1
|
Schioppo T, Ubiali T, Ingegnoli F, Bollati V, Caporali R. The role of extracellular vesicles in rheumatoid arthritis: a systematic review. Clin Rheumatol 2021; 40:3481-3497. [PMID: 33544235 PMCID: PMC8357675 DOI: 10.1007/s10067-021-05614-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that carries high social and economic costs and can lead to permanent disability. RA pathogenesis has not been completely elucidated yet. Extracellular vesicles (EVs) are membrane-contained vesicles released by cells playing a role in cell-to-cell communication and they could be involved in different diseases. Evidence on the involvement of EVs in RA is currently inconclusive. Therefore, a systematic review on the role of EVs in RA was performed in order to explore this relationship. This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The research was conducted on PubMed, Scopus, and Embase up to March 5, 2020: 41 studies were analyzed out of 674 screened. The total plasmatic and synovial fluid (SF) EV number seems increased in RA as compared with healthy controls. Both RA plasma and SF contained EVs subpopulations of heterogenous origin, especially derived from platelets and immune system cells. No univocal evidence emerged on miRNA expression and EV content profile within RA patients. EVs showed to enhance pro-inflammatory pathways, such as cytokines and chemokine release and TNF blockade seemed to revert this effect. Our work highlights the requirement to standardize study methodologies in order to make results comparable and draw conclusions that remain, at present, unclear.
Collapse
Affiliation(s)
- Tommaso Schioppo
- Division of Clinical Rheumatology, ASST Pini-CTO, Piazza Cardinal Ferrari 1, 20122, Milan, Italy.
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Research Center for Environmental Health, Università degli Studi di Milano, Milan, Italy.
| | - Tania Ubiali
- Division of Clinical Rheumatology, ASST Pini-CTO, Piazza Cardinal Ferrari 1, 20122, Milan, Italy
| | - Francesca Ingegnoli
- Division of Clinical Rheumatology, ASST Pini-CTO, Piazza Cardinal Ferrari 1, 20122, Milan, Italy
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Research Center for Environmental Health, Università degli Studi di Milano, Milan, Italy
| | - Valentina Bollati
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Research Center for Environmental Health, Università degli Studi di Milano, Milan, Italy
- EPIGET LAB, Università degli Studi di Milano, Milan, Italy
| | - Roberto Caporali
- Division of Clinical Rheumatology, ASST Pini-CTO, Piazza Cardinal Ferrari 1, 20122, Milan, Italy
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Research Center for Environmental Health, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
2
|
Mustonen AM, Capra J, Rilla K, Lehenkari P, Oikari S, Kääriäinen T, Joukainen A, Kröger H, Paakkonen T, Matilainen J, Nieminen P. Characterization of hyaluronan-coated extracellular vesicles in synovial fluid of patients with osteoarthritis and rheumatoid arthritis. BMC Musculoskelet Disord 2021; 22:247. [PMID: 33676459 PMCID: PMC7937210 DOI: 10.1186/s12891-021-04115-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hyaluronic acid (HA) is the major extracellular matrix glycosaminoglycan with a reduced synovial fluid (SF) concentration in arthropathies. Cell-derived extracellular vesicles (EV) have also been proposed to contribute to pathogenesis in joint diseases. It has recently been shown that human SF contains HA-coated EV (HA-EV), but their concentration and function in joint pathologies remain unknown. METHODS The aim of the present study was to develop an applicable method based on confocal laser scanning microscopy (CLSM) and image analysis for the quantification of EV, HA-particles, and HA-EV in the SF of the human knee joint. Samples were collected during total knee replacement surgery from patients with end-stage rheumatoid arthritis (RA, n = 8) and osteoarthritis (OA, n = 8), or during diagnostic/therapeutic arthroscopy unrelated to OA/RA (control, n = 7). To characterize and quantify EV, HA-particles, and HA-EV, SF was double-stained with plasma membrane and HA probes and visualized by CLSM. Comparisons between the patient groups were performed with the Kruskal-Wallis analysis of variance. RESULTS The size distribution of EV and HA-particles was mostly similar in the study groups. Approximately 66% of EV fluorescence was co-localized with HA verifying that a significant proportion of EV carry HA. The study groups were clearly separated by the discriminant analysis based on the CLSM data. The intensities of EV and HA-particle fluorescences were lower in the RA than in the control and OA groups. CONCLUSIONS CLSM analysis offers a useful tool to assess HA-EV in SF samples. The altered EV and HA intensities in the RA SF could have possible implications for diagnostics and therapy.
Collapse
Affiliation(s)
- Anne-Mari Mustonen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Faculty of Science and Forestry, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland.
| | - Janne Capra
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, Cell and Tissue Imaging Unit, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kirsi Rilla
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Petri Lehenkari
- Faculty of Medicine, Cancer and Translational Medicine Research Unit, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Surgery and Medical Research Center, Oulu University Hospital, P.O. Box 21, FI-90029, Oulu, OYS, Finland
| | - Sanna Oikari
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Tommi Kääriäinen
- Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, P.O. Box 100, FI-70029, Kuopio, KYS, Finland
| | - Antti Joukainen
- Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, P.O. Box 100, FI-70029, Kuopio, KYS, Finland
| | - Heikki Kröger
- Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, P.O. Box 100, FI-70029, Kuopio, KYS, Finland
| | - Tommi Paakkonen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Johanna Matilainen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Petteri Nieminen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Faculty of Science and Forestry, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| |
Collapse
|
3
|
Maione F, Cappellano G, Bellan M, Raineri D, Chiocchetti A. Chicken-or-egg question: Which came first, extracellular vesicles or autoimmune diseases? J Leukoc Biol 2020; 108:601-616. [PMID: 32108378 PMCID: PMC7496139 DOI: 10.1002/jlb.3mr0120-232r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) have attracted great interest as contributors to autoimmune disease (AD) pathogenesis, owing to their immunomodulatory potential; they may also play a role in triggering tolerance disruption, by delivering auto‐antigens. EVs are released by almost all cell types, and afford paracrine or distal cell communication, functioning as biological carriers of active molecules including lipids, proteins, and nucleic acids. Depending on stimuli from the external microenvironment or on their cargo, EVs can promote or suppress immune responses. ADs are triggered by inappropriate immune‐system activation against the self, but their precise etiology is still poorly understood. Accumulating evidence indicates that lifestyle and diet have a strong impact on their clinical onset and development. However, to date the mechanisms underlying AD pathogenesis are not fully clarified, and reliable markers, which would provide early prediction and disease progression monitoring, are lacking. In this connection, EVs have recently been indicated as a promising source of AD biomarkers. Although EV isolation is currently based on differential centrifugation or density‐gradient ultracentrifugation, the resulting co‐isolation of contaminants (i.e., protein aggregates), and the pooling of all EVs in one sample, limit this approach to abundantly‐expressed EVs. Flow cytometry is one of the most promising methods for detecting EVs as biomarkers, and may have diagnostic applications. Furthermore, very recent findings describe a new method for identifying and sorting EVs by flow cytometry from freshly collected body fluids, based on specific EV surface markers.
Collapse
Affiliation(s)
- Federica Maione
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy.,Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases- IRCAD, Università del Piemonte Orientale, Novara, Italy
| | - Giuseppe Cappellano
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy.,Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases- IRCAD, Università del Piemonte Orientale, Novara, Italy
| | - Mattia Bellan
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy.,Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Davide Raineri
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy.,Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases- IRCAD, Università del Piemonte Orientale, Novara, Italy
| | - Annalisa Chiocchetti
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy.,Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases- IRCAD, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
4
|
Michael BNR, Kommoju V, Kavadichanda Ganapathy C, Negi VS. Characterization of cell-derived microparticles in synovial fluid and plasma of patients with rheumatoid arthritis. Rheumatol Int 2019; 39:1377-1387. [PMID: 31201512 DOI: 10.1007/s00296-019-04337-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/25/2019] [Indexed: 11/27/2022]
Abstract
Microparticles (MP) are proposed to play a role in the pathogenesis of rheumatoid arthritis (RA). This study aimed to profile cell lineage-specific MP in patients with RA, osteoarthritis (OA), and healthy controls (HC) in synovial fluid and circulation. Patients with RA (n = 40), OA (n = 30) and HC (n = 33) were included. Cell-free synovial fluid (SF) and platelet-poor plasma samples were stained with annexin V APC and antibodies against CD45, CD20, CD14, CD4, CD8, CD66b, and CD61 for multicolor flow cytometry. Mann-Whitney U test/unpaired T test was used to assess intergroup differences among RA and OA SF and clinical, serological phenotypes of RA based on normality distribution; Kruskal-Wallis test with Dunn's multiple comparisons for comparing plasma MPs among RA, OA, and HC. Correlation between MP proportions and disease parameters was assessed by Spearman's correlation. The proportion of annexin V+ MP in SF of patients with RA [5 (6.35)] [median (IQR)] was higher compared to OA [1.8 (1.35), p < 0.001] and plasma of patients with RA [3.45 (5.63)] compared to OA [1.85 (1.4)] and HC [0.9 (1.1), p < 0.001]. Leukocyte-derived [0.85 (1.17)], granulocyte-derived [0.4 (2.05)], monocyte-derived [0.4 (0.4)], and T cell-derived MP [CD4+ - 0.1 (0.1); CD8+ - 0.1(0.1)] were higher in RA SF (p < 0.001). Platelet-derived MP (PMP) were the major fraction [1.5 (4.23), p < 0.001] in RA plasma. Leukocyte-derived MP were higher in RA plasma [0.1 (0.2); p < 0.001) than OA and HC. Annexin V+ MP and PMP were higher in the SF of RA with extra-articular manifestations (n = 15), as compared to those without (n = 25) (p = 0.02; p < 0.01, respectively). High SF granulocyte-derived MP were observed in patients with established RA (n = 24), ACPA-positive RA (n = 32) compared to their negative counterparts (p = 0.03; p = 0.02, respectively). Our observations of higher proportions of cell-derived MP in the plasma and synovial fluid of DMARD-naïve RA patients, their clinical and serological phenotypes suggest their role in dynamic cross talk between the joint and systemic circulation, disease pathology, and progression.
Collapse
Affiliation(s)
- Benita Nancy Reni Michael
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605 006, India
| | - Vallayyachari Kommoju
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605 006, India
| | - Chengappa Kavadichanda Ganapathy
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605 006, India
| | - Vir Singh Negi
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605 006, India.
| |
Collapse
|
5
|
McVey MJ, Kuebler WM. Extracellular vesicles: biomarkers and regulators of vascular function during extracorporeal circulation. Oncotarget 2018; 9:37229-37251. [PMID: 30647856 PMCID: PMC6324688 DOI: 10.18632/oncotarget.26433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are generated at increased rates from parenchymal and circulating blood cells during exposure of the circulation to abnormal flow conditions and foreign materials associated with extracorporeal circuits (ExCors). This review describes types of EVs produced in different ExCors and extracorporeal life support (ECLS) systems including cardiopulmonary bypass circuits, extracorporeal membrane oxygenation (ECMO), extracorporeal carbon dioxide removal (ECCO2R), apheresis, dialysis and ventricular assist devices. Roles of EVs not only as biomarkers of adverse events during ExCor/ECLS use, but also as mediators of vascular dysfunction are explored. Manipulation of the number or subtypes of circulating EVs may prove a means of improving vascular function for individuals requiring ExCor/ECLS support. Strategies for therapeutic manipulation of EVs during ExCor/ECLS use are discussed such as accelerating their clearance, preventing their genesis or pharmacologic options to reduce or select which and how many EVs circulate. Strategies to reduce or select for specific types of EVs may prove beneficial in preventing or treating other EV-related diseases such as cancer.
Collapse
Affiliation(s)
- Mark J McVey
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia and Pain Medicine, SickKids, Toronto, ON, Canada
| | - Wolfgang M Kuebler
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Heart Institute, Berlin, Germany
| |
Collapse
|
6
|
Engelmann C, Splith K, Krohn S, Herber A, Boehlig A, Boehm S, Pratschke J, Berg T, Schmelzle M. Absolute quantification of microparticles by flow cytometry in ascites of patients with decompensated cirrhosis: a cohort study. J Transl Med 2017; 15:188. [PMID: 28877719 PMCID: PMC5586054 DOI: 10.1186/s12967-017-1288-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 08/24/2017] [Indexed: 01/06/2023] Open
Abstract
Background Microparticles (MPs) are small (<1 μm) cell membrane-derived vesicles that are formed in response to cellular activation or early stages of apoptosis. Increased plasma MP levels have been associated with liver disease severity. Here we investigated the clinical impact of ascites MPs in patients with decompensated liver cirrhosis. Methods Ascites and blood samples of 163 patients with cirrhosis (ascites n = 163, blood n = 31) were collected between February 2011 and December 2012. MPs were obtained from ascites and from blood by two-step ultracentrifugation and quantified by flow cytometry. Quantitative absolute MP levels were correlated with clinical and laboratory baseline parameters as well as patient outcomes. Ascites microparticles were stained with antibodies against CD66b (neutrophils) and CD3 (lymphocytes) in a subgroup of 60 matched patients. Results MPs were detected in all ascites and blood samples. Absolute ascites MP levels correlated with blood levels (r = 0.444, p = 0.011). Low ascites MP levels (<488.4 MP/μL) were associated with a poor 30-day survival probability (<488.4 MP/μL 71.1% vs. >488.4 MP/μL 94.7%, log rank p = 0.001) and such patients had a higher relative amount of ascites microparticles derived from neutrophils and lymphocytes. Low levels of ascites MPs, high MELD score and antibiotic treatment were independent risk factors for death within 30 days. Conclusions Ascites MP levels predict short-term survival along with the liver function in patients with decompensated cirrhosis. Further studies which evaluate ascites MPs as disease specific biomarker with a validation cohort and which investigate its underlying mechanisms are needed. Neutrophils and lymphocytes contributed more frequently to the release of microparticles in patients with low ascites levels, possibly indicating an immune activation in this cohort. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1288-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cornelius Engelmann
- Section of Hepatology, Department of Internal Medicine, Neurology, Dermatology, University Hospital Leipzig, Liebigstraße 20, 04103, Leipzig, Germany.
| | - Katrin Splith
- Department of Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sandra Krohn
- Section of Hepatology, Department of Internal Medicine, Neurology, Dermatology, University Hospital Leipzig, Liebigstraße 20, 04103, Leipzig, Germany
| | - Adam Herber
- Section of Hepatology, Department of Internal Medicine, Neurology, Dermatology, University Hospital Leipzig, Liebigstraße 20, 04103, Leipzig, Germany
| | - Albrecht Boehlig
- Section of Hepatology, Department of Internal Medicine, Neurology, Dermatology, University Hospital Leipzig, Liebigstraße 20, 04103, Leipzig, Germany
| | - Stephan Boehm
- Klinische Virologie, Max von Pettenkofer-Institut, Medizinische Fakultät, Ludwig-Maximilians-Universität München, Pettenkoferstrasse 9a, 80336, Munich, Germany
| | - Johann Pratschke
- Department of Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Thomas Berg
- Section of Hepatology, Department of Internal Medicine, Neurology, Dermatology, University Hospital Leipzig, Liebigstraße 20, 04103, Leipzig, Germany
| | - Moritz Schmelzle
- Department of Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
7
|
Greisen SR, Yan Y, Hansen AS, Venø MT, Nyengaard JR, Moestrup SK, Hvid M, Freeman GJ, Kjems J, Deleuran B. Extracellular Vesicles Transfer the Receptor Programmed Death-1 in Rheumatoid Arthritis. Front Immunol 2017; 8:851. [PMID: 28791012 PMCID: PMC5522841 DOI: 10.3389/fimmu.2017.00851] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/05/2017] [Indexed: 12/16/2022] Open
Abstract
Introduction Extracellular vesicles (EVs) have been recognized as route of communication in the microenvironment. They transfer proteins and microRNAs (miRNAs) between cells, and possess immunoregulatory properties. However, their role in immune-mediated diseases remains to be elucidated. We hypothesized a role for EVs in the rheumatoid arthritis (RA) joint, potentially involving the development of T cell exhaustion and transfer of the co-inhibitory receptor programmed death 1 (PD-1). Methods Synovial fluid mononuclear cells (SFMCs) and peripheral blood mononuclear cells (PBMCs) from RA patients were investigated for PD-1 and other markers of T cell inhibition. EVs were isolated from RA plasma and synovial fluid. In addition, healthy control (HC) and RA PBMCs and SFMCs were cultured to produce EVs. These were isolated and investigated by immunogold electron microscopy (EM) and also co-cultured with lymphocytes and PD-1 negative cells to investigate their functions. Finally, the miRNA expression profiles were assessed in EVs isolated from RA and HC cell cultures. Results Cells from the RA joint expressed several T cell co-inhibitory receptors, including PD-1, TIM-3, and Tigit. ELISA demonstrated the presence of PD-1 in EVs from RA plasma and synovial fluid. Immunogold EM visualized PD-1 expression by EVs. Co-culturing lymphocytes and the PD-1 negative cell line, U937 with EVs resulted in an induction of PD-1 on these cells. Moreover, EVs from RA PBMCs increased proliferation in lymphocytes when co-cultured with these. All EVs contained miRNAs associated with PD-1 and other markers of T cell inhibition and the content was significantly lower in EVs from RA PBMCs than HC PBMCs. Stimulation of the cells increased the miRNA expression. However, EVs isolated from stimulated RA SFMCs did not change their miRNA expression profile to the same extend. Conclusion EVs carrying both the PD-1 receptor and miRNAs associated with T cell inhibition were present in RA cell cultures. Upon stimulation, these miRNAs failed to be upregulated in EVs from RA SFMCs. This was in line with increased expression of T cell co-inhibitory markers on SFMCs. In conclusion, we suggest EVs to play a significant role in the RA microenvironment, potentially favoring the progression of T cell exhaustion.
Collapse
Affiliation(s)
- Stinne R Greisen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Yan Yan
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Aida S Hansen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Morten T Venø
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Jens R Nyengaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Sterology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, Aarhus, Denmark
| | - Søren K Moestrup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Malene Hvid
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Deparment of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Bent Deleuran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
8
|
Connolly KD, Willis GR, Datta DBN, Ellins EA, Ladell K, Price DA, Guschina IA, Rees DA, James PE. Lipoprotein-apheresis reduces circulating microparticles in individuals with familial hypercholesterolemia. J Lipid Res 2014; 55:2064-72. [PMID: 25121984 PMCID: PMC4173999 DOI: 10.1194/jlr.m049726] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lipoprotein-apheresis (apheresis) removes LDL-cholesterol in patients with severe dyslipidemia. However, reduction is transient, indicating that the long-term cardiovascular benefits of apheresis may not solely be due to LDL removal. Microparticles (MPs) are submicron vesicles released from the plasma membrane of cells. MPs, particularly platelet-derived MPs, are increasingly being linked to the pathogenesis of many diseases. We aimed to characterize the effect of apheresis on MP size, concentration, cellular origin, and fatty acid concentration in individuals with familial hypercholesterolemia (FH). Plasma and MP samples were collected from 12 individuals with FH undergoing routine apheresis. Tunable resistive pulse sensing (np200) and nanoparticle tracking analysis measured a fall in MP concentration (33 and 15%, respectively; P < 0.05) pre- to post-apheresis. Flow cytometry showed MPs were predominantly annexin V positive and of platelet (CD41) origin both pre- (88.9%) and post-apheresis (88.4%). Fatty acid composition of MPs differed from that of plasma, though apheresis affected a similar profile of fatty acids in both compartments, as measured by GC-flame ionization detection. MP concentration was also shown to positively correlate with thrombin generation potential. In conclusion, we show apheresis nonselectively removes annexin V-positive platelet-derived MPs in individuals with FH. These MPs are potent inducers of coagulation and are elevated in CVD; this reduction in pathological MPs could relate to the long-term benefits of apheresis.
Collapse
Affiliation(s)
- Katherine D Connolly
- Institute of Molecular and Experimental Medicine School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Gareth R Willis
- Institute of Molecular and Experimental Medicine School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Dev B N Datta
- Lipid Unit, Llandough Hospital, Cardiff CF64 2XX, United Kingdom
| | - Elizabeth A Ellins
- Institute of Molecular and Experimental Medicine School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom Institute of Life Sciences, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| | - Kristin Ladell
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - David A Price
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Irina A Guschina
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - D Aled Rees
- Institute of Molecular and Experimental Medicine School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Philip E James
- Institute of Molecular and Experimental Medicine School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
9
|
Garcia AE, Rico MC, Liverani E, DeLa Cadena RA, Bray PF, Kunapuli SP. Erosive arthritis and hepatic granuloma formation induced by peptidoglycan polysaccharide in rats is aggravated by prasugrel treatment. PLoS One 2013; 8:e69093. [PMID: 23861957 PMCID: PMC3701687 DOI: 10.1371/journal.pone.0069093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 06/04/2013] [Indexed: 11/24/2022] Open
Abstract
Administration of the thienopyridine P2Y12 receptor antagonist, clopidogrel, increased the erosive arthritis induced by peptidoglycan polysaccharide (PG-PS) in rats or by injection of the arthritogenic K/BxN serum in mice. To determine if the detrimental effects are caused exclusively by clopidogrel, we evaluated prasugrel, a third-generation thienopyridine pro-drug, that contrary to clopidogrel is mostly metabolized into its active metabolite in the intestine. Prasugrel effects were examined on the PG-PS-induced arthritis rat model. Erosive arthritis was induced in Lewis rats followed by treatment with prasugrel for 21 days. Prasugrel treated arthritic animals showed a significant increase in the inflammatory response, compared with untreated arthritic rats, in terms of augmented macroscopic joint diameter associated with significant signs of inflammation, histomorphometric measurements of the hind joints and elevated platelet number. Moreover, fibrosis at the pannus, assessed by immunofluorescence of connective tissue growth factor, was increased in arthritic rats treated with prasugrel. In addition to the arthritic manifestations, hepatomegaly, liver granulomas and giant cell formation were observed after PG-PS induction and even more after prasugrel exposure. Cytokine plasma levels of IL-1 beta, IL-6, MIP1 alpha, MCP1, IL-17 and RANTES were increased in arthritis-induced animals. IL-10 plasma levels were significantly decreased in animals treated with prasugrel. Overall, prasugrel enhances inflammation in joints and liver of this animal model. Since prasugrel metabolites inhibit neutrophil function ex-vivo and the effects of both clopidogrel and prasugrel metabolites on platelets are identical, we conclude that the thienopyridines metabolites might exert non-platelet effects on other immune cells to aggravate inflammation.
Collapse
Affiliation(s)
- Analia E Garcia
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Temple University Hospital, Philadelphia, Pennsylvania, United States of America.
| | | | | | | | | | | |
Collapse
|
10
|
Maeshima K, Torigoe M, Iwakura M, Yamanaka K, Ishii K. Successful leukocytapheresis therapy in a patient with rheumatoid arthritis on maintenance hemodialysis. Mod Rheumatol 2013. [DOI: 10.1007/s10165-013-0869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Ramlow W, Waitz G, Sparmann G, Prophet H, Bodammer P, Emmrich J. First Human Application of a Novel Adsorptive-Type Cytapheresis Module in Patients With Active Ulcerative Colitis: A Pilot Study. Ther Apher Dial 2013; 17:339-47. [DOI: 10.1111/1744-9987.12007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | - Peggy Bodammer
- Division of Gastroenterology; University of Rostock; Rostock; Germany
| | - Jörg Emmrich
- Division of Gastroenterology; University of Rostock; Rostock; Germany
| |
Collapse
|
12
|
Kusaoi M, Yamaji K, Murayama G, Yasui M, Yamada R, Hishinuma R, Nemoto T, Hohtatsu K, Kageyama M, Kawamoto T, Sugimoto K, Sekiya F, Kon T, Ogasawara M, Kempe K, Tsuda H, Takasaki Y. Gene expression analysis using a high-resolution DNA microarray of peripheral whole blood immediately before and after leukocytapheresis for rheumatoid arthritis. Ther Apher Dial 2012; 16:456-66. [PMID: 23046371 DOI: 10.1111/j.1744-9987.2012.01111.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Leukocytapheresis (LCAP) is a safe, unique therapy pertaining to intractable rheumatoid arthritis (RA) even in cases of drug allergy or infectious states. To investigate how to represent LCAP efficacy, we have conducted gene expression analyses from the peripheral blood of RA patients treated with non-woven polyethylene terephthalate filters. Peripheral blood samples were collected immediately before and after treatment from eight RA patients who received LCAP. Among these patients, all of them achieved 20% improvement in the core set of the American College of Rheumatology (ACR20), and thus, they were confirmed as LCAP responders. Gene expression analysis was done with a high-resolution DNA microarray. The results of each of the two groups' gene expression values (immediately before and after LCAP) were calculated using Welch's t-test. Calculations were performed with a statistical software R.basic package: if the P-value was less than 0.05, this was seen as a significant change. In a comparison of 25,370 gene expressions, the number of genes showing a P-value < 0.05 in the upregulating group was 2110, and in the downregulating group it was 1864. The results of pathway analysis using the MetaCore program indicate that gene groups work for cytoskeletal remodeling are upregulated, and genes related to immune responses, such as antigens presenting via major histocompatibility complex class I and II, are downregulated just after LCAP. These findings may relate to LCAP efficacy for RA patients, but this needs further investigation.
Collapse
Affiliation(s)
- Makio Kusaoi
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Reich N, Beyer C, Gelse K, Akhmetshina A, Dees C, Zwerina J, Schett G, Distler O, Distler JHW. Microparticles stimulate angiogenesis by inducing ELR(+) CXC-chemokines in synovial fibroblasts. J Cell Mol Med 2011; 15:756-62. [PMID: 20219013 PMCID: PMC3922664 DOI: 10.1111/j.1582-4934.2010.01051.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Microparticles (MPs) are small membrane-vesicles that accumulate in the synovial fluids of patients with rheumatoid arthritis (RA). In the arthritic joints, MPs induce a pro-inflammatory and invasive phenotype in synovial fibroblasts (SFs). The present study investigated whether activation of SFs by MPs stimulates angiogenesis in the inflamed joints of patients with RA. MPs were isolated from Jurkat cells and U937 cells by differential centrifugation. SFs were co-cultured with increasing numbers of MPs. The effects of supernatants from co-cultures on endothelial cells were studied in vitro and in vivo using MTT assays, annexin V and propidium iodide staining, trans-well migration assays and modified matrigel pouch assays. MPs strongly induced the expression of the pro-angiogenic ELR+ chemokines CXCL1, CXCL2, CXCL3, CXCL5 and CXCL6 in RASFs. Other vascular growth factors were not induced. Supernatants from co-cultures enhanced the migration of endothelial cells, which could be blocked by neutralizing antibodies against ELR+ chemokines. Consistent with the specific induction of ELR+ chemokines, proliferation and viability of endothelial cells were not affected by the supernatants. In the in vivo bio-chamber assay, supernatants from RASFs co-cultured with MPs stimulated angiogenesis with a significant increase of vessels infiltrating into the matrigel chamber. We demonstrated that MPs activate RASFs to release pro-angiogenic ELR+ chemokines. These pro-angiogenic mediators enhance migration of endothelial cells and stimulate the formation of new vessels. Our data suggest that MPs may contribute to the hypervascularization of inflamed joints in patients with rheumatoid arthritis.
Collapse
Affiliation(s)
- Nicole Reich
- Department for Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
HIDAKA T. The mechanism of the efficiency of Leukocytapheresis on Rheumatoid Arthritis. ACTA ACUST UNITED AC 2011; 34:447-55. [DOI: 10.2177/jsci.34.447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Abstract
Microparticles (MPs) are small membrane-bound vesicles that are emerging as important elements in the pathogenesis of rheumatic diseases owing to their pleiotropic effects on thrombosis, vascular reactivity, angiogenesis and inflammation. Released from cells during activation and apoptosis, MPs carry proteins, lipids and nucleic acids, and serve as platforms for enzymatic processes in thrombosis. Furthermore, MPs can transfer cytokines, receptors, RNA and DNA to modulate the properties of target cells. As MPs appear in the blood in increased numbers during rheumatic disease, they represent novel biomarkers that can be used to assess events in otherwise inaccessible tissues. Future research will define further the pathogenetic role of MPs and explore therapeutic strategies to block their release or signaling properties.
Collapse
|