1
|
Kwon CH, Ha MW. Pharmacogenetic Approach to Tramadol Use in the Arab Population. Int J Mol Sci 2024; 25:8939. [PMID: 39201627 PMCID: PMC11354576 DOI: 10.3390/ijms25168939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Tramdol is one of most popular opioids used for postoperative analgesia worldwide. Among Arabic countries, there are reports that its dosage is not appropriate due to cultural background. To provide theoretical background of the proper usage of tramadol, this study analyzed the association between several genetic polymorphisms (CYP2D6/OPRM1) and the effect of tramadol. A total of 39 patients who took tramadol for postoperative analgesia were recruited, samples were obtained, and their DNA was extracted for polymerase chain reaction products analysis followed by allelic variations of CYP2D6 and OPRM A118G determination. Numerical pain scales were measured before and 1 h after taking tramadol. The effect of tramadol was defined by the difference between these scales. We concluded that CYP2D6 and OPRM1 A118G single nucleotide polymorphisms may serve as crucial determinants in predicting tramadol efficacy and susceptibility to post-surgical pain. Further validation of personalized prescription practices based on these genetic polymorphisms could provide valuable insights for the development of clinical guidelines tailored to post-surgical tramadol use in the Arabic population.
Collapse
Affiliation(s)
- Chan-Hyuk Kwon
- Seoul Shingil Rehabilitation Medicine Clinic, 162 Shingil-ro, Yeongdeungpo-gu, Seoul 07362, Republic of Korea
| | - Min Woo Ha
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Jeju-do, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Jeju-do, Republic of Korea
| |
Collapse
|
2
|
Gaborit M, Massotte D. Therapeutic potential of opioid receptor heteromers in chronic pain and associated comorbidities. Br J Pharmacol 2023; 180:994-1013. [PMID: 34883528 DOI: 10.1111/bph.15772] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/07/2021] [Accepted: 07/21/2021] [Indexed: 11/27/2022] Open
Abstract
Chronic pain affects 20% to 45% of the global population and is often associated with the development of anxio-depressive disorders. Treatment of this debilitating condition remains particularly challenging with opioids prescribed to alleviate moderate to severe pain. However, despite strong antinociceptive properties, numerous adverse effects limit opioid use in the clinic. Moreover, opioid misuse and abuse have become a major health concern worldwide. This prompted efforts to design original strategies that would efficiently and safely relieve pain. Targeting of opioid receptor heteromers is one of these. This review summarizes our current knowledge on the role of heteromers involving opioid receptors in the context of chronic pain and anxio-depressive comorbidities. It also examines how heteromerization in native tissue affects ligand binding, receptor signalling and trafficking properties. Finally, the therapeutic potential of ligands designed to specifically target opioid receptor heteromers is considered. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Marion Gaborit
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Dominique Massotte
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| |
Collapse
|
3
|
Theorizing the Role of Dopaminergic Polymorphic Risk Alleles with Intermittent Explosive Disorder (IED), Violent/Aggressive Behavior and Addiction: Justification of Genetic Addiction Risk Severity (GARS) Testing. J Pers Med 2022; 12:jpm12121946. [PMID: 36556167 PMCID: PMC9784939 DOI: 10.3390/jpm12121946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Scientific studies have provided evidence that there is a relationship between violent and aggressive behaviors and addictions. Genes involved with the reward system, specifically the brain reward cascade (BRC), appear to be associated with various addictions and impulsive, aggressive, and violent behaviors. In our previous research, we examined the Taq A1 allele (variant D2 dopamine receptor gene) and the DAT-40 base repeat (a variant of the dopamine transporter gene) in 11 Caucasian boys at the Brown School in San Marcus, Texas, diagnosed with intermittent explosive disorder. Thirty supernormal controls were screened to exclude several reward-deficit behaviors, including pathological violence, and genotyped for the DRD2 gene. Additionally, 91 controls were screened to exclude ADHD, pathological violence, alcoholism, drug dependence, and tobacco abuse, and their results were compared with DAT1 genotype results. In the schoolboys vs. supercontrols, there was a significant association with the D2 variant and a trend with the dopamine transporter variant. Results support our hypothesis and the involvement of at least two gene risk alleles with adolescent violent/aggressive behaviors. This study and the research presented in this paper suggest that violent/aggressive behaviors are associated with a greater risk of addiction, mediated via various genes linked to the BRC. This review provides a contributory analysis of how gene polymorphisms, especially those related to the brain reward circuitry, are associated with violent behaviors.
Collapse
|
4
|
Role of Omics in Migraine Research and Management: A Narrative Review. Mol Neurobiol 2022; 59:5809-5834. [PMID: 35796901 DOI: 10.1007/s12035-022-02930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
Migraine is a neurological disorder defined by episodic attacks of chronic pain associated with nausea, photophobia, and phonophobia. It is known to be a complex disease with several environmental and genetic factors contributing to its susceptibility. Risk factors for migraine include head or neck injury (Arnold, Cephalalgia 38(1):1-211, 2018). Stress and high temperature are known to trigger migraine, while sleep disorders and anxiety are considered to be the comorbid conditions with migraine. Studies have reported various biomarkers, including genetic variants, proteins, and metabolites implicated in migraine's pathophysiology. Using the "omics" approach, which deals with genetics, transcriptomics, proteomics, and metabolomics, more specific biomarkers for various migraine can be identified. On account of its multifactorial nature, migraine is an ideal study model focusing on integrated omics approaches, including genomics, transcriptomics, proteomics, and metabolomics. The current review has been compiled with an aim to focus on the genomic alterations especially involved in the regulation of glutamatergic neurotransmission, cortical excitability, ion channels, solute carrier proteins, or receptors; their expression in migraine patients and also specific proteins and metabolites, including some inflammatory biomarkers that might represent the migraine phenotype at the molecular level. The systems biology approach holds the promise to understand the pathophysiology of the disease at length and also to identify the specific therapeutic targets for novel interventions.
Collapse
|
5
|
Tchalova K, Sadikaj G, Moskowitz DS, Zuroff DC, Bartz JA. Variation in the μ-opioid receptor gene (OPRM1) and experiences of felt security in response to a romantic partner's quarrelsome behavior. Mol Psychiatry 2021; 26:3847-3857. [PMID: 31772303 DOI: 10.1038/s41380-019-0600-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 01/10/2023]
Abstract
Research suggests that endogenous opioids play a key role in the creation and maintenance of attachment bonds. Opioids acting at the μ-opioid receptor mediate reward and analgesia and are thus thought to underlie feelings of comfort and warmth experienced in the presence of close others. Disruption of μ-opioidergic activity increases separation distress in animals, suggesting that low opioid states may contribute to social pain. Accordingly, a functional μ-opioid receptor (OPRM1) polymorphism (C77G in primates, A118G in humans) affecting opioidergic signaling has been associated with separation distress and attachment behavior in nonhuman primates, and social pain sensitivity in humans. However, no research has examined the effects of this polymorphism on socioemotional experience, and specifically felt security, in daily interactions between romantic partners. Using an event-contingent recording method, members of 92 cohabiting romantic couples reported their felt security and quarrelsome behavior in daily interactions with each other for 20 days. Consistent with prior work, findings suggested that, relative to AA homozygotes, G allele carriers were more sensitive to their partners' self-reported quarrelsome behaviors (e.g., criticism), showing a greater decline in felt security when their partners reported higher quarrelsome behavior than usual. This is the first study to link variation in OPRM1 with felt security toward romantic partners in everyday social interactions. More generally, this research supports the theory that the attachment system incorporated evolutionarily primitive pain-regulating opioidergic pathways. We also discuss implications of this work for understanding of differential vulnerability to health risks posed by social stress.
Collapse
Affiliation(s)
- Kristina Tchalova
- Department of Psychology, McGill University, Montréal, QC, H3A 1G1, Canada
| | - Gentiana Sadikaj
- Department of Psychology, McGill University, Montréal, QC, H3A 1G1, Canada
| | - D S Moskowitz
- Department of Psychology, McGill University, Montréal, QC, H3A 1G1, Canada
| | - David C Zuroff
- Department of Psychology, McGill University, Montréal, QC, H3A 1G1, Canada
| | - Jennifer A Bartz
- Department of Psychology, McGill University, Montréal, QC, H3A 1G1, Canada.
| |
Collapse
|
6
|
Chalmer MA, Rasmussen AH, Kogelman LJA, Olesen J, Hansen TF. Chronic migraine: Genetics or environment? Eur J Neurol 2021; 28:1726-1736. [PMID: 33428804 PMCID: PMC8247872 DOI: 10.1111/ene.14724] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/16/2020] [Accepted: 01/01/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The transition from episodic migraine to chronic migraine, migraine chronification, is usually a gradual process, which involves multiple risk factors. To date, studies of the genetic risk factors for chronic migraine have focused primarily on candidate-gene approaches using healthy individuals as controls. AIMS AND METHODS In this study, we used a large cohort of migraine families and unrelated migraine patients (n > 2200) with supporting genotype and whole-genome sequencing data. We evaluated whether there are any genetic variants, common or rare, with a specific association to chronic migraine compared with episodic migraine. RESULTS We found no aggregation of chronic migraine in families with a clustering of migraine. No specific rare variants gave rise to migraine chronification, and migraine chronification was not associated with a higher polygenic risk score. Migraine chronification was not associated with allelic associations with an odds ratio above 2.65. Assessment of effect sizes with genome-wide significance below an odds ratio of 2.65 requires a genome-wide association study of at least 7500 chronic migraine patients. CONCLUSION Our results suggest that migraine chronification is caused by environmental factors rather than genetic factors.
Collapse
Affiliation(s)
- Mona Ameri Chalmer
- Department of NeurologyDanish Headache CenterCopenhagen University HospitalGlostrupDenmark
| | | | | | | | - Lisette J. A. Kogelman
- Department of NeurologyDanish Headache CenterCopenhagen University HospitalGlostrupDenmark
| | - Jes Olesen
- Department of NeurologyDanish Headache CenterCopenhagen University HospitalGlostrupDenmark
| | - Thomas Folkmann Hansen
- Department of NeurologyDanish Headache CenterCopenhagen University HospitalGlostrupDenmark
- Novo Nordic Foundation Center for Protein ResearchCopenhagen UniversityCopenhagenDenmark
| |
Collapse
|
7
|
Ellerbrock I, Sandström A, Tour J, Kadetoff D, Schalling M, Jensen KB, Kosek E. Polymorphisms of the μ-opioid receptor gene influence cerebral pain processing in fibromyalgia. Eur J Pain 2020; 25:398-414. [PMID: 33064887 PMCID: PMC7821103 DOI: 10.1002/ejp.1680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
Background Dysregulation of the μ‐opioid receptor has been reported in fibromyalgia (FM) and was linked to pain severity. Here, we investigated the effect of the functional genetic polymorphism of the μ‐opioid receptor gene (OPRM1) (rs1799971) on symptom severity, pain sensitivity and cerebral pain processing in FM subjects and healthy controls (HC). Methods Symptom severity and pressure pain sensitivity was assessed in FM subjects (n = 70) and HC (n = 35). Cerebral pain‐related activation was assessed by functional magnetic resonance imaging during individually calibrated painful pressure stimuli. Results Fibromyalgia subjects were more pain sensitive but no significant differences in pain sensitivity or pain ratings were observed between OPRM1 genotypes. A significant difference was found in cerebral pain processing, with carriers of at least one G‐allele showing increased activation in posterior cingulate cortex (PCC) extending to precentral gyrus, compared to AA homozygotes. This effect was significant in FM subjects but not in healthy participants, however, between‐group comparisons did not yield significant results. Seed‐based functional connectivity analysis was performed with the seed based on differences in PCC/precentral gyrus activation between OPRM1 genotypes during evoked pain across groups. G‐allele carriers displayed decreased functional connectivity between PCC/precentral gyrus and prefrontal cortex. Conclusions G‐allele carriers showed increased activation in PCC/precentral gyrus but decreased functional connectivity with the frontal control network during pressure stimulation, suggesting different pain modulatory processes between OPRM1 genotypes involving altered fronto‐parietal network involvement. Furthermore, our results suggest that the overall effects of the OPRM1 G‐allele may be driven by FM subjects. Significance We show that the functional polymorphism of the μ‐opioid receptor gene OPRM1 was associated with alterations in the fronto‐parietal network as well as with increased activation of posterior cingulum during evoked pain in FM. Thus, the OPRM1 polymorphism affects cerebral processing in brain regions implicated in salience, attention, and the default mode network. This finding is discussed in the light of pain and the opioid system, providing further evidence for a functional role of OPRM1 in cerebral pain processing.
Collapse
Affiliation(s)
- Isabel Ellerbrock
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Angelica Sandström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jeanette Tour
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Diana Kadetoff
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.,Stockholm Spine Center, Löwenströmska Hospital, Upplands Väsby, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Karin B Jensen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Chaturvedi R, Alexander B, A'Court AM, Waterman RS, Burton BN, Urman RD, Gabriel RA. Genomics testing and personalized medicine in the preoperative setting: Can it change outcomes in postoperative pain management? Best Pract Res Clin Anaesthesiol 2020; 34:283-295. [PMID: 32711834 DOI: 10.1016/j.bpa.2020.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
Postoperative pain and opioid use are major challenges in perioperative medicine. Pain perception and its response to opioid use are multi-faceted and include pharmacological, psychological, and genetic components. Precision medicine is a unique approach to individualized health care in which decisions in management are based on genetics, lifestyle, and environment of each person. Genetic variations can have an impact on the perception of pain and response to treatment. This can have an effect on pain management in both acute and chronic settings. Although there is currently not enough evidence for making recommendations about genetic testing to guide pain management in the acute care setting, there are some known polymorphisms that play a role in surgical pain and opioid-related postoperative adverse outcomes. In this review, we describe the potential use of pharmacogenomics (PGx) for improving perioperative pain management. We first review a number of genotypes that have shown correlations with pain and opioid use and then describe the importance of PGx-guided analgesic protocols and implementation of screening in a preoperative evaluation clinical setting.
Collapse
Affiliation(s)
- Rahul Chaturvedi
- School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Brenton Alexander
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA.
| | - Alison M A'Court
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, USA.
| | - Ruth S Waterman
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, USA.
| | - Brittany N Burton
- Department of Anesthesiology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Richard D Urman
- Department of Anesthesiology, Perioperative, and Pain Medicine, Harvard Medical School/Brigham and Women's Hospital, Boston, MA, USA.
| | - Rodney A Gabriel
- Department of Anesthesiology and Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Cimino S, Carola V, Cerniglia L, Bussone S, Bevilacqua A, Tambelli R. The μ-opioid receptor gene A118G polymorphism is associated with insecure attachment in children with disruptive mood regulation disorder and their mothers. Brain Behav 2020; 10:e01659. [PMID: 32424914 PMCID: PMC7375094 DOI: 10.1002/brb3.1659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The A118G single nucleotide polymorphism (SNP) of the μ-opioid receptor gene, with high expression of the A allele and low expression of the G allele, has been associated with emotional/behavioral dysregulation and depressive disorders and is recognized as a mediator of affiliative behavior. No study has thus far investigated this SNP in school-age children with disruptive mood regulation disorder (DMDD). This study compared a sample of healthy children and their mothers with a sample of children with DMDD and their mothers, evaluating whether insecure attachment and psychopathological symptoms are associated with A allele- or G allele-carrying mothers and children and whether caregiving capacities are associated with A allele- or G allele-carrying mothers. METHODS For evaluation of their psychopathological symptoms and attachment styles, mothers filled out the CBCL/6-18, the SCL-90-R, and the ECR. To evaluate the types of relationship children were experiencing with their mothers, children filled out the ECR-revised child version and the PBI. Genotypic analyses were conducted on DNA samples obtained by buccal swabbing from children and mothers. RESULTS An insecure attachment style was more frequent in mothers and children carrying the G allele (G/G + A/G genotypes). In the clinical sample, G allele-carrying children scored higher than homozygous A/A ones on the subscales of Withdrawal and Conduct Problems. G-carrying mothers showed higher interpersonal sensitivity, depression, hostility, and paranoid ideation and provided less care than A/A mothers. CONCLUSIONS This study offers new insights into the associations between the A118G SNP of the μ-opioid receptor gene and emotional/behavioral functioning, attachment style in children, and psychopathology and caregiving ability in mothers.
Collapse
Affiliation(s)
- Silvia Cimino
- Department of Dynamic and Clinical, Sapienza-University or Rome, Rome, Italy
| | - Valeria Carola
- Department of Dynamic and Clinical, Sapienza-University or Rome, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Luca Cerniglia
- Faculty of Psychology Psychology, International Telematic University Uninettuno, Rome, Italy
| | - Silvia Bussone
- Department of Dynamic and Clinical, Sapienza-University or Rome, Rome, Italy
| | - Arturo Bevilacqua
- Department of Dynamic and Clinical, Sapienza-University or Rome, Rome, Italy
| | - Renata Tambelli
- Department of Dynamic and Clinical, Sapienza-University or Rome, Rome, Italy
| |
Collapse
|
10
|
Anderson G. Integrating Pathophysiology in Migraine: Role of the Gut Microbiome and Melatonin. Curr Pharm Des 2020; 25:3550-3562. [PMID: 31538885 DOI: 10.2174/1381612825666190920114611] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The pathoetiology and pathophysiology of migraine are widely accepted as unknown. METHODS The current article reviews the wide array of data associated with the biological underpinnings of migraine and provides a framework that integrates previously disparate bodies of data. RESULTS The importance of alterations in stress- and pro-inflammatory cytokine- induced gut dysbiosis, especially butyrate production, are highlighted. This is linked to a decrease in the availability of melatonin, and a relative increase in the N-acetylserotonin/melatonin ratio, which has consequences for the heightened glutamatergic excitatory transmission in migraine. It is proposed that suboptimal mitochondria functioning and metabolic regulation drive alterations in astrocytes and satellite glial cells that underpin the vasoregulatory and nociceptive changes in migraine. CONCLUSION This provides a framework not only for classical migraine associated factors, such as calcitonin-gene related peptide and serotonin, but also for wider factors in the developmental pathoetiology of migraine. A number of future research and treatment implications arise, including the clinical utilization of sodium butyrate and melatonin in the management of migraine.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London, United Kingdom
| |
Collapse
|
11
|
Asociación de polimorfismos de diaminoxidasa e histamina N metiltransferasa con la presencia, discapacidad y severidad de migraña en un grupo de madres mexicanas de niños alérgicos. Neurologia 2017; 32:500-507. [DOI: 10.1016/j.nrl.2016.02.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/23/2016] [Accepted: 02/27/2016] [Indexed: 02/03/2023] Open
|
12
|
Meza-Velázquez R, López-Márquez F, Espinosa-Padilla S, Rivera-Guillen M, Ávila-Hernández J, Rosales-González M. Association of diamine oxidase and histamine N-methyltransferase polymorphisms with presence of migraine in a group of Mexican mothers of children with allergies. NEUROLOGÍA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.nrleng.2016.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
13
|
Morrone LA, Scuteri D, Rombolà L, Mizoguchi H, Bagetta G. Opioids Resistance in Chronic Pain Management. Curr Neuropharmacol 2017; 15:444-456. [PMID: 28503117 PMCID: PMC5405610 DOI: 10.2174/1570159x14666161101092822] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/11/2016] [Accepted: 10/24/2016] [Indexed: 01/07/2023] Open
Abstract
Chronic pain management represents a serious healthcare problem worldwide. Chronic pain affects approximately 20% of the adult European population and is more frequent in women and older people. Unfortunately, its management in the community remains generally unsatisfactory and rarely under the control of currently available analgesics. Opioids have been used as analgesics for a long history and are among the most used drugs; however, while there is no debate over their short term use for pain management, limited evidence supports their efficacy of long-term treatment for chronic non-cancer pain. Therapy with opioids is hampered by inter-individual variability and serious side effects and some opioids often result ineffective in the treatment of chronic pain and their use is controversial. Accordingly, for a better control of chronic pain a deeper knowledge of the molecular mechanisms underlying resistance to opiates is mandatory.
Collapse
Affiliation(s)
- Luigi A. Morrone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- University Consortium for Adaptive Disorders and Head Pain (UCADH), Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University of Calabria, Rende, Italy
| | - Damiana Scuteri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Laura Rombolà
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Hirokazu Mizoguchi
- Department of Physiology and Anatomy, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Giacinto Bagetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- University Consortium for Adaptive Disorders and Head Pain (UCADH), Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University of Calabria, Rende, Italy
| |
Collapse
|
14
|
|
15
|
Kondratieva N, Azimova J, Skorobogatykh K, Sergeev A, Naumova E, Kokaeva Z, Anuchina A, Rudko O, Tabeeva G, Klimov E. Biomarkers of migraine: Part 1 – Genetic markers. J Neurol Sci 2016; 369:63-76. [DOI: 10.1016/j.jns.2016.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/18/2016] [Accepted: 08/02/2016] [Indexed: 02/05/2023]
|
16
|
Gender Interacts with Opioid Receptor Polymorphism A118G and Serotonin Receptor Polymorphism −1438 A/G on Speed-Dating Success. HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE 2016; 27:244-60. [DOI: 10.1007/s12110-016-9257-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Catechol-O-methyltransferase (COMT) gene polymorphisms are associated with baseline disability but not long-term treatment outcome in patients with chronic low back pain. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2015; 24:2425-31. [DOI: 10.1007/s00586-015-3866-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/29/2015] [Accepted: 03/06/2015] [Indexed: 11/26/2022]
|
18
|
Stevens CW. Bioinformatics and evolution of vertebrate nociceptin and opioid receptors. VITAMINS AND HORMONES 2015; 97:57-94. [PMID: 25677768 DOI: 10.1016/bs.vh.2014.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
G protein-coupled receptors (GPCRs) are ancestrally related membrane proteins on cells that mediate the pharmacological effect of most drugs and neurotransmitters. GPCRs are the largest group of membrane receptor proteins encoded in the human genome. One of the most famous types of GPCRs is the opioid receptors. Opioid family receptors consist of four closely related proteins expressed in all vertebrate brains and spinal cords examined to date. The three classical types of opioid receptors shown unequivocally to mediate analgesia in animal models and in humans are the mu- (MOR), delta- (DOR), and kappa-(KOR) opioid receptor proteins. The fourth and most recent member of the opioid receptor family discovered is the nociceptin or orphanin FQ receptor (ORL). The role of ORL and its ligands in producing analgesia is not as clear, with both analgesic and hyperalgesic effects reported. All four opioid family receptor genes were cloned from expressed mRNA in a number of vertebrate species, and there are enough sequences presently available to carry out bioinformatic analysis. This chapter presents the results of a comparative analysis of vertebrate opioid receptors using pharmacological studies, bioinformatics, and the latest data from human whole-genome studies. Results confirm our initial hypotheses that the four opioid receptor genes most likely arose by whole-genome duplication, that there is an evolutionary vector of opioid receptor type divergence in sequence and function, and that the hMOR gene shows evidence of positive selection or adaptive evolution in Homo sapiens.
Collapse
Affiliation(s)
- Craig W Stevens
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA.
| |
Collapse
|
19
|
DaSilva AF, Nascimento TD, Love T, DosSantos MF, Martikainen IK, Cummiford CM, DeBoer M, Lucas SR, Bender MA, Koeppe RA, Hall T, Petty S, Maslowski E, Smith YR, Zubieta JK. 3D-neuronavigation in vivo through a patient's brain during a spontaneous migraine headache. J Vis Exp 2014:50682. [PMID: 24962460 PMCID: PMC4186390 DOI: 10.3791/50682] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A growing body of research, generated primarily from MRI-based studies, shows that migraine appears to occur, and possibly endure, due to the alteration of specific neural processes in the central nervous system. However, information is lacking on the molecular impact of these changes, especially on the endogenous opioid system during migraine headaches, and neuronavigation through these changes has never been done. This study aimed to investigate, using a novel 3D immersive and interactive neuronavigation (3D-IIN) approach, the endogenous µ-opioid transmission in the brain during a migraine headache attack in vivo. This is arguably one of the most central neuromechanisms associated with pain regulation, affecting multiple elements of the pain experience and analgesia. A 36 year-old female, who has been suffering with migraine for 10 years, was scanned in the typical headache (ictal) and nonheadache (interictal) migraine phases using Positron Emission Tomography (PET) with the selective radiotracer [(11)C]carfentanil, which allowed us to measure µ-opioid receptor availability in the brain (non-displaceable binding potential - µOR BPND). The short-life radiotracer was produced by a cyclotron and chemical synthesis apparatus on campus located in close proximity to the imaging facility. Both PET scans, interictal and ictal, were scheduled during separate mid-late follicular phases of the patient's menstrual cycle. During the ictal PET session her spontaneous headache attack reached severe intensity levels; progressing to nausea and vomiting at the end of the scan session. There were reductions in µOR BPND in the pain-modulatory regions of the endogenous µ-opioid system during the ictal phase, including the cingulate cortex, nucleus accumbens (NAcc), thalamus (Thal), and periaqueductal gray matter (PAG); indicating that µORs were already occupied by endogenous opioids released in response to the ongoing pain. To our knowledge, this is the first time that changes in µOR BPND during a migraine headache attack have been neuronavigated using a novel 3D approach. This method allows for interactive research and educational exploration of a migraine attack in an actual patient's neuroimaging dataset.
Collapse
Affiliation(s)
- Alexandre F DaSilva
- Headache & Orofacial Pain Effort (H.O.P.E.), Biological & Materials Sciences Department, University of Michigan School of Dentistry; Michigan Center for Oral Health Research (MCOHR), University of Michigan School of Dentistry; Translational Neuroimaging Laboratory, Molecular & Behavioral Neuroscience Institute, University of Michigan;
| | - Thiago D Nascimento
- Headache & Orofacial Pain Effort (H.O.P.E.), Biological & Materials Sciences Department, University of Michigan School of Dentistry
| | - Tiffany Love
- Translational Neuroimaging Laboratory, Molecular & Behavioral Neuroscience Institute, University of Michigan
| | - Marcos F DosSantos
- Headache & Orofacial Pain Effort (H.O.P.E.), Biological & Materials Sciences Department, University of Michigan School of Dentistry
| | - Ilkka K Martikainen
- Headache & Orofacial Pain Effort (H.O.P.E.), Biological & Materials Sciences Department, University of Michigan School of Dentistry; Translational Neuroimaging Laboratory, Molecular & Behavioral Neuroscience Institute, University of Michigan
| | - Chelsea M Cummiford
- Translational Neuroimaging Laboratory, Molecular & Behavioral Neuroscience Institute, University of Michigan
| | - Misty DeBoer
- Headache & Orofacial Pain Effort (H.O.P.E.), Biological & Materials Sciences Department, University of Michigan School of Dentistry
| | - Sarah R Lucas
- Headache & Orofacial Pain Effort (H.O.P.E.), Biological & Materials Sciences Department, University of Michigan School of Dentistry
| | - MaryCatherine A Bender
- Headache & Orofacial Pain Effort (H.O.P.E.), Biological & Materials Sciences Department, University of Michigan School of Dentistry
| | - Robert A Koeppe
- PET Physics Section, Division of Nuclear Medicine, Radiology Department, University of Michigan
| | | | | | | | - Yolanda R Smith
- Department of Obstetrics and Gynecology, University of Michigan
| | - Jon-Kar Zubieta
- Translational Neuroimaging Laboratory, Molecular & Behavioral Neuroscience Institute, University of Michigan
| |
Collapse
|
20
|
Crist RC, Berrettini WH. Pharmacogenetics of OPRM1. Pharmacol Biochem Behav 2013; 123:25-33. [PMID: 24201053 DOI: 10.1016/j.pbb.2013.10.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/19/2013] [Accepted: 10/23/2013] [Indexed: 12/23/2022]
Abstract
Pharmacogenetic research has the potential to explain the variation in treatment efficacy within patient populations. Understanding the interaction between genetic variation and medications may provide a method for matching patients to the most effective therapeutic options and improving overall patient outcomes. The OPRM1 gene has been a target of interest in a large number of pharmacogenetic studies due to its genetic and structural variation, as well as the role of opioid receptors in a variety of disorders. The mu-opioid receptor (MOR), encoded by OPRM1, naturally regulates the analgesic response to pain and also controls the rewarding effects of many drugs of abuse, including opioids, nicotine, and alcohol. Genetic variants in OPRM1, particularly the non-synonymous polymorphism A118G, have been repeatedly associated with the efficacy of treatments for pain and various types of dependence. This review focuses on the current understanding of the pharmacogenetic impact of OPRM1, primarily with regard to the treatment of pain and addiction.
Collapse
Affiliation(s)
- Richard C Crist
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania School of Medicine, 125 South 31st St., Philadelphia, PA 19104, United States.
| | - Wade H Berrettini
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania School of Medicine, 125 South 31st St., Philadelphia, PA 19104, United States
| |
Collapse
|
21
|
Lionetto L, Gentile G, Bellei E, Capi M, Sabato D, Marsibilio F, Simmaco M, Pini LA, Martelletti P. The omics in migraine. J Headache Pain 2013; 14:55. [PMID: 23815568 PMCID: PMC3727988 DOI: 10.1186/1129-2377-14-55] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/22/2013] [Indexed: 12/29/2022] Open
Abstract
The term omics consist of three main areas of molecular biology, such as genomics, proteomics and metabolomics. The omics synergism recognise migraine as an ideal study model, due to its multifactorial nature. In this review, the plainly research data featuring in this complex network are reported and analyzed, as single or multiple factor in pathophysiology of migraine. The future of migraine biomolecular research shall be focused on networking among these different and hierarchical disciplines. We have to look for its Ariadne’s tread, in order to see the whole painting of migraine molecular biology.
Collapse
Affiliation(s)
- Luana Lionetto
- Sant'Andrea Hospital, Advanced Molecular Diagnostics Unit, Via di Grottarossa 1035 - 1039, Rome 00189, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pharmacogenetics of chronic pain and its treatment. Mediators Inflamm 2013; 2013:864319. [PMID: 23766564 PMCID: PMC3671679 DOI: 10.1155/2013/864319] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/12/2013] [Indexed: 12/20/2022] Open
Abstract
This paper reviews the impact of genetic variability of drug metabolizing enzymes, transporters, receptors, and pathways involved in chronic pain perception on the efficacy and safety of analgesics and other drugs used for chronic pain treatment. Several candidate genes have been identified in the literature, while there is usually only limited clinical evidence substantiating for the penetration of the testing for these candidate biomarkers into the clinical practice. Further, the pain-perception regulation and modulation are still not fully understood, and thus more complex knowledge of genetic and epigenetic background for analgesia will be needed prior to the clinical use of the candidate genetic biomarkers.
Collapse
|
23
|
Meamar R, Soltani N, Mohammadi N, Ostadsharif M. Thr698Thr (nt2369) polymorphism on CACNA1A gene and head pain severity in familial migraine. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2013; 18:S11-4. [PMID: 23961276 PMCID: PMC3743310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/09/2013] [Accepted: 02/10/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND Migraine is a common neurological disorder with a significant genetic component. Less information is known about the contribution of minor genetic variations, such as single nucleotide polymorphism (SNP) on the migraine process. In the present study, we aim to investigate the role of CACNA1A gene polymorphism on severity and related factors in family positive migraine patients. MATERIALS AND METHODS We included 74 common migraine patients consequently. Headache severity was evaluated according to Headache Impact Test (HIT6) questionnaire and quality of life of patients was investigated according to MSQ (Migraine-Specific Quality of Life Questionnaire v2.1) questionnaire. Thirty patients with positive family history of migraine were selected and sequencing analysis after DNA extraction was performed. RESULTS Direct sequencing revealed a known SNP G to A transition in the exon 16 (nt2369, G → A) in 9 patients. There was no significantly correlation between polymorphism and type of migraine, severity, frequency, duration and quality of life in family positive migraine. Evaluated migraine severity by HIT6 questioner couldn't act as a risk factor for this polymorphism (OR: 0.93, CI%95 0.82-1.06 P = 0.3). CONCLUSION In Iranian population no significant association was seen between Thr698Thr (nt2369) polymorphism and head pain severity in familial migraine. Confirmation of this hypothesis needs further investigation.
Collapse
Affiliation(s)
- Rokhsareh Meamar
- Isfahan Neuroscience Research Center, Isfahan university of Medical Sciences, Isfahan, Iran
- Department of Medical Sciences, Najaf Abad Branch, Isfahan, Iran
| | - Nafise Soltani
- Department of Medical Sciences, Najaf Abad Branch, Isfahan, Iran
| | - Neda Mohammadi
- Department of Medical Sciences, Najaf Abad Branch, Isfahan, Iran
| | - Maryam Ostadsharif
- Department of Basic Medical Sciences, Khorasgan Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|