1
|
Polspoel S, Moore DR, Swanepoel DW, Kramer SE, Smits C. Sensitivity of the antiphasic digits-in-noise test to simulated unilateral and bilateral conductive hearing loss. Int J Audiol 2023; 62:1022-1030. [PMID: 36121040 DOI: 10.1080/14992027.2022.2119611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/28/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVES The objective of this study is (1) to assess whether the presentation level of the antiphasic digits-in-noise (DIN) test affects the speech recognition threshold (SRT), (2) to evaluate how accurately simulated unilateral and bilateral conductive hearing loss is detected (CHL) and (3) to determine whether increasing the presentation level normalises the antiphasic DIN SRT. DESIGN Participants performed antiphasic and diotic DINs at different presentation levels with unilateral, bilateral or no earplugs. STUDY SAMPLE Twenty-four and twelve normal hearing adults. RESULTS Without earplugs, antiphasic DIN SRTs did not differ between 60 and 80 dB SPL. At 60 dB SPL, the antiphasic DIN correctly classified 92% of the unilateral earplug cases; the diotic DIN 25%. The binaural intelligibility level difference did not differ between the no-earplug condition and the condition with bilateral earplugs when the presentation was increased with the attenuation level. CONCLUSIONS In normal hearing participants, diotic and antiphasic DIN SRTs are independent of presentation level above a minimum level of 60 dB SPL. The antiphasic DIN is more sensitive than the diotic DIN for detecting unilateral CHL; not for bilateral CHL. The effect of CHL on DIN SRTs can be largely compensated by increasing the presentation level. Audibility plays an important role in the antiphasic and diotic DIN.
Collapse
Affiliation(s)
- Sigrid Polspoel
- Otolaryngology-Head and Neck Surgery, Section Ear and Hearing, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, De Boelelaan, The Netherlands
- Amsterdam Public Health Research Institute, Quality of Care, Amsterdam, The Netherlands
| | - David R Moore
- Communication Sciences Research Center, Cincinnati Childrens' Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, UK
| | - De Wet Swanepoel
- Ear Sciences Centre, School of Surgery, University of Western Australia, Perth, WA, Australia
- Department of Speech-Language Pathology and Audiology, University of Pretoria, Pretoria, South Africa
| | - Sophia E Kramer
- Otolaryngology-Head and Neck Surgery, Section Ear and Hearing, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, De Boelelaan, The Netherlands
- Amsterdam Public Health Research Institute, Quality of Care, Amsterdam, The Netherlands
| | - Cas Smits
- Amsterdam Public Health Research Institute, Quality of Care, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Otolaryngology-Head and Neck Surgery, Ear and Hearing, Meibergdreef, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Mishra SK, Moore DR. Auditory Deprivation during Development Alters Efferent Neural Feedback and Perception. J Neurosci 2023; 43:4642-4649. [PMID: 37221095 PMCID: PMC10286938 DOI: 10.1523/jneurosci.2182-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023] Open
Abstract
Auditory experience plays a critical role in hearing development. Developmental auditory deprivation because of otitis media, a common childhood disease, produces long-standing changes in the central auditory system, even after the middle ear pathology is resolved. The effects of sound deprivation because of otitis media have been mostly studied in the ascending auditory system but remain to be examined in the descending pathway that runs from the auditory cortex to the cochlea via the brainstem. Alterations in the efferent neural system could be important because the descending olivocochlear pathway influences the neural representation of transient sounds in noise in the afferent auditory system and is thought to be involved in auditory learning. Here, we show that the inhibitory strength of the medial olivocochlear efferents is weaker in children with a documented history of otitis media relative to controls; both boys and girls were included in the study. In addition, children with otitis media history required a higher signal-to-noise ratio on a sentence-in-noise recognition task than controls to achieve the same criterion performance level. Poorer speech-in-noise recognition, a hallmark of impaired central auditory processing, was related to efferent inhibition, and could not be attributed to the middle ear or cochlear mechanics.SIGNIFICANCE STATEMENT Otitis media is the second most common reason children go to the doctor. Previously, degraded auditory experience because of otitis media has been associated with reorganized ascending neural pathways, even after middle ear pathology resolved. Here, we show that altered afferent auditory input because of otitis media during childhood is also associated with long-lasting reduced descending neural pathway function and poorer speech-in-noise recognition. These novel, efferent findings may be important for the detection and treatment of childhood otitis media.
Collapse
Affiliation(s)
- Srikanta K Mishra
- Department of Speech, Language and Hearing Sciences, University of Texas at Austin, Austin, Texas 78712
| | - David R Moore
- Communication Sciences Research Center, Cincinnati Children's Hospital, Cincinnati, Ohio 45229
- Department of Otolaryngology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
3
|
Tollin DJ, Koka K, Peacock J. Using Stapes Velocity to Estimate the Efficacy of Mechanical Stimulation of the Round Window With an Active Middle Ear Implant. Otol Neurotol 2023; 44:e311-e318. [PMID: 36962010 PMCID: PMC10175173 DOI: 10.1097/mao.0000000000003859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
OBJECTIVE To test a method to measure the efficacy of active middle ear implants when coupled to the round window. METHODS Data previously published in Koka et al. ( Hear Res 2010;263:128-137) were used in this study. Simultaneous measurements of cochlear microphonics (CM) and stapes velocity in response to both acoustic stimulation (forward direction) and round window (RW) stimulation (reverse direction) with an active middle ear implant (AMEI) were made in seven ears in five chinchillas. For each stimulus frequency, the amplitude of the CM was measured separately as a function of intensity (dB SPL or dB mV). Equivalent vibrational input to the cochlea was determined by equating the acoustic and AMEI-generated CM amplitudes for a given intensity. In the condition of equivalent CM amplitude between acoustic and RW stimulation-generated output, we assume that the same vibrational input to the cochlea was present regardless of the route of stimulation. RESULTS The measured stapes velocities for equivalent CM output from the two types of input were not significantly different for low and medium frequencies (0.25-4 kHz); however, the velocities for AMEI-RW drive were significantly lower for higher frequencies (4-14 kHz). Thus, for RM stimulation with an AMEI, stapes velocities can underestimate the mechanical input to the cochlea by ~20 dB for frequencies greater than ~4 kHz. CONCLUSIONS This study confirms that stapes velocity (with the assumption of equivalent stapes velocity for forward and reverse stimulation) cannot be used as a proxy for effective input to the cochlea when it is stimulated in the reverse direction. Future research on application of intraoperative electrophysiological measurements during surgery (CM, compound action potential, or auditory brainstem response) for estimating efficacy and optimizing device coupling and performance is warranted.
Collapse
Affiliation(s)
- Daniel J. Tollin
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Kanthaiah Koka
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045
| | - John Peacock
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
4
|
Zavdy O, Fostick L, Fink N, Danin S, Levin A, Lipschitz N, Hilly O. The Effect of Hearing Aids on Sound Localization in Mild Unilateral Conductive Hearing Loss. J Am Acad Audiol 2022; 33:357-363. [PMID: 35777670 DOI: 10.1055/a-1889-6578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Binaural hearing is of utmost importance for communicating in noisy surroundings and localizing the direction of sound. Unilateral hearing loss (UHL) affects the quality of life in both childhood and adulthood, speech development, and academic achievements. Sound amplification using air-conducting hearing aids (HAs) is a common option for hearing rehabilitation of UHL. The processing time of digital HAs can significantly delay the acoustic stimulation in 3 to 10 milliseconds, which is far longer than the maximal natural interaural time difference (ITD) of 750 microseconds. This can further impair spatial localization in these patients. PURPOSE We sought to assess whether HA effects on ITD and interaural level difference (ILD) impair localization among subjects with unilateral conductive hearing loss (UCHL). RESEARCH DESIGN "Normal"-hearing participants underwent localization testing in different free field settings. STUDY SAMPLE Ten volunteers with "normal"-hearing thresholds participated. INTERVENTION Repeated assessments were compared between "normal" (binaural) hearing, UCHL induced by insertion of an inactivated HA to the ear canal (conductive HL), and amplification with a HA. RESULTS In UCHL mode, with HA switched-off, localization was significantly impaired compared to "normal" hearing (NH; η2 = 0.151). Localization error was more pronounced when sound was presented from the front and from the side of the occluded ear. When switched-on, amplification with HAs significantly improved localization for all participants compared to UCHL. Better localization with HAs was seen in high frequencies compared to low frequencies (η2 = 0.08, 0.03). Even with HAs, localization did not reach that of NH (η2 = 0.034). CONCLUSION Mild UCHL caused localization to deteriorate. HAs significantly improved sound localization, albeit the delay caused by the device processing time. Most of the improvements were seen in high-frequency sounds, representing a beneficial effect of amplification on ILD. Our results have potential clinical value in situations of mild CHL, for instance, otitis media with effusion.
Collapse
Affiliation(s)
- Ofir Zavdy
- Department of Otolaryngology, Head and Neck Surgery, Rabin Medical Center and Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leah Fostick
- Department of Communication Disorders, Ariel University, Ariel, Israel
| | - Nir Fink
- Department of Communication Disorders, Ariel University, Ariel, Israel
| | - Shir Danin
- Department of Communication Disorders, Ariel University, Ariel, Israel
| | - Aviya Levin
- Department of Communication Disorders, Ariel University, Ariel, Israel
| | - Noga Lipschitz
- Department of Otolaryngology, Head and Neck Surgery, Rabin Medical Center and Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ohad Hilly
- Department of Otolaryngology, Head and Neck Surgery, Rabin Medical Center and Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Communication Disorders, Ariel University, Ariel, Israel
| |
Collapse
|
5
|
Thornton JL, Anbuhl KL, Tollin DJ. Temporary Unilateral Hearing Loss Impairs Spatial Auditory Information Processing in Neurons in the Central Auditory System. Front Neurosci 2021; 15:721922. [PMID: 34790088 PMCID: PMC8591253 DOI: 10.3389/fnins.2021.721922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
Temporary conductive hearing loss (CHL) can lead to hearing impairments that persist beyond resolution of the CHL. In particular, unilateral CHL leads to deficits in auditory skills that rely on binaural input (e.g., spatial hearing). Here, we asked whether single neurons in the auditory midbrain, which integrate acoustic inputs from the two ears, are altered by a temporary CHL. We introduced 6 weeks of unilateral CHL to young adult chinchillas via foam earplug. Following CHL removal and restoration of peripheral input, single-unit recordings from inferior colliculus (ICC) neurons revealed the CHL decreased the efficacy of inhibitory input to the ICC contralateral to the earplug and increased inhibitory input ipsilateral to the earplug, effectively creating a higher proportion of monaural responsive neurons than binaural. Moreover, this resulted in a ∼10 dB shift in the coding of a binaural sound location cue (interaural-level difference, ILD) in ICC neurons relative to controls. The direction of the shift was consistent with a compensation of the altered ILDs due to the CHL. ICC neuron responses carried ∼37% less information about ILDs after CHL than control neurons. Cochlear peripheral-evoked responses confirmed that the CHL did not induce damage to the auditory periphery. We find that a temporary CHL altered auditory midbrain neurons by shifting binaural responses to ILD acoustic cues, suggesting a compensatory form of plasticity occurring by at least the level of the auditory midbrain, the ICC.
Collapse
Affiliation(s)
- Jennifer L Thornton
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kelsey L Anbuhl
- Center for Neural Science, New York University, New York, NY, United States
| | - Daniel J Tollin
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
6
|
Diotic and Antiphasic Digits-in-noise Testing as a Hearing Screening and Triage Tool to Classify Type of Hearing Loss. Ear Hear 2021; 43:1037-1048. [PMID: 34799493 PMCID: PMC9010337 DOI: 10.1097/aud.0000000000001160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The digits-in-noise test (DIN) is a popular self-test measure that has traditionally been used to screen for hearing loss by providing either a pass or refer result. Standard approaches either tested each ear monaurally or used a binaural diotic version where identical digits and noise were presented simultaneously to both ears. Recently, a dichotic, antiphasic version was developed, increasing sensitivity of the DIN to unilateral or asymmetric sensorineural hearing loss (SNHL) and conductive hearing loss (CHL). The purpose of this study was to determine predictors and normative ranges of the antiphasic and diotic DIN and to determine if a combination of diotic and antiphasic DIN could accurately categorize hearing into (1) normal, (2) bilateral SNHL, or (3) unilateral SNHL or CHL. DESIGN The analytical sample consisted of 489 participants between the ages of 18 and 92 years with varying types, symmetry, and degrees of hearing loss. Degree and type of hearing loss were determined based on standard clinical four-frequency (0.5-4 kHz) pure-tone air and bone conduction threshold averages. The sample consisted of bilateral normal hearing (n = 293), bilateral SNHL (n = 172), unilateral SNHL (n = 42), and CHL (n = 32). All participants (n = 489) first completed an antiphasic DIN (digit stimuli 180° out-of-phase between ears), while 393 of the sample also completed a diotic DIN. Two procedures were assessed for their ability to categorize hearing into one of the three hearing groups. The first used a fixed antiphasic cutoff combined with a cutoff formed by a linear combination of antiphasic and diotic speech recognition threshold (SRT) or binaural intelligibility-level difference. RESULTS Poorer ear pure-tone average was the strongest predictor of antiphasic DIN score, whereas better ear pure-tone average explained more of the variance in diotic SRT. The antiphasic DIN sensitivity and specificity was 90% and 84%, respectively, for detecting hearing loss, with outstanding area under the receiver operating characteristics values exceeding 0.93 to identify hearing loss in the poorer ear. The first fixed SRT cutoff procedure could categorize 75% of all participants correctly, while the second procedure increased correct categorization to 79%. False negative rates for both procedures were below 10%. CONCLUSIONS A sequential antiphasic and diotic DIN could categorize hearing to a reasonable degree into three groups of (1) normal hearing; (2) bilateral SNHL; and (3) unilateral asymmetric SNHL or CHL. This type of approach could optimize care pathways using remote and contactless testing, by identifying unilateral SNHL and CHL as cases requiring medical referral. In contrast, bilateral SNHL cases could be referred directly to an audiologist, or nontraditional models like OTC hearing aids.
Collapse
|
7
|
Abstract
Supplemental Digital Content is available in the text. Objectives: The digits-in-noise test (DIN) has become increasingly popular as a consumer-based method to screen for hearing loss. Current versions of all DINs either test ears monaurally or present identical stimuli binaurally (i.e., diotic noise and speech, NoSo). Unfortunately, presentation of identical stimuli to each ear inhibits detection of unilateral sensorineural hearing loss (SNHL), and neither diotic nor monaural presentation sensitively detects conductive hearing loss (CHL). After an earlier finding of enhanced sensitivity in normally hearing listeners, this study tested the hypothesis that interaural antiphasic digit presentation (NoSπ) would improve sensitivity to hearing loss caused by unilateral or asymmetric SNHL, symmetric SNHL, or CHL. Design: This cross-sectional study recruited adults (18 to 84 years) with various levels of hearing based on a 4-frequency pure-tone average (PTA) at 0.5, 1, 2, and 4 kHz. The study sample was comprised of listeners with normal hearing (n = 41; PTA ≤ 25 dB HL in both ears), symmetric SNHL (n = 57; PTA > 25 dB HL), unilateral or asymmetric SNHL (n = 24; PTA > 25 dB HL in the poorer ear), and CHL (n = 23; PTA > 25 dB HL and PTA air-bone gap ≥ 20 dB HL in the poorer ear). Antiphasic and diotic speech reception thresholds (SRTs) were compared using a repeated-measures design. Results: Antiphasic DIN was significantly more sensitive to all three forms of hearing loss than the diotic DIN. SRT test–retest reliability was high for all tests (intraclass correlation coefficient r > 0.89). Area under the receiver operating characteristics curve for detection of hearing loss (>25 dB HL) was higher for antiphasic DIN (0.94) than for diotic DIN (0.77) presentation. After correcting for age, PTA of listeners with normal hearing or symmetric SNHL was more strongly correlated with antiphasic (rpartial[96] = 0.69) than diotic (rpartial = 0.54) SRTs. Slope of fitted regression lines predicting SRT from PTA was significantly steeper for antiphasic than diotic DIN. For listeners with normal hearing or CHL, antiphasic SRTs were more strongly correlated with PTA (rpartial[62] = 0.92) than diotic SRTs (rpartial[62] = 0.64). Slope of the regression line with PTA was also significantly steeper for antiphasic than diotic DIN. The severity of asymmetric hearing loss (poorer ear PTA) was unrelated to SRT. No effect of self-reported English competence on either antiphasic or diotic DIN among the mixed first-language participants was observed. Conclusions: Antiphasic digit presentation markedly improved the sensitivity of the DIN test to detect SNHL, either symmetric or asymmetric, while keeping test duration to a minimum by testing binaurally. In addition, the antiphasic DIN was able to detect CHL, a shortcoming of previous monaural or binaurally diotic DIN versions. The antiphasic DIN is thus a powerful tool for population-based screening. This enhanced functionality combined with smartphone delivery could make the antiphasic DIN suitable as a primary screen that is accessible to a large global audience.
Collapse
|
8
|
Samuels TL, Khampang P, Espahbodi M, McCormick CA, Chun RH, McCormick ME, Yan K, Kerschner JE, Johnston N. Association of Pepsin With Inflammatory Signaling and Effusion Viscosity in Pediatric Otitis Media. Laryngoscope 2021; 132:470-477. [PMID: 34272879 DOI: 10.1002/lary.29749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Otitis media (OM) is a common inflammatory disease spectrum. Cytokine signaling, neutrophil activity, and mucin hypersecretion during recurrent and chronic OM contribute to persistent, viscous middle ear (ME) effusions, hearing loss, and potential for developmental delay. Extraesophageal reflux (EER), specifically pepsin, triggers inflammatory signaling in respiratory mucosa and is associated with OM. The objective of this study was to investigate the association of pepsin with ME inflammatory signaling and the outcomes and examine causality in vitro. STUDY DESIGN Cross-sectional study. METHODS ME fluid (MEF) and preoperative audiometric data were collected from 30 pediatric subjects undergoing tympanostomy tube placement for recurrent OM or OM with effusion. MEF viscosity was characterized by the surgeon. Pepsin, inflammatory molecules, and mucin were assayed by enzyme-linked immunosorbent assay (ELISA). ME epithelial primary culture was exposed to 0.1 to 1 mg/ml pepsin at pH 5, 6, and 7 for 30 minutes, and cytokine expression was assayed via qPCR. RESULTS Pepsin was observed in the MEF of 77% of patients (range 71-2,734 ng/ml). Pepsin correlated with effusion viscosity, interleukins -6 and -8, neutrophil elastase, and mucin 5B (P < .05). Pepsin-negative MEF was more frequently absent of interleukin 8 or mucin 5B (P < .05). Weak acid was generally insufficient to elicit cytokine expression in ME cells in vitro, however, pepsin induced IL6, IL8, and TNF at pH 7 (P < .05) and weak acid (pH 6) facilitated a response at lower pepsin concentration. CONCLUSIONS Pepsin may contribute to inflammatory signaling, persistent viscous effusion, and poorer OM outcomes. LEVEL OF EVIDENCE 4 Laryngoscope, 2021.
Collapse
Affiliation(s)
- Tina L Samuels
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Pawjai Khampang
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Mana Espahbodi
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Caroline A McCormick
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Robert H Chun
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Michael E McCormick
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Ke Yan
- Pediatrics Quantitative Health Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Joseph E Kerschner
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A.,Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Nikki Johnston
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A.,Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| |
Collapse
|
9
|
Okada M, Welling DB, Liberman MC, Maison SF. Chronic Conductive Hearing Loss Is Associated With Speech Intelligibility Deficits in Patients With Normal Bone Conduction Thresholds. Ear Hear 2021; 41:500-507. [PMID: 31490800 PMCID: PMC7056594 DOI: 10.1097/aud.0000000000000787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES The main objective of this study is to determine whether chronic sound deprivation leads to poorer speech discrimination in humans. DESIGN We reviewed the audiologic profile of 240 patients presenting normal and symmetrical bone conduction thresholds bilaterally, associated with either an acute or chronic unilateral conductive hearing loss of different etiologies. RESULTS Patients with chronic conductive impairment and a moderate, to moderately severe, hearing loss had lower speech recognition scores on the side of the pathology when compared with the healthy side. The degree of impairment was significantly correlated with the speech recognition performance, particularly in patients with a congenital malformation. Speech recognition scores were not significantly altered when the conductive impairment was acute or mild. CONCLUSIONS This retrospective study shows that chronic conductive hearing loss was associated with speech intelligibility deficits in patients with normal bone conduction thresholds. These results are as predicted by a recent animal study showing that prolonged, adult-onset conductive hearing loss causes cochlear synaptopathy.
Collapse
Affiliation(s)
- Masahiro Okada
- Department of Otolaryngology, Head and Neck Surgery, Ehime University Graduate School of Medicine, Toon Ehime, Japan
- Department of Otolaryngology, Harvard Medical School and Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, USA
| | - D. Bradley Welling
- Department of Otolaryngology, Harvard Medical School and Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, USA
| | - M. Charles Liberman
- Department of Otolaryngology, Harvard Medical School and Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, USA
| | - Stéphane F. Maison
- Department of Otolaryngology, Harvard Medical School and Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, USA
| |
Collapse
|
10
|
Sharma M, Wigglesworth G, Savage G, Demuth K. Binaural processing and phonological awareness in Australian Indigenous children from the Northern Territory: A community based study. Int J Pediatr Otorhinolaryngol 2020; 128:109702. [PMID: 31606681 DOI: 10.1016/j.ijporl.2019.109702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Research has found that otitis media (OM) is highly prevalent in Australian Indigenous children, and repeated bouts of OM is often associated with minimal-to-moderate hearing loss. However, what is not yet clear is the extent to which OM with hearing loss impacts auditory signal processing specifically, but also binaural listening, listening in noise, and the potential impact on phonological awareness (PA) - an important, emergent literacy skill. The goal of this study was to determine whether auditory abilities, especially binaural processing, were associated with PA in children from populations with a high incidence of OM, living in a remote Australian Indigenous community in the Northern Territory (NT). METHODS Forty-seven 5-12-year-olds from a bilingual school participated in the study. All were tested to determine hearing sensitivity (pure tone audiometry and tympanometry), with PA measured on a test specifically developed in the first language of the children. OM often results in a hearing loss that can affect binaural processing: the Dichotic Digit difference Test (DDdT) was used to evaluate the children's dichotic listening and the Listening in Spatialized Noise-sentences test (LiSN-S) was used to evaluate their abilities to listen to speech-in-noise. RESULTS Seventeen (36%) and 16 (34%) had compromised middle ear compliance (combined Type-B and -C) in the right and left ear respectively. Six children demonstrated a bilateral mild hearing loss, and another five children demonstrated a unilateral mild hearing loss. Thirty-one children were able to complete the DDdT listening task, whereas only 24 completed the speech in noise task (LiSN-S). Forty-four children (94%) were able to complete the letter identification subtask, comprising part of the PA task. The findings revealed that age was significantly correlated with all tasks such that the older children performed better across the board. Once hearing thresholds were controlled for, PA also correlated significantly with both binaural processing tasks of dichotic listening (r = 0.59, p < 0.001) and listening to speech in noise (r = -0.56, p = 0.005); indicating a potential association between early, emergent literacy and listening skills. CONCLUSIONS The significant correlations between phonological awareness and dichotic listening as well as phonological awareness with listening to speech-in-noise skills suggests auditory processing, rather than hearing thresholds per se, are associated to phonological awareness abilities of this cohort of children. This suggests that the ability to process the auditory signal is critical.
Collapse
Affiliation(s)
- Mridula Sharma
- Department of Linguistics, Macquarie University, Sydney, Australia; HEARing Co-operative Research Centre, Melbourne and Sydney, Australia.
| | - Gillian Wigglesworth
- School of Languages and Linguistics, University of Melbourne, Parkville, Australia; ARC Centre for Excellence for the Dynamics of Language, University of Melbourne, Parkville, Australia.
| | - Gemma Savage
- Department of Linguistics, Macquarie University, Sydney, Australia.
| | - Katherine Demuth
- Department of Linguistics, Macquarie University, Sydney, Australia; HEARing Co-operative Research Centre, Melbourne and Sydney, Australia; ARC Centre for Excellence in Cognition and Its Disorders, Macquarie University, Sydney, Australia.
| |
Collapse
|
11
|
Intracochlear Pressures in Simulated Otitis Media With Effusion: A Temporal Bone Study. Otol Neurotol 2019; 39:e585-e592. [PMID: 29912830 DOI: 10.1097/mao.0000000000001869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Simulated otitis media with effusion reduces intracochlear pressures comparable to umbo velocity. BACKGROUND Otitis media with effusion is a common cause of temporary hearing loss, particularly in children, producing deficits of 30 to 40 dB. Previous studies measured the effects of simulated effusion on ossicular mechanics; however, no studies have measured cochlear stimulation directly. Here, we compare pressures in the scala vestibuli and tympani to umbo velocity, before and after induction of simulated effusion in cadaveric human specimens. METHODS Eight cadaveric, hemi-cephalic human heads were prepared with complete mastoidectomies. Intracochlear pressures were measured with fiber optic pressure probes, and umbo velocity measured via laser Doppler vibrometry (LDV). Stimuli were pure tones (0.1-14 kHz) presented in the ear canal via a custom speculum sealed with a glass cover slip. Effusion was simulated by filling the mastoid cavity and middle ear space with water. RESULTS Acoustic stimulation with middle ear effusion resulted in decreased umbo velocity up to ∼26 dB, whereas differential pressure (PDiff) at the base of the cochlea decreased by only ∼16 dB. CONCLUSION Simulating effusion leads to a frequency-dependent reduction in intracochlear sound pressure levels consistent with audiological presentation and prior reports. Results reveal that intracochlear pressure measurements (PSV and PST) decrease less than expected, and less than the decrease in PDiff. The observed decrease in umbo velocity is greater than in the differential intracochlear pressures, suggesting that umbo velocity overestimates the induced conductive hearing loss. These results suggest that an alternate sound conduction pathway transmits sound to the inner ear during effusion.
Collapse
|
12
|
Asp F, Reinfeldt S. Horizontal sound localisation accuracy in individuals with conductive hearing loss: effect of the bone conduction implant. Int J Audiol 2018; 57:657-664. [DOI: 10.1080/14992027.2018.1470337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Filip Asp
- Division of Signal Processing and Biomedical Engineering, Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Division of Ear, Nose and Throat Diseases, Department of Clinical Science, Intervention and Technology Karolinska Institutet, Stockholm, Sweden
| | - Sabine Reinfeldt
- Division of Signal Processing and Biomedical Engineering, Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
13
|
Meuret S, Ludwig A, Predel D, Staske B, Fuchs M. Localization and Spatial Discrimination in Children and Adolescents with Moderate Sensorineural Hearing Loss Tested without Their Hearing Aids. Audiol Neurootol 2018; 22:326-342. [DOI: 10.1159/000485826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/27/2017] [Indexed: 11/19/2022] Open
Abstract
The present study investigated two measures of spatial acoustic perception in children and adolescents with sensorineural hearing loss (SNHL) tested without their hearing aids and compared it to age-matched controls. Auditory localization was quantified by means of a sound source identification task and auditory spatial discrimination acuity by measuring minimum audible angles (MAA). Both low- and high-frequency noise bursts were employed in the tests to separately address spatial auditory processing based on interaural time and intensity differences. In SNHL children, localization (hit accuracy) was significantly reduced compared to normal-hearing children and intraindividual variability (dispersion) considerably increased. Given the respective impairments, the performance based on interaural time differences (low frequencies) was still better than that based on intensity differences (high frequencies). For MAA, age-matched comparisons yielded not only increased MAA values in SNHL children, but also no decrease with increasing age compared to normal-hearing children. Deficits in MAA were most apparent in the frontal azimuth. Thus, children with SNHL do not seem to benefit from frontal positions of the sound sources as do normal-hearing children. The results give an indication that the processing of spatial cues in SNHL children is restricted, which could also imply problems regarding speech understanding in challenging hearing situations.
Collapse
|
14
|
|
15
|
Changes in Properties of Auditory Nerve Synapses following Conductive Hearing Loss. J Neurosci 2017; 37:323-332. [PMID: 28077712 DOI: 10.1523/jneurosci.0523-16.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 11/10/2016] [Accepted: 11/19/2016] [Indexed: 02/08/2023] Open
Abstract
Auditory activity plays an important role in the development of the auditory system. Decreased activity can result from conductive hearing loss (CHL) associated with otitis media, which may lead to long-term perceptual deficits. The effects of CHL have been mainly studied at later stages of the auditory pathway, but early stages remain less examined. However, changes in early stages could be important because they would affect how information about sounds is conveyed to higher-order areas for further processing and localization. We examined the effects of CHL at auditory nerve synapses onto bushy cells in the mouse anteroventral cochlear nucleus following occlusion of the ear canal. These synapses, called endbulbs of Held, normally show strong depression in voltage-clamp recordings in brain slices. After 1 week of CHL, endbulbs showed even greater depression, reflecting higher release probability. We observed no differences in quantal size between control and occluded mice. We confirmed these observations using mean-variance analysis and the integration method, which also revealed that the number of release sites decreased after occlusion. Consistent with this, synaptic puncta immunopositive for VGLUT1 decreased in area after occlusion. The level of depression and number of release sites both showed recovery after returning to normal conditions. Finally, bushy cells fired fewer action potentials in response to evoked synaptic activity after occlusion, likely because of increased depression and decreased input resistance. These effects appear to reflect a homeostatic, adaptive response of auditory nerve synapses to reduced activity. These effects may have important implications for perceptual changes following CHL. SIGNIFICANCE STATEMENT Normal hearing is important to everyday life, but abnormal auditory experience during development can lead to processing disorders. For example, otitis media reduces sound to the ear, which can cause long-lasting deficits in language skills and verbal production, but the location of the problem is unknown. Here, we show that occluding the ear causes synapses at the very first stage of the auditory pathway to modify their properties, by decreasing in size and increasing the likelihood of releasing neurotransmitter. This causes synapses to deplete faster, which reduces fidelity at central targets of the auditory nerve, which could affect perception. Temporary hearing loss could cause similar changes at later stages of the auditory pathway, which could contribute to disorders in behavior.
Collapse
|
16
|
Haapala S, Niemitalo-Haapola E, Raappana A, Kujala T, Suominen K, Jansson-Verkasalo E, Kujala T. Long-term influence of recurrent acute otitis media on neural involuntary attention switching in 2-year-old children. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2016; 12:1. [PMID: 26729018 PMCID: PMC4700565 DOI: 10.1186/s12993-015-0086-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/24/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND A large group of young children are exposed to repetitive middle ear infections but the effects of the fluctuating hearing sensations on immature central auditory system are not fully understood. The present study investigated the consequences of early childhood recurrent acute otitis media (RAOM) on involuntary auditory attention switching. METHODS By utilizing auditory event-related potentials, neural mechanisms of involuntary attention were studied in 22-26 month-old children (N = 18) who had had an early childhood RAOM and healthy controls (N = 19). The earlier and later phase of the P3a (eP3a and lP3a) and the late negativity (LN) were measured for embedded novel sounds in the passive multi-feature paradigm with repeating standard and deviant syllable stimuli. The children with RAOM had tympanostomy tubes inserted and all the children in both study groups had to have clinically healthy ears at the time of the measurement assessed by an otolaryngologist. RESULTS The results showed that lP3a amplitude diminished less from frontal to central and parietal areas in the children with RAOM than the controls. This might reflect an immature control of involuntary attention switch. Furthermore, the LN latency was longer in children with RAOM than in the controls, which suggests delayed reorientation of attention in RAOM. CONCLUSIONS The lP3a and LN responses are affected in toddlers who have had a RAOM even when their ears are healthy. This suggests detrimental long-term effects of RAOM on the neural mechanisms of involuntary attention.
Collapse
Affiliation(s)
- Sini Haapala
- Department of Speech and Language Pathology, Faculty of Social Sciences, Publicum, University of Turku, 20014, Turku, Finland.
- Clinical Neurophysiology, Oulu University Hospital, PO Box 21, 90029, Oulu, Finland.
| | - Elina Niemitalo-Haapola
- Clinical Neurophysiology, Oulu University Hospital, PO Box 21, 90029, Oulu, Finland.
- Child Language Research Center and Logopedics, Faculty of Humanities, University of Oulu, PO Box 1000, 90014, Oulu, Finland.
| | - Antti Raappana
- Department of Otolaryngology-Head and Neck Surgery, Oulu University Hospital, PO Box 21, 90029, Oulu, Finland.
- Department of Otolaryngology, University of Oulu, PO Box 5000, 90014, Oulu, Finland.
| | - Tiia Kujala
- Department of Otolaryngology, University of Oulu, PO Box 5000, 90014, Oulu, Finland.
| | - Kalervo Suominen
- Clinical Neurophysiology, Oulu University Hospital, PO Box 21, 90029, Oulu, Finland.
| | - Eira Jansson-Verkasalo
- Department of Speech and Language Pathology, Faculty of Social Sciences, Publicum, University of Turku, 20014, Turku, Finland.
| | - Teija Kujala
- Cicero Learning, University of Helsinki, PO Box 9, 00014, Helsinki, Finland.
- Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of Helsinki, PO Box 9, 00014, Helsinki, Finland.
| |
Collapse
|
17
|
Sound location modulation of electrocochleographic responses in chinchilla with single-sided deafness and fitted with an osseointegrated bone-conducting hearing prosthesis. Otol Neurotol 2015; 36:678-86. [PMID: 25275868 DOI: 10.1097/mao.0000000000000595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Bone-anchored hearing systems (BAHSs) provide sound location-dependent input to the normal ear for reducing the head shadow effect in the case of single-sided deafness (SSD). BACKGROUND Patients with SSD can be fit with a BAHS positioned on the impaired side. Despite successful outcomes and some reports of spatial hearing capabilities, little data are available regarding the physiologic performance of BAHSs in response to free-field sounds. METHODS Cochlear microphonics (CMs) were recorded from five chinchillas before and after destruction of one cochlea. A BAHS (Cochlear Baha) was fitted on the deafened side. CM measurements were made in response to tones, with and without the BAHS, to free-field sounds presented ipsilateral to the SSD, on the side of the normal ear, and along the midline. Stimuli were also presented directly through the BAHS and an earphone to generate sounds with interaural time and level differences approximating free-field sounds. RESULTS With the BAHS, CM thresholds were decreased (re: no BAHS) by approximately 10 dB for sources ipsilateral to the SSD, approximately 14 dB for midline sources, and approximately 5 dB for sources contralateral to the SSD. Changes in CM amplitudes and thresholds were sound location dependent. CM amplitudes were modulated by interaural time and level differences generated by the linear interaction of BAHS and acoustic signals. CONCLUSION This study suggests that BAHS can provide input to the normal ear that is modulated by sound location, which serves to reduce the head shadow effect and may also offer cues to sound location.
Collapse
|
18
|
Vibromechanical assessment of active middle ear implant stimulation in simulated middle ear effusion: a temporal bone study. Otol Neurotol 2014; 35:470-5. [PMID: 23988990 DOI: 10.1097/mao.0b013e318299aa37] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Active middle ear implant (AMEI) generated vibromechanical stimulation of the ossicular chain (ossicular chain vibroplasty [OCV]) or the round window (round window vibroplasty [RWV]) is not significantly affected by simulated middle ear effusion in a human temporal bone model. BACKGROUND OCV and RWV may be employed for sensorineural, mixed, and conductive hearing losses. Although middle ear effusions may be encountered across patient populations, little is known about how effusions may affect AMEI vibromechanical efficiency. METHODS Laser Doppler vibrometry of stapes velocities (SVs) were performed in a human temporal bone model of simulated effusion (N = 5). Baseline measurements to acoustic sinusoidal stimuli, OCV, and RWV (0.25-8 kHz) were made without effusion. The measurements were repeated with simulated middle ear effusion and compared with baseline measurements. Data were analyzed across 3 frequency bands: low (0.25-1 kHz), medium (1-3 kHz), and high (3-8 kHz). RESULTS Acoustic stimulation with simulated middle ear effusion resulted in a significant (p < 0.001) frequency-dependent attenuation of SVs of 4, 10, and 7 dB (low, medium, and high ranges, respectively). OCV in simulated effusion resulted in attenuated SVs of 1, 5, and 14 dB (low, medium, and high) compared to without effusion; however, this attenuation was not significant (p = 0.07). Interestingly, in the setting of RWV, simulated effusion resulted in significantly (p = 0.001) increased SVs of 16, 11, and 8 dB (low, medium, and high). A 3-dB variance in AMEI efficiency was observed in repeated measurements in a single temporal bone. CONCLUSION The efficiency of OCV was not significantly affected by the presence of a middle ear effusion. Improved efficiency, however, was observed with RWV.
Collapse
|
19
|
Thornton JL, Chevallier KM, Koka K, Gabbard SA, Tollin DJ. Conductive hearing loss induced by experimental middle-ear effusion in a chinchilla model reveals impaired tympanic membrane-coupled ossicular chain movement. J Assoc Res Otolaryngol 2013; 14:451-64. [PMID: 23615802 DOI: 10.1007/s10162-013-0388-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 03/31/2013] [Indexed: 11/25/2022] Open
Abstract
Otitis media with effusion (OME) occurs when fluid collects in the middle-ear space behind the tympanic membrane (TM). As a result of this effusion, sounds can become attenuated by as much as 30-40 dB, causing a conductive hearing loss (CHL). However, the exact mechanical cause of the hearing loss remains unclear. Possible causes can include altered compliance of the TM, inefficient movement of the ossicular chain, decreased compliance of the oval window-stapes footplate complex, or altered input to the oval and round window due to conduction of sound energy through middle-ear fluid. Here, we studied the contribution of TM motion and umbo velocity to a CHL caused by middle-ear effusion. Using the chinchilla as an animal model, umbo velocity (V U) and cochlear microphonic (CM) responses were measured simultaneously using sinusoidal tone pip stimuli (125 Hz-12 kHz) before and after filling the middle ear with different volumes (0.5-2.0 mL) of silicone oil (viscosity, 3.5 Poise). Concurrent increases in CM thresholds and decreases in umbo velocity were noted after the middle ear was filled with 1.0 mL or more of fluid. Across animals, completely filling the middle ear with fluid caused 20-40-dB increases in CM thresholds and 15-35-dB attenuations in umbo velocity. Clinic-standard 226-Hz tympanometry was insensitive to fluid-associated changes in CM thresholds until virtually the entire middle-ear cavity had been filled (approximately >1.5 mL). The changes in umbo velocity, CM thresholds, and tympanometry due to experimentally induced OME suggest CHL arises primarily as a result of impaired TM mobility and TM-coupled umbo motion plus additional mechanisms within the middle ear.
Collapse
Affiliation(s)
- Jennifer L Thornton
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | | | | | | | | |
Collapse
|