1
|
Kern M, Jansen G, Strickmann B, Kerner T. Advancements in Public First Responder Programs for Out-of-Hospital Cardiac Arrest: An Updated Literature Review. Rev Cardiovasc Med 2025; 26:26140. [PMID: 39867188 PMCID: PMC11760550 DOI: 10.31083/rcm26140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 01/28/2025] Open
Abstract
Out-of-hospital cardiac arrest (OHCA) is a leading cause of death worldwide, with a low survival rate of around 7% globally. Key factors for improving survival include witnessed arrest, bystander cardiopulmonary resuscitation (CPR), and early defibrillation. Despite guidelines advocating for the "chain of survival", bystander CPR and defibrillation rates remain suboptimal. Innovative approaches, such as dispatcher-assisted CPR (DA-CPR) and smartphone-based alerts, have emerged to address these challenges. DA-CPR effectively transforms emergency callers into lay rescuers, and smartphone apps are increasingly being used to alert volunteer first responders to OHCA incidents, enhancing response times and increasing survival rates. Smartphone-based systems offer advantages over traditional text messaging by providing real-time guidance and automated external defibrillator (AED) locations. Studies show improved outcomes with app-based alerts, including higher rates of early CPR, increased survival rates and improved neurological outcomes. Additionally, the potential of unmanned aerial vehicles (drones) to deliver AEDs rapidly to OHCA sites has been demonstrated, particularly in rural areas with extended emergency medical services response times. Despite technological advancements, challenges such as ensuring responder training, effective dispatching, and maintaining responder well-being, particularly during the coronavirus disease 19 (COVID-19) pandemic, remain. During the pandemic, some community first responder programs were suspended or modified due to shortages of personal protective equipment (PPE) and increased risks of infection. However, systems that adapted by using PPE and revising protocols generally maintained responder participation and effectiveness. Moving forward, integrating new technology within robust responder systems and support mechanisms will be essential to improving OHCA outcomes and sustaining effective response networks.
Collapse
Affiliation(s)
- Michael Kern
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine, Pain and Palliative Therapy, Asklepios Klinikum Harburg, 21075 Hamburg, Germany
- Asklepios Campus Hamburg Asklepios Medical School GmbH, 20099 Hamburg, Germany
| | - Gerrit Jansen
- University Department of Anesthesiology, Intensive Care Medicine and Emergency Medicine, Johannes Wesling Klinikum Minden, Ruhr University Bochum, 32423 Minden, Germany
- Medical School and University Medical Center East Westphalia-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
- Department of Medical and Emergency Services, Study Institute Westfalen-Lippe, 33602 Bielefeld, Germany
| | - Bernd Strickmann
- Bevoelkerungsschutz, District of Guetersloh, 33334 Guetersloh, Germany
| | - Thoralf Kerner
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine, Pain and Palliative Therapy, Asklepios Klinikum Harburg, 21075 Hamburg, Germany
- Asklepios Campus Hamburg Asklepios Medical School GmbH, 20099 Hamburg, Germany
| |
Collapse
|
2
|
Jakobsen LK, Kjærulf V, Bray J, Olasveengen TM, Folke F. Drones delivering automated external defibrillators for out-of-hospital cardiac arrest: A scoping review. Resusc Plus 2025; 21:100841. [PMID: 39811468 PMCID: PMC11730569 DOI: 10.1016/j.resplu.2024.100841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Out-of-hospital cardiac arrest (OHCA) remains a critical health concern, where prompt access to automated external defibrillators (AEDs) significantly improves survival. This scoping review broadly investigates the feasibility and impact of dronedelivered AEDs for OHCA response. METHODS PubMed, Cochrane, and Web of Science were searched from inception to August 6, 2024, with eligibility broadly including empirical data. The charting process involved iterative data extraction for thematic analysis. RESULTS We identified 306 titles and, after duplicate removal, title/abstract screening, and full text review, included 39 studies. These were divided into three categories: 1) Real-world observational studies (n = 3), 2) Test flights/simulation studies and qualitative analyses (n = 15), and 3) Computer/prediction models (n = 21). Real-world studies demonstrated the feasibility of drone AED delivery, with a time advantage of 01:52 - 03:14 min over ambulances observed in 64-67 % of cases. Test flight/simulation and qualitative studies consistently reported feasibility and positive bystander experiences. Computer/prediction models exhibited considerable heterogeneity, yet all indicated significant time savings for AED delivery compared to traditional EMS methods. Moreover, seven studies estimated improved survival rates, with five assessing cost-effectiveness and favouring drone systems. Regional factors such as EMS response times, volunteer responder programmes, terrain, weather, and budget constraints influenced the system's effectiveness. CONCLUSION Across all categories, studies confirmed the feasibility of drone-delivered AED systems, with significant potential for reducing time to AED arrival compared to EMS arrival. Prediction models suggested enhanced survival alongside costeffectiveness. Further research, including more extensive real-world studies and regulatory advancements, is imperative to integrate drones effectively into OHCA response systems.
Collapse
Affiliation(s)
- Louise Kollander Jakobsen
- Emergency Medical Services, Capital Region of Denmark, Ballerup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Victor Kjærulf
- Emergency Medical Services, Capital Region of Denmark, Ballerup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Janet Bray
- School of Public Health and Preventive Medicine, Monash University, Melbourne Australia
- Prehospital, Resuscitation and Emergency Care Research Unit, Curtin University, Perth, Australia
| | - Theresa Mariero Olasveengen
- Institute of Clinical Medicine, University of Oslo, Norway
- Department of Anesthesia and Intensive Care Medicine, Oslo University Hospital, Norway
| | - Fredrik Folke
- Emergency Medical Services, Capital Region of Denmark, Ballerup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
| | - on behalf of the International Liaison Committee on Resuscitation Basic Life Support Task Force
- Emergency Medical Services, Capital Region of Denmark, Ballerup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- School of Public Health and Preventive Medicine, Monash University, Melbourne Australia
- Prehospital, Resuscitation and Emergency Care Research Unit, Curtin University, Perth, Australia
- Institute of Clinical Medicine, University of Oslo, Norway
- Department of Anesthesia and Intensive Care Medicine, Oslo University Hospital, Norway
- Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
| |
Collapse
|
3
|
La Gerche A, Paratz ED, Bray JE, Jennings G, Page G, Timbs S, Vandenberg JI, Abhayaratna W, Chow CK, Dennis M, Figtree GA, Kovacic JC, Maris J, Nehme Z, Parsons S, Pflaumer A, Puranik R, Stub D, Freitas E, Zecchin R, Cartledge S, Haskins B, Ingles J. A Call to Action to Improve Cardiac Arrest Outcomes: A Report From the National Summit for Cardiac Arrest. Heart Lung Circ 2024; 33:1507-1522. [PMID: 39306551 DOI: 10.1016/j.hlc.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2024]
Abstract
Sudden cardiac arrest (SCA) represents a major cause of premature mortality globally, with enormous impact and financial cost to victims, families, and communities. SCA prevention should be considered a health priority in Australia. National Cardiac Arrest Summits were held in June 2022 and March 2023, with inclusion from multi-faceted endeavours related to SCA prevention. It was agreed to establish a multidisciplinary Australian Sudden Cardiac Arrest Alliance (AuSCAA) working group charged with developing a national unified strategy, with clear and measurable quality indicators and standardised outcome measures, to amplify the goal of SCA prevention throughout Australia. A multi-faceted prevention strategy will include i) endeavours to progress community awareness, ii) improved fundamental mechanistic understanding, iii) implementation of best-practice resuscitation strategies for all demographics and locations, iv) secondary risk assessment directed to family members, and v) development of (near) real-time registry of cardiac arrest cases to inform areas of need and effectiveness of interventions. Together, we can and should reduce the impact of SCA in Australia.
Collapse
Affiliation(s)
- Andre La Gerche
- Department of Cardiology, St Vincent's Hospital Melbourne, Melbourne, Vic, Australia; HEART Lab, St Vincent's Institute of Medical Research, Melbourne, Vic, Australia; Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, Vic, Australia; Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.
| | - Elizabeth D Paratz
- Department of Cardiology, St Vincent's Hospital Melbourne, Melbourne, Vic, Australia; HEART Lab, St Vincent's Institute of Medical Research, Melbourne, Vic, Australia; Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, Vic, Australia; Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Janet E Bray
- School of Public Health and Preventive Medicine, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne Vic, Australia
| | - Garry Jennings
- National Heart Foundation of Australia, Melbourne Vic, Australia
| | - Greg Page
- Heart of the Nation, Sydney, NSW, Australia
| | - Susan Timbs
- EndUCD Foundation, Melbourne, Vic, Australia
| | | | - Walter Abhayaratna
- College of Health and Medicine, Australian National University, Canberra, ACT, Australia
| | - Clara K Chow
- Westmead Applied Research Centre, Sydney, NSW, Australia
| | - Mark Dennis
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | | | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | | | - Ziad Nehme
- School of Public Health and Preventive Medicine, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne Vic, Australia; Centre for Research and Evaluation, Ambulance Victoria, Melbourne, Vic, Australia
| | - Sarah Parsons
- School of Public Health and Preventive Medicine, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne Vic, Australia; Victorian Institute of Forensic Medicine, Melbourne, Vic, Australia
| | - Andreas Pflaumer
- Department of Cardiology, Royal Children's Hospital, Melbourne, Vic, Australia; Murdoch Children's Research Institute, Melbourne, Vic, Australia
| | | | - Dion Stub
- School of Public Health and Preventive Medicine, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne Vic, Australia; Department of Cardiology, Alfred Hospital, Melbourne, Vic, Australia
| | | | - Robert Zecchin
- Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia
| | - Susie Cartledge
- School of Public Health and Preventive Medicine, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne Vic, Australia
| | - Brian Haskins
- College of Sport, Health and Engineering, Victoria University, Melbourne, VIC, Australia
| | - Jodie Ingles
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| |
Collapse
|
4
|
Kristiansson M, Andersson Hagiwara M, Svensson L, Schierbeck S, Nord A, Hollenberg J, Ringh M, Nordberg P, Andersson Segerfelt P, Jonsson M, Olsson J, Claesson A. Drones can be used to provide dispatch centres with on-site photos before arrival of EMS in time critical incidents. Resuscitation 2024; 202:110312. [PMID: 38996906 DOI: 10.1016/j.resuscitation.2024.110312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Drones are able to deliver automated external defibrillators in cases of out-of-hospital cardiac arrest (OHCA) but can be deployed for other purposes. Our aim was to evaluate the feasibility of sending live photos to dispatch centres before arrival of other units during time-critical incidents. METHODS In this retrospective observational study, the regional dispatch centre implemented a new service using five existing AED-drone systems covering an estimated 200000 inhabitants in Sweden. Drones were deployed automatically over a 4-month study period (December 2022-April 2023) in emergency calls involving suspected OHCAs, traffic accidents and fires in buildings. Upon arrival at the scene, an overhead photo was taken and transmitted to the dispatch centre. Feasibility of providing photos in real time, and time delays intervals were examined. RESULTS Overall, drones were deployed in 59/440 (13%) of all emergency calls: 26/59 (44%) of suspected OHCAs, 20/59 (34%) of traffic accidents, and 13/59 (22%) of fires in buildings. The main reasons for non-deployment were closed airspace and unfavourable weather conditions (68%). Drones arrived safely at the exact location in 58/59 cases (98%). Their overall median response time was 3:49 min, (IQR 3:18-4:26) vs. emergency medical services (EMS), 05:51 (IQR: 04:29-08:04) p-value for time difference between drone and EMS = 0,05. Drones arrived first on scene in 47/52 cases (90%) and the largest median time difference was found in suspected OHCAs 4:10 min, (IQR: 02:57-05:28). The time difference in the 5/52 (10%) cases when EMS arrived first the time difference was 5:18 min (IQR 2:19-7:38), p = NA. Photos were transmitted correctly in all 59 alerts. No adverse events occurred. CONCLUSION In a newly implemented drone dispatch service, drones were dispatched to 13% of relevant EMS calls. When drones were dispatched, they arrived at scene earlier than EMS services in 90% of cases. Drones were able to relay photos to the dispatch centre in all cases. Although severely affected by closed airspace and weather conditions, this novel method may facilitate additional decision-making information during time-critical incidents.
Collapse
Affiliation(s)
- M Kristiansson
- Centre for Resuscitation Science, Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, The Innovation Platform, Göteborg, Sweden
| | | | - L Svensson
- Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
| | - S Schierbeck
- Centre for Resuscitation Science, Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - A Nord
- Centre for Resuscitation Science, Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - J Hollenberg
- Centre for Resuscitation Science, Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - M Ringh
- Centre for Resuscitation Science, Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - P Nordberg
- Centre for Resuscitation Science, Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - P Andersson Segerfelt
- Region Västra Götaland, Department of Regional Health, Emergency Medical Dispatch Centre, Göteborg, Sweden
| | - M Jonsson
- Region Västra Götaland, Department of Regional Health, Emergency Medical Dispatch Centre, Göteborg, Sweden
| | - J Olsson
- Region Västra Götaland, Department of Regional Health, Emergency Medical Dispatch Centre, Göteborg, Sweden
| | - A Claesson
- Centre for Resuscitation Science, Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden.
| |
Collapse
|
5
|
van Veelen MJ, Likar R, Tannheimer M, Bloch KE, Ulrich S, Philadelphy M, Teuchner B, Hochholzer T, Pichler Hefti J, Hefti U, Paal P, Burtscher M. Emergency Care for High-Altitude Trekking and Climbing. High Alt Med Biol 2024. [PMID: 39073038 DOI: 10.1089/ham.2024.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Introduction: High altitude regions are characterized by harsh conditions (environmental, rough terrain, natural hazards, and limited hygiene and health care), which all may contribute to the risk of accidents/emergencies when trekking or climbing. Exposure to hypoxia, cold, wind, and solar radiation are typical features of the high altitude environment. Emergencies in these remote areas place high demands on the diagnostic and treatment skills of doctors and first-aiders. The aim of this review is to give insights on providing the best possible care for victims of emergencies at high altitude. Methods: Authors provide clinical recommendations based on their real-world experience, complemented by appropriate recent studies and internationally reputable guidelines. Results and Discussion: This review covers most of the emergencies/health issues that can occur when trekking or during high altitude climbing, that is, high altitude illnesses and hypothermia, freezing cold injuries, accidents, for example, with severe injuries due to falling, cardiovascular and respiratory illnesses, abdominal, musculoskeletal, eye, dental, and skin issues. We give a summary of current recommendations for emergency care and pain relief in case of these various incidents.
Collapse
Affiliation(s)
- Michiel J van Veelen
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Rudolf Likar
- Department for Anaesthesiology and Intensive Medicine, Klinikum Klagenfurt am Wörthersee, SFU Vienna, Klagenfurt, Austria
| | - Markus Tannheimer
- Department of Sport and Rehabilitation Medicine, University of Ulm, Ulm, Germany
- Department of General and Visceral Surgery, ADK-Klinik Blaubeuren, Ulm, Germany
| | - Konrad E Bloch
- Department of Pulmonology, University Hospital of Zürich, Zürich, Switzerland
| | - Silvia Ulrich
- Department of Pulmonology, University Hospital of Zürich, Zürich, Switzerland
| | | | - Barbara Teuchner
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | - Urs Hefti
- Swiss Sportclinic, Bern, Switzerland
- Medical Commission, International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
| | - Peter Paal
- Medical Commission, International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Department of Anaesthesiology and Intensive Care Medicine, St John of God Hospital, Paracelsus Medical University, Salzburg, Austria
- Austrian Society for Alpine- and High-Altitude Medicine, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
- Austrian Society for Alpine- and High-Altitude Medicine, Innsbruck, Austria
| |
Collapse
|
6
|
Berg KM, Bray JE, Ng KC, Liley HG, Greif R, Carlson JN, Morley PT, Drennan IR, Smyth M, Scholefield BR, Weiner GM, Cheng A, Djärv T, Abelairas-Gómez C, Acworth J, Andersen LW, Atkins DL, Berry DC, Bhanji F, Bierens J, Bittencourt Couto T, Borra V, Böttiger BW, Bradley RN, Breckwoldt J, Cassan P, Chang WT, Charlton NP, Chung SP, Considine J, Costa-Nobre DT, Couper K, Dainty KN, Dassanayake V, Davis PG, Dawson JA, Fernanda de Almeida M, De Caen AR, Deakin CD, Dicker B, Douma MJ, Eastwood K, El-Naggar W, Fabres JG, Fawke J, Fijacko N, Finn JC, Flores GE, Foglia EE, Folke F, Gilfoyle E, Goolsby CA, Granfeldt A, Guerguerian AM, Guinsburg R, Hatanaka T, Hirsch KG, Holmberg MJ, Hosono S, Hsieh MJ, Hsu CH, Ikeyama T, Isayama T, Johnson NJ, Kapadia VS, Daripa Kawakami M, Kim HS, Kleinman ME, Kloeck DA, Kudenchuk P, Kule A, Kurosawa H, Lagina AT, Lauridsen KG, Lavonas EJ, Lee HC, Lin Y, Lockey AS, Macneil F, Maconochie IK, John Madar R, Malta Hansen C, Masterson S, Matsuyama T, McKinlay CJD, Meyran D, Monnelly V, Nadkarni V, Nakwa FL, Nation KJ, Nehme Z, Nemeth M, Neumar RW, Nicholson T, Nikolaou N, Nishiyama C, Norii T, Nuthall GA, Ohshimo S, Olasveengen TM, Gene Ong YK, Orkin AM, Parr MJ, Patocka C, Perkins GD, Perlman JM, Rabi Y, Raitt J, Ramachandran S, Ramaswamy VV, Raymond TT, Reis AG, Reynolds JC, Ristagno G, Rodriguez-Nunez A, Roehr CC, Rüdiger M, Sakamoto T, Sandroni C, Sawyer TL, Schexnayder SM, Schmölzer GM, Schnaubelt S, Semeraro F, Singletary EM, Skrifvars MB, Smith CM, Soar J, Stassen W, Sugiura T, Tijssen JA, Topjian AA, Trevisanuto D, Vaillancourt C, Wyckoff MH, Wyllie JP, Yang CW, Yeung J, Zelop CM, Zideman DA, Nolan JP. 2023 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: Summary From the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces. Resuscitation 2024; 195:109992. [PMID: 37937881 DOI: 10.1016/j.resuscitation.2023.109992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The International Liaison Committee on Resuscitation engages in a continuous review of new, peer-reviewed, published cardiopulmonary resuscitation and first aid science. Draft Consensus on Science With Treatment Recommendations are posted online throughout the year, and this annual summary provides more concise versions of the final Consensus on Science With Treatment Recommendations from all task forces for the year. Topics addressed by systematic reviews this year include resuscitation of cardiac arrest from drowning, extracorporeal cardiopulmonary resuscitation for adults and children, calcium during cardiac arrest, double sequential defibrillation, neuroprognostication after cardiac arrest for adults and children, maintaining normal temperature after preterm birth, heart rate monitoring methods for diagnostics in neonates, detection of exhaled carbon dioxide in neonates, family presence during resuscitation of adults, and a stepwise approach to resuscitation skills training. Members from 6 International Liaison Committee on Resuscitation task forces have assessed, discussed, and debated the quality of the evidence, using Grading of Recommendations Assessment, Development, and Evaluation criteria, and their statements include consensus treatment recommendations. Insights into the deliberations of the task forces are provided in the Justification and Evidence-to-Decision Framework Highlights sections. In addition, the task forces list priority knowledge gaps for further research. Additional topics are addressed with scoping reviews and evidence updates.
Collapse
|
7
|
Berg KM, Bray JE, Ng KC, Liley HG, Greif R, Carlson JN, Morley PT, Drennan IR, Smyth M, Scholefield BR, Weiner GM, Cheng A, Djärv T, Abelairas-Gómez C, Acworth J, Andersen LW, Atkins DL, Berry DC, Bhanji F, Bierens J, Bittencourt Couto T, Borra V, Böttiger BW, Bradley RN, Breckwoldt J, Cassan P, Chang WT, Charlton NP, Chung SP, Considine J, Costa-Nobre DT, Couper K, Dainty KN, Dassanayake V, Davis PG, Dawson JA, de Almeida MF, De Caen AR, Deakin CD, Dicker B, Douma MJ, Eastwood K, El-Naggar W, Fabres JG, Fawke J, Fijacko N, Finn JC, Flores GE, Foglia EE, Folke F, Gilfoyle E, Goolsby CA, Granfeldt A, Guerguerian AM, Guinsburg R, Hatanaka T, Hirsch KG, Holmberg MJ, Hosono S, Hsieh MJ, Hsu CH, Ikeyama T, Isayama T, Johnson NJ, Kapadia VS, Kawakami MD, Kim HS, Kleinman ME, Kloeck DA, Kudenchuk P, Kule A, Kurosawa H, Lagina AT, Lauridsen KG, Lavonas EJ, Lee HC, Lin Y, Lockey AS, Macneil F, Maconochie IK, Madar RJ, Malta Hansen C, Masterson S, Matsuyama T, McKinlay CJD, Meyran D, Monnelly V, Nadkarni V, Nakwa FL, Nation KJ, Nehme Z, Nemeth M, Neumar RW, Nicholson T, Nikolaou N, Nishiyama C, Norii T, Nuthall GA, Ohshimo S, Olasveengen TM, Ong YKG, Orkin AM, Parr MJ, Patocka C, Perkins GD, Perlman JM, Rabi Y, Raitt J, Ramachandran S, Ramaswamy VV, Raymond TT, Reis AG, Reynolds JC, Ristagno G, Rodriguez-Nunez A, Roehr CC, Rüdiger M, Sakamoto T, Sandroni C, Sawyer TL, Schexnayder SM, Schmölzer GM, Schnaubelt S, Semeraro F, Singletary EM, Skrifvars MB, Smith CM, Soar J, Stassen W, Sugiura T, Tijssen JA, Topjian AA, Trevisanuto D, Vaillancourt C, Wyckoff MH, Wyllie JP, Yang CW, Yeung J, Zelop CM, Zideman DA, Nolan JP. 2023 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: Summary From the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces. Circulation 2023; 148:e187-e280. [PMID: 37942682 PMCID: PMC10713008 DOI: 10.1161/cir.0000000000001179] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The International Liaison Committee on Resuscitation engages in a continuous review of new, peer-reviewed, published cardiopulmonary resuscitation and first aid science. Draft Consensus on Science With Treatment Recommendations are posted online throughout the year, and this annual summary provides more concise versions of the final Consensus on Science With Treatment Recommendations from all task forces for the year. Topics addressed by systematic reviews this year include resuscitation of cardiac arrest from drowning, extracorporeal cardiopulmonary resuscitation for adults and children, calcium during cardiac arrest, double sequential defibrillation, neuroprognostication after cardiac arrest for adults and children, maintaining normal temperature after preterm birth, heart rate monitoring methods for diagnostics in neonates, detection of exhaled carbon dioxide in neonates, family presence during resuscitation of adults, and a stepwise approach to resuscitation skills training. Members from 6 International Liaison Committee on Resuscitation task forces have assessed, discussed, and debated the quality of the evidence, using Grading of Recommendations Assessment, Development, and Evaluation criteria, and their statements include consensus treatment recommendations. Insights into the deliberations of the task forces are provided in the Justification and Evidence-to-Decision Framework Highlights sections. In addition, the task forces list priority knowledge gaps for further research. Additional topics are addressed with scoping reviews and evidence updates.
Collapse
|
8
|
Schierbeck S, Nord A, Svensson L, Ringh M, Nordberg P, Hollenberg J, Lundgren P, Folke F, Jonsson M, Forsberg S, Claesson A. Drone delivery of automated external defibrillators compared with ambulance arrival in real-life suspected out-of-hospital cardiac arrests: a prospective observational study in Sweden. Lancet Digit Health 2023; 5:e862-e871. [PMID: 38000871 DOI: 10.1016/s2589-7500(23)00161-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND A novel approach to improve bystander defibrillation for out-of-hospital cardiac arrests is to dispatch and deliver an automated external defibrillator (AED) directly to the suspected cardiac arrest location by drone. The aim of this study was to investigate how often a drone could deliver an AED before ambulance arrival and to measure the median time benefit achieved by drone deliveries. METHODS In this prospective observational study, five AED-equipped drones were placed within two separate controlled airspaces in Sweden, covering approximately 200 000 inhabitants. Drones were dispatched in addition to standard emergency medical services for suspected out-of-hospital cardiac arrests and flight was autonomous. Alerts concerning children younger than 8 years, trauma, and emergency medical services-witnessed cases were not included. Exclusion criteria were air traffic control non-approval of flight, unfavourable weather conditions, no-delivery zones, and darkness. Data were collected from the dispatch centres, ambulance organisations, Swedish Registry for Cardiopulmonary Resuscitation, and the drone operator. Core outcomes were the percentage of cases for which an AED was delivered by a drone before ambulance arrival, and the median time difference (minutes and seconds) between AED delivery by drone and ambulance arrival. Explorative outcomes were percentage of attached drone-delivered AEDs before ambulance arrival and the percentage of cases defibrillated by a drone-delivered AED when it was used before ambulance arrival. FINDINGS During the study period (from April 21, 2021 to May 31, 2022), 211 suspected out-of-hospital cardiac arrest alerts occurred, and in 72 (34%) of those a drone was deployed. Among those, an AED was successfully delivered in 58 (81%) cases, and the major reason for non-delivery was cancellation by dispatch centre because the case was not an out-of-hospital cardiac arrest. In cases for which arrival times for both drone and ambulance were available (n=55), AED delivery by drone occurred before ambulance arrival in 37 cases (67%), with a median time benefit of 3 min and 14 s. Among these cases, 18 (49%) were true out-of-hospital cardiac arrests and a drone-delivered AED was attached in six cases (33%). Two (33%) had a shockable first rhythm and were defibrillated by a drone-delivered AED before ambulance arrival, with one person achieving 30-day survival. No adverse events occurred. AED delivery (not landing) was made within 15 m from the patient or building in 91% of the cases. INTERPRETATION AED-equipped drones dispatched in cases of suspected out-of-hospital cardiac arrests delivered AEDs before ambulance arrival in two thirds of cases, with a clinically relevant median time benefit of more than 3 min. This intervention could potentially decrease time to attachment of an AED, before ambulance arrival. FUNDING Swedish Heart Lung Foundation.
Collapse
Affiliation(s)
- Sofia Schierbeck
- Center for Resuscitation Science, Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.
| | - Anette Nord
- Center for Resuscitation Science, Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Leif Svensson
- Department of Medicine, Karolinska Institutet, Solna, Sweden
| | - Mattias Ringh
- Center for Resuscitation Science, Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Per Nordberg
- Center for Resuscitation Science, Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Jacob Hollenberg
- Center for Resuscitation Science, Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Peter Lundgren
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Prehospen-Centre for Prehospital Research, University of Borås, Borås, Sweden; Department of Cardiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Fredrik Folke
- Department of Cardiology, Gentofte University Hospital, Copenhagen, Denmark; Copenhagen Emergency Medical Services, Copenhagen, Denmark; Institute of Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Martin Jonsson
- Center for Resuscitation Science, Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Sune Forsberg
- Center for Resuscitation Science, Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Claesson
- Center for Resuscitation Science, Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Jonsson M, Berglund E, Müller MP. Automated external defibrillators and the link to first responder systems. Curr Opin Crit Care 2023; 29:628-632. [PMID: 37861209 DOI: 10.1097/mcc.0000000000001109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
PURPOSE OF REVIEW Automated external defibrillators are a very effective treatment to convert ventricular fibrillation (VF) in out-of-hospital cardiac arrest. The purpose of this paper is to review recent publications related to automated external defibrillators (AEDs). RECENT FINDINGS Much of the recent research focus on ways to utilize publicly available AEDs included in different national/regional registers. More and more research present positive associations between engaging volunteers to increase the use of AEDs. There are only a few recent studies focusing on professional first responders such as fire fighters/police with mixed results. The use of unmanned aerial vehicles (drones) lacks clinical data and is therefore difficult to evaluate. On-site use of AED shows high survival rates but suffers from low incidence of out-of-hospital cardiac arrest (OHCA). SUMMARY The use of public AEDs in OHCA are still low. Systems focusing on engaging volunteers in the cardiac arrest response have shown to be associated with higher AED usage. Dispatching drones equipped with AEDs is promising, but research lacks clinical data. On-site defibrillation is associated with high survival rates but is not available for most cardiac arrests.
Collapse
Affiliation(s)
- Martin Jonsson
- Center for Resuscitation Science, Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Ellinor Berglund
- Center for Resuscitation Science, Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Michael P Müller
- Deptartment of Anaesthesiology, Intensive Care, and Emergency Medicine, Artemed St. Josef's Hospital. Freiburg, Germany
| |
Collapse
|
10
|
Scholz SS, Thies KC. Automated external defibrillator drones and their role in emergency response. Lancet Digit Health 2023; 5:e849-e850. [PMID: 38000868 DOI: 10.1016/s2589-7500(23)00217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023]
Affiliation(s)
- Sean S Scholz
- Department of Anaesthesiology and Critical Care, EvKB University Hospital Bielefeld, 33617 Bielefeld, Germany
| | - Karl-Christian Thies
- Department of Anaesthesiology and Critical Care, EvKB University Hospital Bielefeld, 33617 Bielefeld, Germany.
| |
Collapse
|
11
|
AED delivery at night - Can drones do the Job? A feasibility study of unmanned aerial systems to transport automated external defibrillators during night-time. Resuscitation 2023; 185:109734. [PMID: 36791989 DOI: 10.1016/j.resuscitation.2023.109734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND In their recent guidelines the European Resuscitation Council have recommended the use of Unmanned Aerial systems (UAS) to overcome the notorious shortage of AED. Exploiting the full potential of airborne AED delivery would mandate 24 h UAS operability. However, current systems have not been evaluated for nighttime use. The primary goal of our study was to evaluate the feasibility of night-time AED delivery by UAS. The secondary goal was to obtain and compare operational and safety data of night versus day missions. METHODS We scheduled two (one day, one night) flights each to ten different locations to assess the feasibility of AED delivery by UAS during night-time. We also compared operational data (mission timings) and safety data (incidence of critical events) of night versus day missions. RESULTS All missions were completed without safety incident. The flights were performed automatically without pilot interventions, apart from manually choosing the landing site and correcting the descent. Flight distances ranged from 910 m to 6.960 m, corresponding mission times from alert to AED release between 3:48 min and 11:20 min. Night missions (T¯m:night = 7:26 ± 2:29 min) did not take longer than day missions (T¯m:day = 7:59 ± 2:27 min). Despite slightly inferior visibility of the target site, night landings (T¯land:night = 64 ± 15 sec) were on average marginally quicker than day landings (T¯land:day = 69 ± 11sec). CONCLUSIONS Our results demonstrate the feasibility of UAS supported AED delivery during nighttime. Operational and safety data indicate no major differences between day- and night-time use. Future research should focus on integration of drone technology into the chain of survival.
Collapse
|
12
|
Innovation - Herzstillstand: Kosteneffektive Bereitstellung von
Defibrillatoren aus der Luft? GESUNDHEITSÖKONOMIE & QUALITÄTSMANAGEMENT 2023. [DOI: 10.1055/a-1983-8892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Der außerklinische Herzstillstand (out-of-hospital cardiac-arrest
– OHCA) ist eine der häufigsten Todesursachen in vielen
Industrieländern. Allein in Deutschland erleiden jedes Jahr etwa 75,000
Menschen einen OHCA. Vor allem in ländlichen Gebieten ist eine schnelle
medizinische Versorgung durch den Rettungsdienst und Erreichbarkeit von
Defibrillatoren oft nicht gegeben. Röper et al. bewerten die
wirtschaftlichen Auswirkungen des Einsatzes von unbemannten Luftfahrtsystemen
(AUS) zur Bereitstellung von Defibrillatoren im Vergleich zu stationären
automatischen externen Defibrillatoren (AED).
Collapse
|