1
|
Maruyama A, Kawashima Y, Fukunaga Y, Makabe A, Nishio A, Tsutsumi T. Susceptibility of mouse cochlear hair cells to cisplatin ototoxicity largely depends on sensory mechanoelectrical transduction channels both Ex Vivo and In Vivo. Hear Res 2024; 447:109013. [PMID: 38718672 DOI: 10.1016/j.heares.2024.109013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Cisplatin, a highly effective chemotherapeutic drug for various human cancers, induces irreversible sensorineural hearing loss as a side effect. Currently there are no highly effective clinical strategies for the prevention of cisplatin-induced ototoxicity. Previous studies have indicated that short-term cisplatin ototoxicity primarily affects the outer hair cells of the cochlea. Therefore, preventing the entry of cisplatin into hair cells may be a promising strategy to prevent cisplatin ototoxicity. This study aimed to investigate the entry route of cisplatin into mouse cochlear hair cells. The competitive inhibitor of organic cation transporter 2 (OCT2), cimetidine, and the sensory mechanoelectrical transduction (MET) channel blocker benzamil, demonstrated a protective effect against cisplatin toxicity in hair cells in cochlear explants. Sensory MET-deficient hair cells explanted from Tmc1Δ;Tmc2Δ mice were resistant to cisplatin toxicity. Cimetidine showed an additive protective effect against cisplatin toxicity in sensory MET-deficient hair cells. However, in the apical turn, cimetidine, benzamil, or genetic ablation of sensory MET channels showed limited protective effects, implying the presence of other entry routes for cisplatin to enter the hair cells in the apical turn. Systemic administration of cimetidine failed to protect cochlear hair cells from ototoxicity caused by systemically administered cisplatin. Notably, outer hair cells in MET-deficient mice exhibited no apparent deterioration after systemic administration of cisplatin, whereas the outer hair cells in wild-type mice showed remarkable deterioration. The susceptibility of mouse cochlear hair cells to cisplatin ototoxicity largely depends on the sensory MET channel both ex vivo and in vivo. This result justifies the development of new pharmaceuticals, such as a specific antagonists for sensory MET channels or custom-designed cisplatin analogs which are impermeable to sensory MET channels.
Collapse
MESH Headings
- Cisplatin/toxicity
- Animals
- Ototoxicity/prevention & control
- Ototoxicity/metabolism
- Ototoxicity/physiopathology
- Mechanotransduction, Cellular/drug effects
- Organic Cation Transporter 2/metabolism
- Organic Cation Transporter 2/genetics
- Organic Cation Transporter 2/antagonists & inhibitors
- Cimetidine/pharmacology
- Antineoplastic Agents/toxicity
- Hair Cells, Auditory/drug effects
- Hair Cells, Auditory/metabolism
- Hair Cells, Auditory/pathology
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/pathology
- Hair Cells, Auditory, Outer/metabolism
- Mice, Inbred C57BL
- Mice
- Membrane Proteins
Collapse
Affiliation(s)
- Ayako Maruyama
- Department of Otolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yoshiyuki Kawashima
- Department of Otolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | - Yoko Fukunaga
- Department of Otolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan; Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54, Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ayane Makabe
- Department of Otolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Ayako Nishio
- Department of Otolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Takeshi Tsutsumi
- Department of Otolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
2
|
Cheng HL, Lee SC, Chang-Chien J, Su TR, Yang JJ, Su CC. Protective mechanism of ferulic acid against neomycin-induced ototoxicity in zebrafish. ENVIRONMENTAL TOXICOLOGY 2023; 38:604-614. [PMID: 36367326 DOI: 10.1002/tox.23707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Ototoxicity refers to damage of sensory hair cells and functional hearing impairment following aminoglycosides exposure. Previously, we have determined that ferulic acid (FA) protected hair cells against serial concentrations of neomycin-induced ototoxic damage. The aim of the present study is to assess the mechanism and effects of FA on neomycin-induced hair cells loss and impact on mechanosensory-mediated behaviors alteration using transgenic zebrafish (pvalb3b: TagGFP). We first identified the optimal protective condition as pre/co-treatment method in early fish development. Pretreatment of the larvae with FA significantly protected against neomycin-induced hair cells loss through preventing neomycin passed through the cytoplasm of hair cells, and subsequently decreased reactive oxygen species production and TUNEL signals in 4 day post-fertilization (dpf) transgenic zebrafish larvae. Moreover, preservation of functional hair cells correlated directly with rescue of the altered swimming behavior, indicates FA pretreatment protects against neomycin ototoxic damage in 7-dpf transgenic zebrafish larvae. Together, our findings unravel the otoprotective role of FA as an effective agent against neomycin-induced ototoxic effects and offering the theoretical foundation for discovering novel candidates for hearing protection.
Collapse
Affiliation(s)
- Hsin-Lin Cheng
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shan-Chih Lee
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Ju Chang-Chien
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Tzu-Rong Su
- Dean chamber, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan
- Department of Beauty Science, Meiho University, Pingtung, Taiwan
| | - Jiann-Jou Yang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ching-Chyuan Su
- Dean chamber, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan
- Department of Beauty Science, Meiho University, Pingtung, Taiwan
| |
Collapse
|
3
|
Ballesteros A, Swartz KJ. Regulation of membrane homeostasis by TMC1 mechanoelectrical transduction channels is essential for hearing. SCIENCE ADVANCES 2022; 8:eabm5550. [PMID: 35921424 PMCID: PMC9348795 DOI: 10.1126/sciadv.abm5550] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The mechanoelectrical transduction (MET) channel in auditory hair cells converts sound into electrical signals, enabling hearing. Transmembrane-like channel 1 and 2 (TMC1 and TMC2) are implicated in forming the pore of the MET channel. Here, we demonstrate that inhibition of MET channels, breakage of the tip links required for MET, or buffering of intracellular Ca... induces pronounced phosphatidylserine externalization, membrane blebbing, and ectosome release at the hair cell sensory organelle, culminating in the loss of TMC1. Membrane homeostasis triggered by MET channel inhibition requires Tmc1 but not Tmc2, and three deafness-causing mutations in Tmc1 cause constitutive phosphatidylserine externalization that correlates with deafness phenotype. Our results suggest that, in addition to forming the pore of the MET channel, TMC1 is a critical regulator of membrane homeostasis in hair cells, and that Tmc1-related hearing loss may involve alterations in membrane homeostasis.
Collapse
|
4
|
Bellairs JA, Redila VA, Wu P, Tong L, Webster A, Simon JA, Rubel EW, Raible DW. An in vivo Biomarker to Characterize Ototoxic Compounds and Novel Protective Therapeutics. Front Mol Neurosci 2022; 15:944846. [PMID: 35923755 PMCID: PMC9342690 DOI: 10.3389/fnmol.2022.944846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
There are no approved therapeutics for the prevention of hearing loss and vestibular dysfunction from drugs like aminoglycoside antibiotics. While the mechanisms underlying aminoglycoside ototoxicity remain unresolved, there is considerable evidence that aminoglycosides enter inner ear mechanosensory hair cells through the mechanoelectrical transduction (MET) channel. Inhibition of MET-dependent uptake with small molecules or modified aminoglycosides is a promising otoprotective strategy. To better characterize mammalian ototoxicity and aid in the translation of emerging therapeutics, a biomarker is needed. In the present study we propose that neonatal mice systemically injected with the aminoglycosides G418 conjugated to Texas Red (G418-TR) can be used as a histologic biomarker to characterize in vivo aminoglycoside toxicity. We demonstrate that postnatal day 5 mice, like older mice with functional hearing, show uptake and retention of G418-TR in cochlear hair cells following systemic injection. When we compare G418-TR uptake in other tissues, we find that kidney proximal tubule cells show similar retention. Using ORC-13661, an investigational hearing protection drug, we demonstrate in vivo inhibition of aminoglycoside uptake in mammalian hair cells. This work establishes how systemically administered fluorescently labeled ototoxins in the neonatal mouse can reveal important details about ototoxic drugs and protective therapeutics.
Collapse
Affiliation(s)
- Joseph A. Bellairs
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
| | - Van A. Redila
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - Patricia Wu
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | - Ling Tong
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - Alyssa Webster
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Julian A. Simon
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Edwin W. Rubel
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - David W. Raible
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| |
Collapse
|
5
|
Ramkumar V, Sheth S, Dhukhwa A, Al Aameri R, Rybak L, Mukherjea D. Transient Receptor Potential Channels and Auditory Functions. Antioxid Redox Signal 2022; 36:1158-1170. [PMID: 34465184 PMCID: PMC9221156 DOI: 10.1089/ars.2021.0191] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Transient receptor potential (TRP) channels are cation-gated channels that serve as detectors of various sensory modalities, such as pain, heat, cold, and taste. These channels are expressed in the inner ear, suggesting that they could also contribute to the perception of sound. This review provides more details on the different types of TRP channels that have been identified in the cochlea to date, focusing on their cochlear distribution, regulation, and potential contributions to auditory functions. Recent Advances: To date, the effect of TRP channels on normal cochlear physiology in mammals is still unclear. These channels contribute, to a limited extent, to normal cochlear physiology such as the hair cell mechanoelectrical transduction channel and strial functions. More detailed information on a number of these channels in the cochlea awaits future studies. Several laboratories focusing on TRPV1 channels have shown that they are responsive to cochlear stressors, such as ototoxic drugs and noise, and regulate cytoprotective and/or cell death pathways. TRPV1 expression in the cochlea is under control of oxidative stress (produced primarily by NOX3 NADPH oxidase) as well as STAT1 and STAT3 transcription factors, which differentially modulate inflammatory and apoptotic signals in the cochlea. Inhibition of oxidative stress or inflammation reduces the expression of TRPV1 channels and protects against cochlear damage and hearing loss. Critical Issues: TRPV1 channels are activated by both capsaicin and cisplatin, which produce differential effects on the inner ear. How these differential actions are produced is yet to be determined. It is clear that TRPV1 is an essential component of cisplatin ototoxicity as knockdown of these channels protects against hearing loss. In contrast, activation of TRPV1 by capsaicin protected against subsequent hearing loss induced by cisplatin. The cellular targets that are influenced by these two drugs to account for their differential profiles need to be fully elucidated. Furthermore, the potential involvement of different TRP channels present in the cochlea in regulating cisplatin ototoxicity needs to be determined. Future Directions: TRPV1 has been shown to mediate the entry of aminoglycosides into the hair cells. Thus, novel otoprotective strategies could involve designing drugs to inhibit entry of aminoglycosides and possibly other ototoxins into cochlear hair cells. TRP channels, including TRPV1, are expressed on circulating and resident immune cells. These receptors modulate immune cell functions. However, whether they are activated by cochlear stressors to initiate cochlear inflammation and ototoxicity needs to be determined. A better understanding of the function and regulation of these TRP channels in the cochlea could enable development of novel treatments for treating hearing loss. Antioxid. Redox Signal. 36, 1158-1170.
Collapse
Affiliation(s)
- Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, Larkin University College of Pharmacy, Miami, Florida, USA
| | - Asmita Dhukhwa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Raheem Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Leonard Rybak
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA.,Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Debashree Mukherjea
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| |
Collapse
|
6
|
Kim J, Hemachandran S, Cheng AG, Ricci AJ. Identifying targets to prevent aminoglycoside ototoxicity. Mol Cell Neurosci 2022; 120:103722. [PMID: 35341941 PMCID: PMC9177639 DOI: 10.1016/j.mcn.2022.103722] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 12/21/2022] Open
Abstract
Aminoglycosides are potent antibiotics that are commonly prescribed worldwide. Their use carries significant risks of ototoxicity by directly causing inner ear hair cell degeneration. Despite their ototoxic side effects, there are currently no approved antidotes. Here we review recent advances in our understanding of aminoglycoside ototoxicity, mechanisms of drug transport, and promising sites for intervention to prevent ototoxicity.
Collapse
Affiliation(s)
- Jinkyung Kim
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sriram Hemachandran
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Anthony J Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
In vivo real-time imaging reveals megalin as the aminoglycoside gentamicin transporter into cochlea whose inhibition is otoprotective. Proc Natl Acad Sci U S A 2022; 119:2117946119. [PMID: 35197290 PMCID: PMC8892513 DOI: 10.1073/pnas.2117946119] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 01/01/2023] Open
Abstract
Aminoglycosides (AGs) are commonly used antibiotics that cause deafness through the irreversible loss of cochlear sensory hair cells (HCs). How AGs enter the cochlea and then target HCs remains unresolved. Here, we performed time-lapse multicellular imaging of cochlea in live adult hearing mice via a chemo-mechanical cochleostomy. The in vivo tracking revealed that systemically administered Texas Red-labeled gentamicin (GTTR) enters the cochlea via the stria vascularis and then HCs selectively. GTTR uptake into HCs was completely abolished in transmembrane channel-like protein 1 (TMC1) knockout mice, indicating mechanotransducer channel-dependent AG uptake. Blockage of megalin, the candidate AG transporter in the stria vascularis, by binding competitor cilastatin prevented GTTR accumulation in HCs. Furthermore, cilastatin treatment markedly reduced AG-induced HC degeneration and hearing loss in vivo. Together, our in vivo real-time tracking of megalin-dependent AG transport across the blood-labyrinth barrier identifies new therapeutic targets for preventing AG-induced ototoxicity.
Collapse
|
8
|
Baradaran-Heravi A, Bauer CC, Pickles IB, Hosseini-Farahabadi S, Balgi AD, Choi K, Linley DM, Beech DJ, Roberge M, Bon RS. Nonselective TRPC channel inhibition and suppression of aminoglycoside-induced premature termination codon readthrough by the small molecule AC1903. J Biol Chem 2022; 298:101546. [PMID: 34999117 PMCID: PMC8808171 DOI: 10.1016/j.jbc.2021.101546] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 11/28/2022] Open
Abstract
Nonsense mutations, which occur in ∼11% of patients with genetic disorders, introduce premature termination codons (PTCs) that lead to truncated proteins and promote nonsense-mediated mRNA decay. Aminoglycosides such as G418 permit PTC readthrough and so may be used to address this problem. However, their effects are variable between patients, making clinical use of aminoglycosides challenging. In this study, we tested whether TRPC nonselective cation channels contribute to the variable PTC readthrough effect of aminoglycosides by controlling their cellular uptake. Indeed, a recently reported selective TRPC5 inhibitor, AC1903, consistently suppressed G418 uptake and G418-induced PTC readthrough in the DMS-114 cancer cell line and junctional epidermolysis bullosa (JEB) patient-derived keratinocytes. Interestingly, the effect of AC1903 in DMS-114 cells was mimicked by nonselective TRPC inhibitors, but not by well-characterized inhibitors of TRPC1/4/5 (Pico145, GFB-8438) or TRPC3/6/7 (SAR7334), suggesting that AC1903 may work through additional or undefined targets. Indeed, in our experiments, AC1903 inhibited multiple TRPC channels including TRPC3, TRPC4, TRPC5, TRPC6, TRPC4-C1, and TRPC5-C1, as well as endogenous TRPC1:C4 channels in A498 renal cancer cells, all with low micromolar IC50 values (1.8-18 μM). We also show that AC1903 inhibited TRPV4 channels, but had weak or no effects on TRPV1 and no effect on the nonselective cation channel PIEZO1. Our study reveals that AC1903 has previously unrecognized targets, which need to be considered when interpreting results from experiments with this compound. In addition, our data strengthen the hypothesis that nonselective calcium channels are involved in aminoglycoside uptake.
Collapse
Affiliation(s)
- Alireza Baradaran-Heravi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Claudia C Bauer
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Isabelle B Pickles
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK; School of Chemistry, University of Leeds, Leeds, UK
| | - Sara Hosseini-Farahabadi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Aruna D Balgi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kunho Choi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Deborah M Linley
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - David J Beech
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Michel Roberge
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Robin S Bon
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
9
|
Lin X, Luo J, Tan J, Yang L, Wang M, Li P. Experimental animal models of drug-induced sensorineural hearing loss: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1393. [PMID: 34733945 PMCID: PMC8506545 DOI: 10.21037/atm-21-2508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/16/2021] [Indexed: 01/19/2023]
Abstract
Objective This narrative review describes experimental animal models of sensorineural hearing loss (SNHL) caused by ototoxic agents. Background SNHL primarily results from damage to the sensory organ within the inner ear or the vestibulocochlear nerve (cranial nerve VIII). The main etiology of SNHL includes genetic diseases, presbycusis, ototoxic agents, infection, and noise exposure. Animal models with functional and anatomic damage to the sensory organ within the inner ear or the vestibulocochlear nerve mimicking the damage seen in humans are employed to explore the mechanism and potential treatment of SNHL. These animal models of SNHL are commonly established using ototoxic agents. Methods A literature search of PubMed, Embase, and Web of Science was performed for research articles on hearing loss and ototoxic agents in animal models of hearing loss. Conclusions Common ototoxic medications such as aminoglycoside antibiotics (AABs) and platinum antitumor drugs are extensively used to induce SNHL in experimental animals. The effect of ototoxic agents in vivo is influenced by the chemical mechanisms of the ototoxic agents, the species of animal, routes of administration of the ototoxic agents, and the dosage of ototoxic agents. Animal models of drug-induced SNHL contribute to understanding the hearing mechanism and reveal the function of different parts of the auditory system in humans.
Collapse
Affiliation(s)
- Xuexin Lin
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia Luo
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingqian Tan
- Department of Otolaryngology Head and Neck Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Luoying Yang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mitian Wang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University Yuedong Hospital, Meizhou, China
| | - Peng Li
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Kenyon EJ, Kirkwood NK, Kitcher SR, Goodyear RJ, Derudas M, Cantillon DM, Baxendale S, de la Vega de León A, Mahieu VN, Osgood RT, Wilson CD, Bull JC, Waddell SJ, Whitfield TT, Ward SE, Kros CJ, Richardson GP. Identification of a series of hair-cell MET channel blockers that protect against aminoglycoside-induced ototoxicity. JCI Insight 2021; 6:145704. [PMID: 33735112 PMCID: PMC8133782 DOI: 10.1172/jci.insight.145704] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
To identify small molecules that shield mammalian sensory hair cells from the ototoxic side effects of aminoglycoside antibiotics, 10,240 compounds were initially screened in zebrafish larvae, selecting for those that protected lateral-line hair cells against neomycin and gentamicin. When the 64 hits from this screen were retested in mouse cochlear cultures, 8 protected outer hair cells (OHCs) from gentamicin in vitro without causing hair-bundle damage. These 8 hits shared structural features and blocked, to varying degrees, the OHC's mechano-electrical transducer (MET) channel, a route of aminoglycoside entry into hair cells. Further characterization of one of the strongest MET channel blockers, UoS-7692, revealed it additionally protected against kanamycin and tobramycin and did not abrogate the bactericidal activity of gentamicin. UoS-7692 behaved, like the aminoglycosides, as a permeant blocker of the MET channel; significantly reduced gentamicin-Texas red loading into OHCs; and preserved lateral-line function in neomycin-treated zebrafish. Transtympanic injection of UoS-7692 protected mouse OHCs from furosemide/kanamycin exposure in vivo and partially preserved hearing. The results confirmed the hair-cell MET channel as a viable target for the identification of compounds that protect the cochlea from aminoglycosides and provide a series of hit compounds that will inform the design of future otoprotectants.
Collapse
Affiliation(s)
| | | | | | | | - Marco Derudas
- Sussex Drug Discovery Centre, School of Life Sciences, and
| | - Daire M. Cantillon
- Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | | | | | | | | | | | - James C. Bull
- Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom
| | - Simon J. Waddell
- Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | | | - Simon E. Ward
- Medicines Discovery Institute, Cardiff University, Cardiff, United Kingdom
| | | | | |
Collapse
|