essential for enriching synaptic vesicles at the presynapse in hair cells. Through genetic and pharmacological approaches, we disrupt Kif1a function and impair microtubule networks in hair cells of the zebrafish lateral-line system. These manipulations led to a significant reduction in synaptic-vesicle populations at the presynapse in hair cells. Using electron microscopy, in vivo calcium imaging, and electrophysiology, we show that a diminished supply of synaptic vesicles adversely affects ribbon-synapse function. Kif1aa mutants exhibit dramatic reductions in spontaneous vesicle release and evoked postsynaptic calcium responses. Furthermore, kif1aa mutants exhibit impaired rheotaxis, a behaviour reliant on the ability of hair cells in the lateral line to respond to sustained flow stimuli. Overall, our results demonstrate that Kif1a-mediated microtubule transport is critical to enrich synaptic vesicles at the active zone, a process that is vital for proper ribbon-synapse function in hair cells. KEY POINTS: Kif1a mRNAs are present in zebrafish hair cells. Loss of Kif1a disrupts the enrichment of synaptic vesicles at ribbon synapses. Disruption of microtubules depletes synaptic vesicles at ribbon synapses. Kif1aa mutants have impaired ribbon-synapse and sensory-system function.
Collapse
Affiliation(s)
- Sandeep David
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, USA
- National Institutes of Health-Brown University Graduate Partnership Program, Bethesda, Maryland, USA
| | - Katherine Pinter
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, USA
| | - Keziah-Khue Nguyen
- Department of Otolaryngology, Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David S Lee
- Department of Otolaryngology, Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zhengchang Lei
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, USA
| | - Yuliya Sokolova
- Advanced Imaging Core, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, USA
| | - Lavinia Sheets
- Department of Otolaryngology, Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, USA
| |
Collapse
|
2
|
David S, Pinter K, Nguyen KK, Lee DS, Lei Z, Sokolova Y, Sheets L, Kindt KS. Kif1a and intact microtubules maintain synaptic-vesicle populations at ribbon synapses in zebrafish hair cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595037. [PMID: 38903095 PMCID: PMC11188139 DOI: 10.1101/2024.05.20.595037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Sensory hair cells of the inner ear utilize specialized ribbon synapses to transmit sensory stimuli to the central nervous system. This sensory transmission necessitates rapid and sustained neurotransmitter release, which relies on a large pool of synaptic vesicles at the hair-cell presynapse. Work in neurons has shown that kinesin motor proteins traffic synaptic material along microtubules to the presynapse, but how new synaptic material reaches the presynapse in hair cells is not known. We show that the kinesin motor protein Kif1a and an intact microtubule network are necessary to enrich synaptic vesicles at the presynapse in hair cells. We use genetics and pharmacology to disrupt Kif1a function and impair microtubule networks in hair cells of the zebrafish lateral-line system. We find that these manipulations decrease synaptic-vesicle populations at the presynapse in hair cells. Using electron microscopy, along with in vivo calcium imaging and electrophysiology, we show that a diminished supply of synaptic vesicles adversely affects ribbon-synapse function. Kif1a mutants exhibit dramatic reductions in spontaneous vesicle release and evoked postsynaptic calcium responses. Additionally, we find that kif1a mutants exhibit impaired rheotaxis, a behavior reliant on the ability of hair cells in the lateral line to respond to sustained flow stimuli. Overall, our results demonstrate that Kif1a-based microtubule transport is critical to enrich synaptic vesicles at the active zone in hair cells, a process that is vital for proper ribbon-synapse function.
Collapse
Affiliation(s)
- Sandeep David
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, MD, USA
- National Institutes of Health-Brown University Graduate Partnership Program, Bethesda, MD, USA
| | - Katherine Pinter
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, MD, USA
| | - Keziah-Khue Nguyen
- Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - David S Lee
- Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhengchang Lei
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, MD, USA
| | - Yuliya Sokolova
- Advanced Imaging Core, National Institute on Deafness and other Communication Disorders, Bethesda, MD, USA
| | - Lavinia Sheets
- Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, MD, USA
| |
Collapse
|
3
|
Mukhopadhyay M, Pangrsic T. Synaptic transmission at the vestibular hair cells of amniotes. Mol Cell Neurosci 2022; 121:103749. [PMID: 35667549 DOI: 10.1016/j.mcn.2022.103749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022] Open
Abstract
A harmonized interplay between the central nervous system and the five peripheral end organs is how the vestibular system helps organisms feel a sense of balance and motion in three-dimensional space. The receptor cells of this system, much like their cochlear equivalents, are the specialized hair cells. However, research over the years has shown that the vestibular endorgans and hair cells evolved very differently from their cochlear counterparts. The structurally unique calyceal synapse, which appeared much later in the evolutionary time scale, and continues to intrigue researchers, is now known to support several forms of synaptic neurotransmission. The conventional quantal transmission is believed to employ the ribbon structures, which carry several tethered vesicles filled with neurotransmitters. However, the field of vestibular hair cell synaptic molecular anatomy is still at a nascent stage and needs further work. In this review, we will touch upon the basic structure and function of the peripheral vestibular system, with the focus on the various modes of neurotransmission at the type I vestibular hair cells. We will also shed light on the current knowledge about the molecular anatomy of the vestibular hair cell synapses and vestibular synaptopathy.
Collapse
Affiliation(s)
- Mohona Mukhopadhyay
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, and Institute for Auditory Neuroscience, 37075 Göttingen, Germany
| | - Tina Pangrsic
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, and Institute for Auditory Neuroscience, 37075 Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany; Collaborative Research Center 889, University of Göttingen, Göttingen, Germany; Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
4
|
Wan G, Ji L, Schrepfer T, Gong S, Wang GP, Corfas G. Synaptopathy as a Mechanism for Age-Related Vestibular Dysfunction in Mice. Front Aging Neurosci 2019; 11:156. [PMID: 31293415 PMCID: PMC6606700 DOI: 10.3389/fnagi.2019.00156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/11/2019] [Indexed: 12/27/2022] Open
Abstract
Age-related decline of inner ear function contributes to both hearing loss and balance disorders, which lead to impaired quality of life and falls that can result in injury and even death. The cellular mechanisms responsible for the ear's functional decline have been controversial, but hair cell loss has been considered the key cause for a long time. However, recent studies showed that in the cochlea, loss of inner hair cell (IHC) synapses precedes hair cell or neuronal loss, and this synaptopathy is an early step in the functional decline. Whether a similar process occurs in the vestibular organ, its timing and its relationship to organ dysfunction remained unknown. We compared the time course of age-related deterioration in vestibular and cochlear functions in mice as well as characterized the age-associated changes in their utricles at the histological level. We found that in the mouse, as in humans, age-related decline in vestibular evoked potentials (VsEPs) occurs later than hearing loss. As in the cochlea, deterioration of VsEPs correlates with the loss of utricular ribbon synapses but not hair cells or neuronal cell bodies. Furthermore, the age-related synaptic loss is restricted to calyceal innervations in the utricular extrastriolar region. Hence, our findings suggest that loss of extrastriolar calyceal synapses has a key role in age-related vestibular dysfunction (ARVD).
Collapse
Affiliation(s)
- Guoqiang Wan
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States.,MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Lingchao Ji
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States.,Department of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Thomas Schrepfer
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Sihao Gong
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Guo-Peng Wang
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Gabriel Corfas
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
5
|
Hsu YH, Estrada K, Evangelou E, Ackert-Bicknell C, Akesson K, Beck T, Brown SJ, Capellini T, Carbone L, Cauley J, Cheung CL, Cummings SR, Czerwinski S, Demissie S, Econs M, Evans D, Farber C, Gautvik K, Harris T, Kammerer C, Kemp J, Koller DL, Kung A, Lawlor D, Lee M, Lorentzon M, McGuigan F, Medina-Gomez C, Mitchell B, Newman A, Nielson C, Ohlsson C, Peacock M, Reppe S, Richards JB, Robbins J, Sigurdsson G, Spector TD, Stefansson K, Streeten E, Styrkarsdottir U, Tobias J, Trajanoska K, Uitterlinden A, Vandenput L, Wilson SG, Yerges-Armstrong L, Young M, Zillikens C, Rivadeneira F, Kiel DP, Karasik D. Meta-Analysis of Genomewide Association Studies Reveals Genetic Variants for Hip Bone Geometry. J Bone Miner Res 2019; 34:1284-1296. [PMID: 30888730 PMCID: PMC6650334 DOI: 10.1002/jbmr.3698] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/29/2019] [Accepted: 02/07/2019] [Indexed: 12/14/2022]
Abstract
Hip geometry is an important predictor of fracture. We performed a meta-analysis of GWAS studies in adults to identify genetic variants that are associated with proximal femur geometry phenotypes. We analyzed four phenotypes: (i) femoral neck length; (ii) neck-shaft angle; (iii) femoral neck width, and (iv) femoral neck section modulus, estimated from DXA scans using algorithms of hip structure analysis. In the Discovery stage, 10 cohort studies were included in the fixed-effect meta-analysis, with up to 18,719 men and women ages 16 to 93 years. Association analyses were performed with ∼2.5 million polymorphisms under an additive model adjusted for age, body mass index, and height. Replication analyses of meta-GWAS significant loci (at adjusted genomewide significance [GWS], threshold p ≤ 2.6 × 10-8 ) were performed in seven additional cohorts in silico. We looked up SNPs associated in our analysis, for association with height, bone mineral density (BMD), and fracture. In meta-analysis (combined Discovery and Replication stages), GWS associations were found at 5p15 (IRX1 and ADAMTS16); 5q35 near FGFR4; at 12p11 (in CCDC91); 11q13 (near LRP5 and PPP6R3 (rs7102273)). Several hip geometry signals overlapped with BMD, including LRP5 (chr. 11). Chr. 11 SNP rs7102273 was associated with any-type fracture (p = 7.5 × 10-5 ). We used bone transcriptome data and discovered several significant eQTLs, including rs7102273 and PPP6R3 expression (p = 0.0007), and rs6556301 (intergenic, chr.5 near FGFR4) and PDLIM7 expression (p = 0.005). In conclusion, we found associations between several genes and hip geometry measures that explained 12% to 22% of heritability at different sites. The results provide a defined set of genes related to biological pathways relevant to BMD and etiology of bone fragility. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yi-Hsiang Hsu
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA
- Harvard Medical School, Boston, MA
- Broad Institute, Cambridge, MA
| | - Karol Estrada
- Broad Institute, Cambridge, MA
- Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina 45110, Greece
| | - Cheryl Ackert-Bicknell
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester, Rochester, New York, USA
| | - Kristina Akesson
- Department of Clinical Sciences Malmö, Lund University, Sweden
- Department of Orthopedics, Skåne University Hospital, S-205 02 Malmö, Sweden
| | - Thomas Beck
- Beck Radiological Innovations, Baltimore, MD
| | - Suzanne J Brown
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Terence Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA
| | - Laura Carbone
- Department of Medicine at the Medical College of Georgia at Augusta University, Augusta, GA
| | - Jane Cauley
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Ching-Lung Cheung
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA
| | | | - Serkalem Demissie
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Michael Econs
- Department of Medicine and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Daniel Evans
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Charles Farber
- Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Kaare Gautvik
- Lovisenberg Diakonale Hospital, Unger-Vetlesen Institute, and University of Oslo, Institute of Basic Medical Sciences, Oslo, Norway
| | - Tamara Harris
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, NIA, Bethesda, MD
| | - Candace Kammerer
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - John Kemp
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, UK
| | - Daniel L Koller
- Department of Medicine and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Annie Kung
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Debbie Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, UK
| | - Miryoung Lee
- University of Texas, School of Public Health at Bronwsville, TX
| | - Mattias Lorentzon
- Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Fiona McGuigan
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester, Rochester, New York, USA
- Department of Clinical Sciences Malmö, Lund University, Sweden
| | | | - Braxton Mitchell
- Program in Personalized and Genomic Medicine, and Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, and Geriatric Research and Education Clinical Center - Veterans Administration Medical Center, Baltimore, MD
| | - Anne Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | | | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Munro Peacock
- Department of Medicine and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Sjur Reppe
- Lovisenberg Diakonale Hospital, Unger-Vetlesen Institute, and University of Oslo, Institute of Basic Medical Sciences, Oslo, Norway
- Oslo University Hospital, Department of Medical Biochemistry, Oslo, Norway
| | - J Brent Richards
- Department of Human Genetics, McGill University, and Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - John Robbins
- Department of Medicine, University California at Davis, Sacramento, CA
| | | | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, St Thomas’ Campus, London, UK
| | | | - Elizabeth Streeten
- Program in Personalized and Genomic Medicine, and Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, and Geriatric Research and Education Clinical Center - Veterans Administration Medical Center, Baltimore, MD
| | | | | | | | - André Uitterlinden
- Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Liesbeth Vandenput
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Scott G Wilson
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia
- Department of Twin Research and Genetic Epidemiology, King’s College London, St Thomas’ Campus, London, UK
- School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
| | | | - Mariel Young
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA
| | - Carola Zillikens
- Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA
- Harvard Medical School, Boston, MA
- Broad Institute, Cambridge, MA
| | - David Karasik
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
6
|
Nielson CM, Liu CT, Smith AV, Ackert-Bicknell CL, Reppe S, Jakobsdottir J, Wassel C, Register TC, Oei L, Alonso N, Oei EH, Parimi N, Samelson EJ, Nalls MA, Zmuda J, Lang T, Bouxsein M, Latourelle J, Claussnitzer M, Siggeirsdottir K, Srikanth P, Lorentzen E, Vandenput L, Langefeld C, Raffield L, Terry G, Cox AJ, Allison MA, Criqui MH, Bowden D, Ikram MA, Mellstrom D, Karlsson MK, Carr J, Budoff M, Phillips C, Cupples LA, Chou WC, Myers RH, Ralston SH, Gautvik KM, Cawthon PM, Cummings S, Karasik D, Rivadeneira F, Gudnason V, Orwoll ES, Harris TB, Ohlsson C, Kiel DP, Hsu YH. Novel Genetic Variants Associated With Increased Vertebral Volumetric BMD, Reduced Vertebral Fracture Risk, and Increased Expression of SLC1A3 and EPHB2. J Bone Miner Res 2016; 31:2085-2097. [PMID: 27476799 PMCID: PMC5477772 DOI: 10.1002/jbmr.2913] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/22/2016] [Accepted: 07/08/2016] [Indexed: 12/26/2022]
Abstract
Genome-wide association studies (GWASs) have revealed numerous loci for areal bone mineral density (aBMD). We completed the first GWAS meta-analysis (n = 15,275) of lumbar spine volumetric BMD (vBMD) measured by quantitative computed tomography (QCT), allowing for examination of the trabecular bone compartment. SNPs that were significantly associated with vBMD were also examined in two GWAS meta-analyses to determine associations with morphometric vertebral fracture (n = 21,701) and clinical vertebral fracture (n = 5893). Expression quantitative trait locus (eQTL) analyses of iliac crest biopsies were performed in 84 postmenopausal women, and murine osteoblast expression of genes implicated by eQTL or by proximity to vBMD-associated SNPs was examined. We identified significant vBMD associations with five loci, including: 1p36.12, containing WNT4 and ZBTB40; 8q24, containing TNFRSF11B; and 13q14, containing AKAP11 and TNFSF11. Two loci (5p13 and 1p36.12) also contained associations with radiographic and clinical vertebral fracture, respectively. In 5p13, rs2468531 (minor allele frequency [MAF] = 3%) was associated with higher vBMD (β = 0.22, p = 1.9 × 10-8 ) and decreased risk of radiographic vertebral fracture (odds ratio [OR] = 0.75; false discovery rate [FDR] p = 0.01). In 1p36.12, rs12742784 (MAF = 21%) was associated with higher vBMD (β = 0.09, p = 1.2 × 10-10 ) and decreased risk of clinical vertebral fracture (OR = 0.82; FDR p = 7.4 × 10-4 ). Both SNPs are noncoding and were associated with increased mRNA expression levels in human bone biopsies: rs2468531 with SLC1A3 (β = 0.28, FDR p = 0.01, involved in glutamate signaling and osteogenic response to mechanical loading) and rs12742784 with EPHB2 (β = 0.12, FDR p = 1.7 × 10-3 , functions in bone-related ephrin signaling). Both genes are expressed in murine osteoblasts. This is the first study to link SLC1A3 and EPHB2 to clinically relevant vertebral osteoporosis phenotypes. These results may help elucidate vertebral bone biology and novel approaches to reducing vertebral fracture incidence. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Carrie M Nielson
- School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Sjur Reppe
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
- Lovisenberg Diakonale Hospital, Oslo, Norway
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Christina Wassel
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Thomas C Register
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ling Oei
- Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Leiden, The Netherlands
| | - Nerea Alonso
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Edwin H Oei
- Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Neeta Parimi
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Elizabeth J Samelson
- Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, MA, USA
| | - Mike A Nalls
- National Institute on Aging (NIA), National Institutes of Health, Bethesda, MD, USA
| | - Joseph Zmuda
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Thomas Lang
- Department of Radiology, University of California, San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Mary Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Harvard University Medical School, Boston, MA, USA
| | | | - Melina Claussnitzer
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Technical University Munich, Munich, Germany
| | | | - Priya Srikanth
- School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Erik Lorentzen
- Department of Bioinformatics, Gothenburg University, Gothenburg, Sweden
| | - Liesbeth Vandenput
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carl Langefeld
- Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Laura Raffield
- Center for Human Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Greg Terry
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Amanda J Cox
- Center for Diabetes Research, Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Matthew A Allison
- Department of Family Medicine and Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Michael H Criqui
- Department of Family Medicine and Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Don Bowden
- Center for Diabetes Research, Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Internal Medicine/Endocrinology, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Dan Mellstrom
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus K Karlsson
- Department of Orthopaedics and Clinical Sciences, Malmo University Hospital, Lund University, Malmo, Sweden
| | - John Carr
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Matthew Budoff
- Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Caroline Phillips
- National Institute on Aging (NIA), National Institutes of Health, Bethesda, MD, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Wen-Chi Chou
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Stuart H Ralston
- Rheumatic Diseases Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Kaare M Gautvik
- Lovisenberg Diakonale Hospital, Oslo, Norway
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Peggy M Cawthon
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Steven Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - David Karasik
- Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, MA, USA
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Eric S Orwoll
- Division of Endocrinology, Oregon Health & Science University, Portland, OR, USA
| | - Tamara B Harris
- National Institute on Aging (NIA), National Institutes of Health, Bethesda, MD, USA
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Douglas P Kiel
- Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University Medical School, Boston, MA, USA
| | - Yi-Hsiang Hsu
- Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
7
|
Xie AX, Petravicz J, McCarthy KD. Molecular approaches for manipulating astrocytic signaling in vivo. Front Cell Neurosci 2015; 9:144. [PMID: 25941472 PMCID: PMC4403552 DOI: 10.3389/fncel.2015.00144] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/27/2015] [Indexed: 12/26/2022] Open
Abstract
Astrocytes are the predominant glial type in the central nervous system and play important roles in assisting neuronal function and network activity. Astrocytes exhibit complex signaling systems that are essential for their normal function and the homeostasis of the neural network. Altered signaling in astrocytes is closely associated with neurological and psychiatric diseases, suggesting tremendous therapeutic potential of these cells. To further understand astrocyte function in health and disease, it is important to study astrocytic signaling in vivo. In this review, we discuss molecular tools that enable the selective manipulation of astrocytic signaling, including the tools to selectively activate and inactivate astrocyte signaling in vivo. Lastly, we highlight a few tools in development that present strong potential for advancing our understanding of the role of astrocytes in physiology, behavior, and pathology.
Collapse
Affiliation(s)
- Alison X Xie
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Jeremy Petravicz
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Ken D McCarthy
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| |
Collapse
|
8
|
Requena T, Cabrera S, Martín-Sierra C, Price SD, Lysakowski A, Lopez-Escamez JA. Identification of two novel mutations in FAM136A and DTNA genes in autosomal-dominant familial Meniere's disease. Hum Mol Genet 2014; 24:1119-26. [PMID: 25305078 DOI: 10.1093/hmg/ddu524] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Meniere's disease (MD) is a chronic disorder of the inner ear defined by sensorineural hearing loss, tinnitus and episodic vertigo, and familial MD is observed in 5-15% of sporadic cases. Although its pathophysiology is largely unknown, studies in human temporal bones have found an accumulation of endolymph in the scala media of the cochlea. By whole-exome sequencing, we have identified two novel heterozygous single-nucleotide variants in FAM136A and DTNA genes, both in a Spanish family with three affected cases in consecutive generations, highly suggestive of autosomal-dominant inheritance. The nonsense mutation in the FAM136A gene leads to a stop codon that disrupts the FAM136A protein product. Sequencing revealed two mRNA transcripts of FAM136A in lymphoblasts from patients, which were confirmed by immunoblotting. Carriers of the FAM136A mutation showed a significant decrease in the expression level of both transcripts in lymphoblastoid cell lines. The missense mutation in the DTNA gene produces a novel splice site which skips exon 21 and leads to a shorter alternative transcript. We also demonstrated that FAM136A and DTNA proteins are expressed in the neurosensorial epithelium of the crista ampullaris of the rat by immunohistochemistry. While FAM136A encodes a mitochondrial protein with unknown function, DTNA encodes a cytoskeleton-interacting membrane protein involved in the formation and stability of synapses with a crucial role in the permeability of the blood-brain barrier. Neither of these genes has been described in patients with hearing loss, FAM136A and DTNA being candidate gene for familiar MD.
Collapse
Affiliation(s)
- Teresa Requena
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO - Centre for Genomics and Oncological Research - Pfizer/University of Granada/Junta de Andalucía, PTS, Granada 18016, Spain
| | - Sonia Cabrera
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO - Centre for Genomics and Oncological Research - Pfizer/University of Granada/Junta de Andalucía, PTS, Granada 18016, Spain
| | - Carmen Martín-Sierra
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO - Centre for Genomics and Oncological Research - Pfizer/University of Granada/Junta de Andalucía, PTS, Granada 18016, Spain
| | - Steven D Price
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL 60612, USA and
| | - Anna Lysakowski
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL 60612, USA and
| | - José A Lopez-Escamez
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO - Centre for Genomics and Oncological Research - Pfizer/University of Granada/Junta de Andalucía, PTS, Granada 18016, Spain, Department of Otolaryngology, Hospital de Poniente, El Ejido, Almería 04700, Spain
| |
Collapse
|