1
|
Zheng L, Li M, Li Y, Wu L, Naveena K, Zheng M, Yang Z, Pan Y, Zhang Y, Chen S, Qiao Y, Xu Y, Chen L, Shi X. Sestrin2 plays a protective role in age-related hearing loss by inhibiting NLRP3-inflammasome activity. Mech Ageing Dev 2024; 221:111964. [PMID: 39019118 DOI: 10.1016/j.mad.2024.111964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Age-related hearing loss (ARHL) is an auditory disease characterized by gradual loss of high-frequency hearing sensitivity. Excessive reactive oxygen species trigger NLRP3-inflammasome activation that may be crucial for ARHL pathogenesis. The antioxidant factor Sestrin2 (SESN2) has been reported to be involved in the remission of oxidative stress and ARHL. However, the mechanism by which SESN2 protects auditory cells in the aging mouse cochlea remains unknown. Here, we observed that ectopic overexpression of SESN2 delayed ARHL, whereas SESN2 knockdown accelerated it. Importantly, we elucidated that SESN2 exerts a hearing-protective effect by inhibiting the production of NLRP3 by acting as a mitophagy agonist. Our study proposes a new theoretical basis for SESN2 prevention of ARHL and provides a novel therapeutic strategy for maintaining SESN2 activity in the aging cochlea.
Collapse
Affiliation(s)
- Liting Zheng
- Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya, Hainan 572000, China; Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Menghua Li
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Beijing Friendship Hospital, Capital Medical University, Beijing 100000, China
| | - Yalan Li
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Liyuan Wu
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Konduru Naveena
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Mengzhu Zheng
- Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya, Hainan 572000, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Zhanqun Yang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100083, China; Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing 100083, China
| | - Yong Pan
- Department of Infectious Diseases, Xuzhou Infectious Diseases Hospital, Xuzhou 221000, China
| | - Yunshi Zhang
- Department of Infectious Diseases, Xuzhou Infectious Diseases Hospital, Xuzhou 221000, China
| | - Shujin Chen
- ENT Department, The People's Hospital of Rongchang District, Chongqing, China
| | - Yuehua Qiao
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Yice Xu
- Department of Otolaryngology-Head and Neck Surgery, The Central Hospital of Xiaogan, Xiaogan, Hubei 432000, China.
| | - Long Chen
- Department of Pharmacy, Peking University Third Hospital, Beijing 100083, China; Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing 100083, China.
| | - Xi Shi
- Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya, Hainan 572000, China; Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Zou T, Xie R, Huang S, Lu D, Liu J. Potential role of modulating autophagy levels in sensorineural hearing loss. Biochem Pharmacol 2024; 222:116115. [PMID: 38460910 DOI: 10.1016/j.bcp.2024.116115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
In recent years, extensive research has been conducted on the pathogenesis of sensorineural hearing loss (SNHL). Apoptosis and necrosis have been identified to play important roles in hearing loss, but they cannot account for all hearing loss. Autophagy, a cellular process responsible for cell self-degradation and reutilization, has emerged as a significant factor contributing to hearing loss, particularly in cases of autophagy deficiency. Autophagy plays a crucial role in maintaining cell health by exerting cytoprotective and metabolically homeostatic effects in organisms. Consequently, modulating autophagy levels can profoundly impact the survival, death, and regeneration of cells in the inner ear, including hair cells (HCs) and spiral ganglion neurons (SGNs). Abnormal mitochondrial autophagy has been demonstrated in animal models of SNHL. These findings indicate the profound significance of comprehending autophagy while suggesting that our perspective on this cellular process holds promise for advancing the treatment of SNHL. Thus, this review aims to clarify the pathogenic mechanisms of SNHL and the role of autophagy in the developmental processes of various cochlear structures, including the greater epithelial ridge (GER), SGNs, and the ribbon synapse. The pathogenic mechanisms of age-related hearing loss (ARHL), also known as presbycusis, and the latest research on autophagy are also discussed. Furthermore, we underscore recent findings on the modulation of autophagy in SNHL induced by ototoxic drugs. Additionally, we suggest further research that might illuminate the complete potential of autophagy in addressing SNHL, ultimately leading to the formulation of pioneering therapeutic strategies and approaches for the treatment of deafness.
Collapse
Affiliation(s)
- Ting Zou
- Department of Otorhinolaryngology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Renwei Xie
- Department of Otorhinolaryngology, Renhe Hospital, Baoshan District, Shanghai, China
| | - Sihan Huang
- Department of Otorhinolaryngology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dingkun Lu
- Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Liu
- Department of Otorhinolaryngology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Coffin AB, Dale E, Molano O, Pederson A, Costa EK, Chen J. Age-related changes in the zebrafish and killifish inner ear and lateral line. Sci Rep 2024; 14:6670. [PMID: 38509148 PMCID: PMC10954678 DOI: 10.1038/s41598-024-57182-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
Age-related hearing loss (ARHL) is a debilitating disorder for millions worldwide. While there are multiple underlying causes of ARHL, one common factor is loss of sensory hair cells. In mammals, new hair cells are not produced postnatally and do not regenerate after damage, leading to permanent hearing impairment. By contrast, fish produce hair cells throughout life and robustly regenerate these cells after toxic insult. Despite these regenerative abilities, zebrafish show features of ARHL. Here, we show that aged zebrafish of both sexes exhibited significant hair cell loss and decreased cell proliferation in all inner ear epithelia (saccule, lagena, utricle). Ears from aged zebrafish had increased expression of pro-inflammatory genes and significantly more macrophages than ears from young adult animals. Aged zebrafish also had fewer lateral line hair cells and less cell proliferation than young animals, although lateral line hair cells still robustly regenerated following damage. Unlike zebrafish, African turquoise killifish (an emerging aging model) only showed hair cell loss in the saccule of aged males, but both sexes exhibit age-related changes in the lateral line. Our work demonstrates that zebrafish exhibit key features of auditory aging, including hair cell loss and increased inflammation. Further, our finding that aged zebrafish have fewer lateral line hair cells yet retain regenerative capacity, suggests a decoupling of homeostatic hair cell addition from regeneration following acute trauma. Finally, zebrafish and killifish show species-specific strategies for lateral line homeostasis that may inform further comparative research on aging in mechanosensory systems.
Collapse
Affiliation(s)
- Allison B Coffin
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA, 98686, USA.
- Department of Integrative Physiology and Neuroscience, Washington State University Vancouver, Vancouver, WA, 98686, USA.
| | - Emily Dale
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA, 98686, USA
- Neuroimmunology Research, Mayo Clinic, Rochester, MN, 55902, USA
| | - Olivia Molano
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA, 98686, USA
- Neuroscience Graduate Program, Brown University, Providence, RI, 02912, USA
| | - Alexandra Pederson
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA, 98686, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Emma K Costa
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jingxun Chen
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
4
|
Ohlemiller KK, Dwyer N, Henson V, Fasman K, Hirose K. A critical evaluation of "leakage" at the cochlear blood-stria-barrier and its functional significance. Front Mol Neurosci 2024; 17:1368058. [PMID: 38486963 PMCID: PMC10937559 DOI: 10.3389/fnmol.2024.1368058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
The blood-labyrinth-barrier (BLB) is a semipermeable boundary between the vasculature and three separate fluid spaces of the inner ear, the perilymph, the endolymph and the intrastrial space. An important component of the BLB is the blood-stria-barrier, which shepherds the passage of ions and metabolites from strial capillaries into the intrastrial space. Some investigators have reported increased "leakage" from these capillaries following certain experimental interventions, or in the presence of inflammation or genetic variants. This leakage is generally thought to be harmful to cochlear function, principally by lowering the endocochlear potential (EP). Here, we examine evidence for this dogma. We find that strial capillaries are not exclusive, and that the asserted detrimental influence of strial capillary leakage is often confounded by hair cell damage or intrinsic dysfunction of the stria. The vast majority of previous reports speculate about the influence of strial vascular barrier function on the EP without directly measuring the EP. We argue that strial capillary leakage is common across conditions and species, and does not significantly impact the EP or hearing thresholds, either on evidentiary or theoretical grounds. Instead, strial capillary endothelial cells and pericytes are dynamic and allow permeability of varying degrees in response to specific conditions. We present observations from mice and demonstrate that the mechanisms of strial capillary transport are heterogeneous and inconsistent among inbred strains.
Collapse
Affiliation(s)
- Kevin K. Ohlemiller
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Noël Dwyer
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Veronica Henson
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kaela Fasman
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Keiko Hirose
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
5
|
Zhang Y, Ye F, Fu X, Li S, Wang L, Chen Y, Li H, Hao S, Zhao K, Feng Q, Li P. Mitochondrial Regulation of Macrophages in Innate Immunity and Diverse Roles of Macrophages During Cochlear Inflammation. Neurosci Bull 2024; 40:255-267. [PMID: 37391607 PMCID: PMC10838870 DOI: 10.1007/s12264-023-01085-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/05/2023] [Indexed: 07/02/2023] Open
Abstract
Macrophages are essential components of the innate immune system and constitute a non-specific first line of host defense against pathogens and inflammation. Mitochondria regulate macrophage activation and innate immune responses in various inflammatory diseases, including cochlear inflammation. The distribution, number, and morphological characteristics of cochlear macrophages change significantly across different inner ear regions under various pathological conditions, including noise exposure, ototoxicity, and age-related degeneration. However, the exact mechanism underlying the role of mitochondria in macrophages in auditory function remains unclear. Here, we summarize the major factors and mitochondrial signaling pathways (e.g., metabolism, mitochondrial reactive oxygen species, mitochondrial DNA, and the inflammasome) that influence macrophage activation in the innate immune response. In particular, we focus on the properties of cochlear macrophages, activated signaling pathways, and the secretion of inflammatory cytokines after acoustic injury. We hope this review will provide new perspectives and a basis for future research on cochlear inflammation.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Fanglei Ye
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaolong Fu
- Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250000, China
| | - Shen Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Le Wang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongmin Li
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shaojuan Hao
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Kun Zhao
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qi Feng
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Province Research Center of Kidney Disease, Zhengzhou, 450052, China.
| | - Peipei Li
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Province Research Center of Kidney Disease, Zhengzhou, 450052, China.
| |
Collapse
|
6
|
Paciello F, Pisani A, Rolesi R, Montuoro R, Mohamed-Hizam V, Boni G, Ripoli C, Galli J, Sisto R, Fetoni AR, Grassi C. Oxidative stress and inflammation cause auditory system damage via glial cell activation and dysregulated expression of gap junction proteins in an experimental model of styrene-induced oto/neurotoxicity. J Neuroinflammation 2024; 21:4. [PMID: 38178142 PMCID: PMC10765700 DOI: 10.1186/s12974-023-02996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Redox imbalance and inflammation have been proposed as the principal mechanisms of damage in the auditory system, resulting in functional alterations and hearing loss. Microglia and astrocytes play a crucial role in mediating oxidative/inflammatory injury in the central nervous system; however, the role of glial cells in the auditory damage is still elusive. OBJECTIVES Here we investigated glial-mediated responses to toxic injury in peripheral and central structures of the auditory pathway, i.e., the cochlea and the auditory cortex (ACx), in rats exposed to styrene, a volatile compound with well-known oto/neurotoxic properties. METHODS Male adult Wistar rats were treated with styrene (400 mg/kg daily for 3 weeks, 5/days a week). Electrophysiological, morphological, immunofluorescence and molecular analyses were performed in both the cochlea and the ACx to evaluate the mechanisms underlying styrene-induced oto/neurotoxicity in the auditory system. RESULTS We showed that the oto/neurotoxic insult induced by styrene increases oxidative stress in both cochlea and ACx. This was associated with macrophages and glial cell activation, increased expression of inflammatory markers (i.e., pro-inflammatory cytokines and chemokine receptors) and alterations in connexin (Cxs) and pannexin (Panx) expression, likely responsible for dysregulation of the microglia/astrocyte network. Specifically, we found downregulation of Cx26 and Cx30 in the cochlea, and high level of Cx43 and Panx1 in the ACx. CONCLUSIONS Collectively, our results provide novel evidence on the role of immune and glial cell activation in the oxidative/inflammatory damage induced by styrene in the auditory system at both peripheral and central levels, also involving alterations of gap junction networks. Our data suggest that targeting glial cells and connexin/pannexin expression might be useful to attenuate oxidative/inflammatory damage in the auditory system.
Collapse
Affiliation(s)
- Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Anna Pisani
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rolando Rolesi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Raffaele Montuoro
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Giammarco Boni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Jacopo Galli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Monte Porzio Catone, Rome, Italy
| | - Anna Rita Fetoni
- Department of Neuroscience, Unit of Audiology, Università Degli Studi di Napoli Federico II, Naples, Italy.
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| |
Collapse
|
7
|
Boussaty EC, Tedeschi N, Novotny M, Ninoyu Y, Du E, Draf C, Zhang Y, Manor U, Scheuermann RH, Friedman R. Cochlear transcriptome analysis of an outbred mouse population (CFW). Front Cell Neurosci 2023; 17:1256619. [PMID: 38094513 PMCID: PMC10716316 DOI: 10.3389/fncel.2023.1256619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/11/2023] [Indexed: 12/20/2023] Open
Abstract
Age-related hearing loss (ARHL) is the most common cause of hearing loss and one of the most prevalent conditions affecting the elderly worldwide. Despite evidence from our lab and others about its polygenic nature, little is known about the specific genes, cell types, and pathways involved in ARHL, impeding the development of therapeutic interventions. In this manuscript, we describe, for the first time, the complete cell-type specific transcriptome of the aging mouse cochlea using snRNA-seq in an outbred mouse model in relation to auditory threshold variation. Cochlear cell types were identified using unsupervised clustering and annotated via a three-tiered approach-first by linking to expression of known marker genes, then using the NSForest algorithm to select minimum cluster-specific marker genes and reduce dimensional feature space for statistical comparison of our clusters with existing publicly-available data sets on the gEAR website, and finally, by validating and refining the annotations using Multiplexed Error Robust Fluorescence In Situ Hybridization (MERFISH) and the cluster-specific marker genes as probes. We report on 60 unique cell-types expanding the number of defined cochlear cell types by more than two times. Importantly, we show significant specific cell type increases and decreases associated with loss of hearing acuity implicating specific subsets of hair cell subtypes, ganglion cell subtypes, and cell subtypes within the stria vascularis in this model of ARHL. These results provide a view into the cellular and molecular mechanisms responsible for age-related hearing loss and pathways for therapeutic targeting.
Collapse
Affiliation(s)
- Ely Cheikh Boussaty
- Department of Otolaryngology, University of California, San Diego, La Jolla, CA, United States
| | - Neil Tedeschi
- J. Craig Venter Institute, La Jolla, CA, United States
| | - Mark Novotny
- J. Craig Venter Institute, La Jolla, CA, United States
| | - Yuzuru Ninoyu
- Department of Otolaryngology, University of California, San Diego, La Jolla, CA, United States
| | - Eric Du
- Department of Otolaryngology, University of California, San Diego, La Jolla, CA, United States
| | - Clara Draf
- Department of Otolaryngology, University of California, San Diego, La Jolla, CA, United States
| | - Yun Zhang
- J. Craig Venter Institute, La Jolla, CA, United States
| | - Uri Manor
- Department of Cell and Developmental Biology, University of California San Diego, Salk Institute for Biological Studies, Waitt Advanced Biophotonics Center, La Jolla, CA, United States
| | - Richard H. Scheuermann
- J. Craig Venter Institute, La Jolla, CA, United States
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
| | - Rick Friedman
- Department of Otolaryngology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
8
|
Cheng Y, Chen W, Xu J, Liu H, Chen T, Hu J. Genetic analysis of potential biomarkers and therapeutic targets in age-related hearing loss. Hear Res 2023; 439:108894. [PMID: 37844444 DOI: 10.1016/j.heares.2023.108894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/06/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023]
Abstract
Age-related hearing loss (ARHL) or presbycusis is the phenomenon of hearing loss due to the aging of auditory organs with age. It seriously affects the cognitive function and quality of life of the elderly. This study is based on comprehensive bioinformatic and machine learning methods to identify the critical genes of ARHL and explore its therapy targets and pathological mechanisms. The ARHL and normal samples were from GSE49543 datasets of the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was applied to obtain significant modules. The Limma R-package was used to identify differentially expressed genes (DEGs). The 15 common genes of the practical module and DEGs were screened. Functional enrichment analysis suggested that these genes were mainly associated with inflammation, immune response, and infection. Cytoscape software created the protein-protein interaction (PPI) layouts and cytoHubba, support vector machine-recursive feature elimination (SVM-RFE), and random forests (RF) algorithms screened hub genes. After validating the hub gene expressions in GSE6045 and GSE154833 datasets, Clec4n, Mpeg1, and Fcgr3 are highly expressed in ARHL and have higher diagnostic efficacy for ARHL, so they were identified as hub genes. In conclusion, Clec4n, Mpeg1, and Fcgr3 play essential roles in developing ARHL, and they might become vital targets in ARHL diagnosis and anti-inflammatory therapy.
Collapse
Affiliation(s)
- Yajing Cheng
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wenjin Chen
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jia Xu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hang Liu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ting Chen
- Department of Neurology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
9
|
Yang W, Zhao X, Chai R, Fan J. Progress on mechanisms of age-related hearing loss. Front Neurosci 2023; 17:1253574. [PMID: 37727326 PMCID: PMC10505809 DOI: 10.3389/fnins.2023.1253574] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Age-related hearing loss, or presbycusis, is a common cause of hearing loss in elderly people worldwide. It typically presents as progressive, irreversible, and usually affects the high frequencies of hearing, with a tremendous impact on the quality of life. Presbycusis is a complex multidimensional disorder, in addition to aging, multiple factors including exposure to noise, or ototoxic agents, genetic susceptibility, metabolic diseases and lifestyle can influence the onset and severity of presbycusis. With the aging of the body, its ability to clean up deleterious substances produced in the metabolic process is weakened, and the self-protection and repair function of the body is reduced, which in turn leads to irreversible damage to the cochlear tissue, resulting in the occurrence of presbycusis. Presently, oxidative stress (OS), mitochondrial DNA damage, low-grade inflammation, decreased immune function and stem cell depletion have been demonstrated to play a critical role in developing presbycusis. The purpose of this review is to illuminate the various mechanisms underlying this age-related hearing loss, with the goal of advancing our understanding, prevention, and treatment of presbycusis.
Collapse
Affiliation(s)
- Wen Yang
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaolong Zhao
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Renjie Chai
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jiangang Fan
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
10
|
Hosoya M, Kitama T, Shimanuki MN, Nishiyama T, Oishi N, Okano H, Ozawa H. Distribution of macrophages in the developing cochlea of the common marmoset, a primate model animal. Front Immunol 2023; 14:1229414. [PMID: 37675123 PMCID: PMC10477578 DOI: 10.3389/fimmu.2023.1229414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction Macrophages are essential immune cells in the cochlea that contribute to inflammation, tissue repair, and homeostasis. They also play an important role in local cochlear immunity. The developmental immigration and maturation of macrophages in the cochlea have been investigated and are considered essential for normal hearing acquisition. Most of our current knowledge regarding cochlear development is based on rodent models because of the ethical challenges of using human fetal samples for research. However, inter-species differences between rodents and humans have been reported. In this study, we used a primate animal model to investigate the distributions of macrophages in the developing cochlea. The common marmoset (Callithrix jacchus), a small monkey species that inhabits the New World, was used as the model. Methods We investigated the distribution of macrophages in the developing cochlea of the common marmoset by performing immunohistochemical analyses of cochlear tissue from common marmoset embryos at different development stages. Results We revealed detailed distribution changes in the macrophages of a primate animal model cochlea. This observation indicates that most of the changes in the general distribution of macrophages were well preserved between rodents and this primate. The distribution changes observed in the common marmoset were also compatible with observations in the human fetus; although, observations in the human fetus are limited. Our observations in this study also revealed several differences between common marmosets and rodents. Conclusion The time course of immunological development and maturations established in this study will aid in the study of the primate-specific developmental biology of the inner ear. These observations may eventually lead to new therapeutic strategies for hearing loss in humans. In addition, understanding the immunological steady-state of the cochlea may help in the study of age- and genetic-induced hearing loss and in the design of regenerative therapies.
Collapse
Affiliation(s)
- Makoto Hosoya
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tsubasa Kitama
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Marie N. Shimanuki
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Nishiyama
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Oishi
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Saitama, Japan
| | - Hiroyuki Ozawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Brown LN, Barth JL, Jafri S, Rumschlag JA, Jenkins TR, Atkinson C, Lang H. Complement factor B is essential for the proper function of the peripheral auditory system. Front Neurol 2023; 14:1214408. [PMID: 37560455 PMCID: PMC10408708 DOI: 10.3389/fneur.2023.1214408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
Sensorineural hearing loss is associated with dysfunction of cochlear cells. Although immune cells play a critical role in maintaining the inner ear microenvironment, the precise immune-related molecular mechanisms underlying the pathophysiology of hearing loss remain unclear. The complement cascade contributes to the regulation of immune cell activity. Additionally, activation of the complement cascade can lead to the cellular opsonization of cells and pathogens, resulting in their engulfment and elimination by phagocytes. Complement factor B (fB) is an essential activator protein in the alternative complement pathway, and variations in the fB gene are associated with age-related macular degeneration. Here we show that mice of both sexes deficient in fB functional alleles (fB-/-) demonstrate progressive hearing impairment. Transcriptomic analysis of auditory nerves from adult mice detected 706 genes that were significantly differentially expressed between fB-/- and wild-type control animals, including genes related to the extracellular matrix and neural development processes. Additionally, a subset of differentially expressed genes was related to myelin function and neural crest development. Histological and immunohistochemical investigations revealed pathological alterations in auditory nerve myelin sheathes of fB-/- mice. Pathological alterations were also seen in the stria vascularis of the cochlear lateral wall in these mice. Our results implicate fB as an integral regulator of myelin maintenance and stria vascularis integrity, underscoring the importance of understanding the involvement of immune signaling pathways in sensorineural hearing loss.
Collapse
Affiliation(s)
- LaShardai N. Brown
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Shabih Jafri
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jeffrey A. Rumschlag
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Tyreek R. Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Carl Atkinson
- Division of Pulmonary Medicine, University of Florida, Gainesville, FL, United States
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
12
|
Lang H, Noble KV, Barth JL, Rumschlag JA, Jenkins TR, Storm SL, Eckert MA, Dubno JR, Schulte BA. The Stria Vascularis in Mice and Humans Is an Early Site of Age-Related Cochlear Degeneration, Macrophage Dysfunction, and Inflammation. J Neurosci 2023; 43:5057-5075. [PMID: 37268417 PMCID: PMC10324995 DOI: 10.1523/jneurosci.2234-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/19/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
Age-related hearing loss, or presbyacusis, is a common degenerative disorder affecting communication and quality of life for millions of older adults. Multiple pathophysiologic manifestations, along with many cellular and molecular alterations, have been linked to presbyacusis; however, the initial events and causal factors have not been clearly established. Comparisons of the transcriptome in the lateral wall (LW) with other cochlear regions in a mouse model (of both sexes) of "normal" age-related hearing loss revealed that early pathophysiological alterations in the stria vascularis (SV) are associated with increased macrophage activation and a molecular signature indicative of inflammaging, a common form of immune dysfunction. Structure-function correlation analyses in mice across the lifespan showed that the age-dependent increase in macrophage activation in the stria vascularis is associated with a decline in auditory sensitivity. High-resolution imaging analysis of macrophage activation in middle-aged and aged mouse and human cochleas, along with transcriptomic analysis of age-dependent changes in mouse cochlear macrophage gene expression, support the hypothesis that aberrant macrophage activity is an important contributor to age-dependent strial dysfunction, cochlear pathology, and hearing loss. Thus, this study highlights the SV as a primary site of age-related cochlear degeneration and aberrant macrophage activity and dysregulation of the immune system as early indicators of age-related cochlear pathology and hearing loss. Importantly, novel new imaging methods described here now provide a means to analyze human temporal bones in a way that had not previously been feasible and thereby represent a significant new tool for otopathological evaluation.SIGNIFICANCE STATEMENT Age-related hearing loss is a common neurodegenerative disorder affecting communication and quality of life. Current interventions (primarily hearing aids and cochlear implants) offer imperfect and often unsuccessful therapeutic outcomes. Identification of early pathology and causal factors is crucial for the development of new treatments and early diagnostic tests. Here, we find that the SV, a nonsensory component of the cochlea, is an early site of structural and functional pathology in mice and humans that is characterized by aberrant immune cell activity. We also establish a new technique for evaluating cochleas from human temporal bones, an important but understudied area of research because of a lack of well-preserved human specimens and difficult tissue preparation and processing approaches.
Collapse
Affiliation(s)
- Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Kenyaria V Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jeffrey A Rumschlag
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Tyreek R Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Shelby L Storm
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Mark A Eckert
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Judy R Dubno
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Bradley A Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
13
|
Boussaty EC, Tedeschi N, Novotny M, Ninoyu Y, Du E, Draf C, Zhang Y, Manor U, Scheuermann RH, Friedman R. Cochlear transcriptome analysis of an outbred mouse population (CFW). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528661. [PMID: 36824745 PMCID: PMC9948975 DOI: 10.1101/2023.02.15.528661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Age-related hearing loss (ARHL) is the most common cause of hearing loss and one of the most prevalent conditions affecting the elderly worldwide. Despite evidence from our lab and others about its polygenic nature, little is known about the specific genes, cell types and pathways involved in ARHL, impeding the development of therapeutic interventions. In this manuscript, we describe, for the first time, the complete cell-type specific transcriptome of the aging mouse cochlea using snRNA-seq in an outbred mouse model in relation to auditory threshold variation. Cochlear cell types were identified using unsupervised clustering and annotated via a three-tiered approach - first by linking to expression of known marker genes, then using the NS-Forest algorithm to select minimum cluster-specific marker genes and reduce dimensional feature space for statistical comparison of our clusters with existing publicly-available data sets on the gEAR website (https://umgear.org/), and finally, by validating and refining the annotations using Multiplexed Error Robust Fluorescence In Situ Hybridization (MERFISH) and the cluster-specific marker genes as probes. We report on 60 unique cell-types expanding the number of defined cochlear cell types by more than two times. Importantly, we show significant specific cell type increases and decreases associated with loss of hearing acuity implicating specific subsets of hair cell subtypes, ganglion cell subtypes, and cell subtypes withing the stria vascularis in this model of ARHL. These results provide a view into the cellular and molecular mechanisms responsible for age-related hearing loss and pathways for therapeutic targeting.
Collapse
Affiliation(s)
| | | | | | - Yuzuru Ninoyu
- Department of Otolaryngology, University of California, San Diego, CA
| | - Eric Du
- Department of Otolaryngology, University of California, San Diego, CA
| | - Clara Draf
- Department of Otolaryngology, University of California, San Diego, CA
| | - Yun Zhang
- J. Craig Venter Institute, La Jolla, CA
| | - Uri Manor
- Salk Institute for Biological Studies, Waitt Advanced Biophotonics Center, La Jolla, CA, United States
| | - Richard H. Scheuermann
- J. Craig Venter Institute, La Jolla, CA
- Department of Pathology, University of California, San Diego, CA
| | - Rick Friedman
- Department of Otolaryngology, University of California, San Diego, CA
| |
Collapse
|
14
|
Li P, Qian T, Sun S. Spatial architecture of the cochlear immune microenvironment in noise-induced and age-related sensorineural hearing loss. Int Immunopharmacol 2023; 114:109488. [PMID: 36470117 DOI: 10.1016/j.intimp.2022.109488] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
The cochlea encodes sound stimuli and transmits them to the central nervous system, and damage to sensory cells and synapses in the cochlea leads to hearing loss. The inner ear was previously considered to be an immune privileged organ to protect the auditory organ from reactions with the immune system. However, recent studies have revealed the presence of resident macrophages in the cochlea, especially in the spiral ligament, spiral ganglion, and stria vascularis. The tissue-resident macrophages are responsible for the detection, phagocytosis, and clearance of cellular debris and pathogens from the tissues, and they initiate inflammation and influence tissue repair by producing inflammatory cytokines and chemokines. Insult to the cochlea can activate the cochlear macrophages to initiate immune responses. In this review, we describe the distribution and functions of cochlear macrophages in noise-induced hearing impairment and age-related hearing disabilities. We also focus on potential therapeutic interventions concerning hearing loss by modulating local immune responses.
Collapse
Affiliation(s)
- Peifan Li
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China; Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Tingting Qian
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China; Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Shan Sun
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China; Eye and ENT Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
15
|
Zhao T, Tian G. Potential therapeutic role of SIRT1 in age- related hearing loss. Front Mol Neurosci 2022; 15:984292. [PMID: 36204138 PMCID: PMC9530142 DOI: 10.3389/fnmol.2022.984292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023] Open
Abstract
Age-related hearing loss (ARHL) is a major public health burden worldwide that profoundly affects the daily life of elderly people. Silent information regulator 1 (SIRT1 or Sirtuin1), known as a regulator of the cell cycle, the balance of oxidation/antioxidant and mitochondrial function, has been proven to have anti-aging and life-extending effects, and its possible connection with ARHL has received increasing attention in recent years. This paper provides an overview of research on the connection between SIRT1 and ARHL. Topics cover both the functions of SIRT1 and its important role in ARHL. This review concludes with a look at possible research directions for ARHL in the future.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Guangyong Tian
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| |
Collapse
|
16
|
Kociszewska D, Vlajkovic S. Age-Related Hearing Loss: The Link between Inflammaging, Immunosenescence, and Gut Dysbiosis. Int J Mol Sci 2022; 23:7348. [PMID: 35806352 PMCID: PMC9266910 DOI: 10.3390/ijms23137348] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
This article provides a theoretical overview of the association between age-related hearing loss (ARHL), immune system ageing (immunosenescence), and chronic inflammation. ARHL, or presbyacusis, is the most common sensory disability that significantly reduces the quality of life and has a high economic impact. This disorder is linked to genetic risk factors but is also influenced by a lifelong cumulative effect of environmental stressors, such as noise, otological diseases, or ototoxic drugs. Age-related hearing loss and other age-related disorders share common mechanisms which often converge on low-grade chronic inflammation known as "inflammaging". Various stimuli can sustain inflammaging, including pathogens, cell debris, nutrients, and gut microbiota. As a result of ageing, the immune system can become defective, leading to the accumulation of unresolved inflammatory processes in the body. Gut microbiota plays a central role in inflammaging because it can release inflammatory mediators and crosstalk with other organ systems. A proinflammatory gut environment associated with ageing could result in a leaky gut and the translocation of bacterial metabolites and inflammatory mediators to distant organs via the systemic circulation. Here, we postulate that inflammaging, as a result of immunosenescence and gut dysbiosis, accelerates age-related cochlear degeneration, contributing to the development of ARHL. Age-dependent gut dysbiosis was included as a hypothetical link that should receive more attention in future studies.
Collapse
Affiliation(s)
| | - Srdjan Vlajkovic
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland 1142, New Zealand;
| |
Collapse
|
17
|
Shin SH, Jung J, Park HR, Sim NS, Choi JY, Bae SH. The Time Course of Monocytes Infiltration After Acoustic Overstimulation. Front Cell Neurosci 2022; 16:844480. [PMID: 35496904 PMCID: PMC9039292 DOI: 10.3389/fncel.2022.844480] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
Cochlea macrophages regulate cochlea inflammation and may harbors the potentials to protect hearing function from injury, including acoustic overstimulation. Cochlea macrophage numbers increase at 3–7 days after acoustic stimulation. However, the exact timing of macrophage infiltration and maturation from inflammatory monocytes is unclear. Furthermore, neutrophils may also be involved in this process. Therefore, in this study, we investigated time-dependent immune cell infiltration, macrophage transformation, and neutrophil involvement following acoustic stimulation. Flow cytometry and immunofluorescence were conducted in C-X3-C motif chemokine receptor 1 (CX3CR1)+/GFP mice after acoustic overstimulation (at baseline and at 1, 2, 3, and 5 days after exposure to 120 dB for 1 h) to identify inflammatory monocytes in the cochlea. RNA-sequencing and quantitative polymerase chain reaction were performed to identify differentially expressed genes. Inflammatory monocytes infiltrated into the lower portion of the lateral wall within 2 days after acoustic overstimulation (dpn), followed by transformation into macrophages at 3–5 dpn via CX3CR1 upregulation and Ly6C downregulation. In addition, inflammatory monocytes were aggregated inside the collecting venule only at 1 dpn. Neutrophils were not a major type of phagocyte during this response. The gene encoding C-C motif chemokine ligand 2 gene was significantly upregulated as early as 3 h after acoustic overstimulation. Given these results, treatment to control immune response after a noise-induced hearing loss should be applied as soon as possible.
Collapse
Affiliation(s)
- Seung Ho Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - Jinsei Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Haeng Ran Park
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Nam Suk Sim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Seong Hoon Bae
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Seong Hoon Bae,
| |
Collapse
|