1
|
Bandil P, Vernerey FJ. A morpho-viscoelasticity theory for growth in proliferating aggregates. Biomech Model Mechanobiol 2024:10.1007/s10237-024-01886-8. [PMID: 39222162 DOI: 10.1007/s10237-024-01886-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Despite significant research efforts in the continuum modeling of biological growth, certain aspects have been overlooked. For instance, numerous investigations have examined the influence of morphogenetic cell behaviors, like division and intercalation, on the mechanical response of passive (non-growing) tissues. Yet, their impact on active growth dynamics remains inadequately explored. A key reason for this inadequacy stems from challenges in the continuum treatment of cell-level processes. While some coarse-grained models have been proposed to address these shortcomings, a focus on cell division and cell expansion has been missing, rendering them unusable when it comes to modeling growth. Moreover, existing studies are limited to two-dimensional tissues and are yet to be formally extended to three-dimensional multicellular systems. To address these limitations, we here present a generalized multiscale model for three-dimensional aggregates that accounts for complex morphogenetic movements that include division, expansion, and intercalation. The proposed continuum theory thus allows for a comprehensive exploration into the growth and dissipation mechanics of proliferating aggregates, such as spheroids and organoids.
Collapse
Affiliation(s)
- Prakhar Bandil
- Department of Mechanical Engineering, University of Colorado, Boulder, USA
| | - Franck J Vernerey
- Department of Mechanical Engineering, University of Colorado, Boulder, USA.
| |
Collapse
|
2
|
Scianna M. Selected aspects of avascular tumor growth reproduced by a hybrid model of cell dynamics and chemical kinetics. Math Biosci 2024; 370:109168. [PMID: 38408698 DOI: 10.1016/j.mbs.2024.109168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/10/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
We here propose a hybrid computational framework to reproduce and analyze aspects of the avascular progression of a generic solid tumor. Our method first employs an individual-based approach to represent the population of tumor cells, which are distinguished in viable and necrotic agents. The active part of the disease is in turn differentiated according to a set of metabolic states. We then describe the spatio-temporal evolution of the concentration of oxygen and of tumor-secreted proteolytic enzymes using partial differential equations (PDEs). A differential equation finally governs the local degradation of the extracellular matrix (ECM) by the malignant mass. Numerical realizations of the model are run to reproduce tumor growth and invasion in a number scenarios that differ for cell properties (adhesiveness, duplication potential, proteolytic activity) and/or environmental conditions (level of tissue oxygenation and matrix density pattern). In particular, our simulations suggest that tumor aggressiveness, in terms of invasive depth and extension of necrotic tissue, can be reduced by (i) stable cell-cell contact interactions, (ii) poor tendency of malignant agents to chemotactically move upon oxygen gradients, and (iii) presence of an overdense matrix, if coupled by a disrupted proteolytic activity of the disease.
Collapse
Affiliation(s)
- Marco Scianna
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
3
|
Walker BJ, Celora GL, Goriely A, Moulton DE, Byrne HM. Minimal Morphoelastic Models of Solid Tumour Spheroids: A Tutorial. Bull Math Biol 2023; 85:38. [PMID: 36991173 PMCID: PMC10060352 DOI: 10.1007/s11538-023-01141-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/03/2023] [Indexed: 03/31/2023]
Abstract
Tumour spheroids have been the focus of a variety of mathematical models, ranging from Greenspan's classical study of the 1970 s through to contemporary agent-based models. Of the many factors that regulate spheroid growth, mechanical effects are perhaps some of the least studied, both theoretically and experimentally, though experimental enquiry has established their significance to tumour growth dynamics. In this tutorial, we formulate a hierarchy of mathematical models of increasing complexity to explore the role of mechanics in spheroid growth, all the while seeking to retain desirable simplicity and analytical tractability. Beginning with the theory of morphoelasticity, which combines solid mechanics and growth, we successively refine our assumptions to develop a somewhat minimal model of mechanically regulated spheroid growth that is free from many unphysical and undesirable behaviours. In doing so, we will see how iterating upon simple models can provide rigorous guarantees of emergent behaviour, which are often precluded by existing, more complex modelling approaches. Perhaps surprisingly, we also demonstrate that the final model considered in this tutorial agrees favourably with classical experimental results, highlighting the potential for simple models to provide mechanistic insight whilst also serving as mathematical examples.
Collapse
Affiliation(s)
- Benjamin J Walker
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
- Department of Mathematics, University College London, Gordon Street, London, WC1H 0AY, UK.
| | - Giulia L Celora
- Department of Mathematics, University College London, Gordon Street, London, WC1H 0AY, UK
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK
| | - Derek E Moulton
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK
| | - Helen M Byrne
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK
| |
Collapse
|
4
|
Mechanotransduction in tumor dynamics modeling. Phys Life Rev 2023; 44:279-301. [PMID: 36841159 DOI: 10.1016/j.plrev.2023.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Mechanotherapy is a groundbreaking approach to impact carcinogenesis. Cells sense and respond to mechanical stimuli, translating them into biochemical signals in a process known as mechanotransduction. The impact of stress on tumor growth has been studied in the last three decades, and many papers highlight the role of mechanics as a critical self-inducer of tumor fate at the in vitro and in vivo biological levels. Meanwhile, mathematical models attempt to determine laws to reproduce tumor dynamics. This review discusses biological mechanotransduction mechanisms and mathematical-biomechanical models together. The aim is to provide a common framework for the different approaches that have emerged in the literature from the perspective of tumor avascularity and to provide insight into emerging mechanotherapies that have attracted interest in recent years.
Collapse
|
5
|
Goodin DA, Frieboes HB. Evaluation of innate and adaptive immune system interactions in the tumor microenvironment via a 3D continuum model. J Theor Biol 2023; 559:111383. [PMID: 36539112 DOI: 10.1016/j.jtbi.2022.111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Immune cells in the tumor microenvironment (TME) are known to affect tumor growth, vascularization, and extracellular matrix (ECM) deposition. Marked interest in system-scale analysis of immune species interactions within the TME has encouraged progress in modeling tumor-immune interactions in silico. Due to the computational cost of simulating these intricate interactions, models have typically been constrained to representing a limited number of immune species. To expand the capability for system-scale analysis, this study develops a three-dimensional continuum mixture model of tumor-immune interactions to simulate multiple immune species in the TME. Building upon a recent distributed computing implementation that enables efficient solution of such mixture models, major immune species including monocytes, macrophages, natural killer cells, dendritic cells, neutrophils, myeloid-derived suppressor cells (MDSC), cytotoxic, helper, regulatory T-cells, and effector and regulatory B-cells and their interactions are represented in this novel implementation. Immune species extravasate from blood vasculature, undergo chemotaxis toward regions of high chemokine concentration, and influence the TME in proportion to locally defined levels of stimulation. The immune species contribute to the production of angiogenic and tumor growth factors, promotion of myofibroblast deposition of ECM, upregulation of angiogenesis, and elimination of living and dead tumor species. The results show that this modeling approach offers the capability for quantitative insight into the modulation of tumor growth by diverse immune-tumor interactions and immune-driven TME effects. In particular, MDSC-mediated effects on tumor-associated immune species' activation levels, volume fraction, and influence on the TME are explored. Longer term, linking of the model parameters to particular patient tumor information could simulate cancer-specific immune responses and move toward a more comprehensive evaluation of immunotherapeutic strategies.
Collapse
Affiliation(s)
- Dylan A Goodin
- Department of Bioengineering, University of Louisville, KY, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville, KY, USA; Center for Predictive Medicine, University of Louisville, KY, USA.
| |
Collapse
|
6
|
Hoehme S, Hammad S, Boettger J, Begher-Tibbe B, Bucur P, Vibert E, Gebhardt R, Hengstler JG, Drasdo D. Digital twin demonstrates significance of biomechanical growth control in liver regeneration after partial hepatectomy. iScience 2022; 26:105714. [PMID: 36691615 PMCID: PMC9860368 DOI: 10.1016/j.isci.2022.105714] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/23/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Partial liver removal is an important therapy option for liver cancer. In most patients within a few weeks, the liver is able to fully regenerate. In some patients, however, regeneration fails with often severe consequences. To better understand the control mechanisms of liver regeneration, experiments in mice were performed, guiding the creation of a spatiotemporal 3D model of the regenerating liver. The model represents cells and blood vessels within an entire liver lobe, a macroscopic liver subunit. The model could reproduce the experimental data only if a biomechanical growth control (BGC)-mechanism, inhibiting cell cycle entrance at high compression, was taken into account and predicted that BGC may act as a short-range growth inhibitor minimizing the number of proliferating neighbor cells of a proliferating cell, generating a checkerboard-like proliferation pattern. Model-predicted cell proliferation patterns in pigs and mice were found experimentally. The results underpin the importance of biomechanical aspects in liver growth control.
Collapse
Affiliation(s)
- Stefan Hoehme
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany,Institute of Computer Science, University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany,Saxonian Incubator for Clinical Research (SIKT), Philipp-Rosenthal-Straße 55, 04103 Leipzig, Germany
| | - Seddik Hammad
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Germany,Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany,Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Jan Boettger
- Faculty of Medicine, Rudolf-Schoenheimer-Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Brigitte Begher-Tibbe
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany
| | - Petru Bucur
- Unité INSERM 1193, Centre Hépato-Biliaire, Villejuif, France,Service de Chirurgie Digestive, CHU Trousseau, Tours, France
| | - Eric Vibert
- Unité INSERM 1193, Centre Hépato-Biliaire, Villejuif, France
| | - Rolf Gebhardt
- Faculty of Medicine, Rudolf-Schoenheimer-Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany
| | - Dirk Drasdo
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany,Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany,Inria Paris & Sorbonne Université LJLL, 75012 Paris, France,Correspondence:
| |
Collapse
|
7
|
Goodin DA, Frieboes HB. Simulation of 3D centimeter-scale continuum tumor growth at sub-millimeter resolution via distributed computing. Comput Biol Med 2021; 134:104507. [PMID: 34157612 DOI: 10.1016/j.compbiomed.2021.104507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 12/28/2022]
Abstract
Simulation of cm-scale tumor growth has generally been constrained by the computational cost to numerically solve the associated equations, with models limited to representing mm-scale or smaller tumors. While the work has proven useful to the study of small tumors and micro-metastases, a biologically-relevant simulation of cm-scale masses as would be typically detected and treated in patients has remained an elusive goal. This study presents a distributed computing (parallelized) implementation of a mixture model of tumor growth to simulate 3D cm-scale vascularized tissue at sub-mm resolution. The numerical solving scheme utilizes a two-stage parallelization framework. The solution is written for GPU computation using the CUDA framework, which handles all Multigrid-related computations. Message Passing Interface (MPI) handles distribution of information across multiple processes, freeing the program from RAM and the processing limitations found on single systems. On each system, Nvidia's CUDA library allows for fast processing of model data using GPU-bound computing on fewer systems. The results show that a combined MPI-CUDA implementation enables the continuum modeling of cm-scale tumors at reasonable computational cost. Further work to calibrate model parameters to particular tumor conditions could enable simulation of patient-specific tumors for clinical application.
Collapse
Affiliation(s)
- Dylan A Goodin
- Department of Bioengineering, University of Louisville, KY, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville, KY, USA; Center for Predictive Medicine, University of Louisville, KY, USA.
| |
Collapse
|
8
|
Wang Y, Brodin E, Nishii K, Frieboes HB, Mumenthaler SM, Sparks JL, Macklin P. Impact of tumor-parenchyma biomechanics on liver metastatic progression: a multi-model approach. Sci Rep 2021; 11:1710. [PMID: 33462259 PMCID: PMC7813881 DOI: 10.1038/s41598-020-78780-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer and other cancers often metastasize to the liver in later stages of the disease, contributing significantly to patient death. While the biomechanical properties of the liver parenchyma (normal liver tissue) are known to affect tumor cell behavior in primary and metastatic tumors, the role of these properties in driving or inhibiting metastatic inception remains poorly understood, as are the longer-term multicellular dynamics. This study adopts a multi-model approach to study the dynamics of tumor-parenchyma biomechanical interactions during metastatic seeding and growth. We employ a detailed poroviscoelastic model of a liver lobule to study how micrometastases disrupt flow and pressure on short time scales. Results from short-time simulations in detailed single hepatic lobules motivate constitutive relations and biological hypotheses for a minimal agent-based model of metastatic growth in centimeter-scale tissue over months-long time scales. After a parameter space investigation, we find that the balance of basic tumor-parenchyma biomechanical interactions on shorter time scales (adhesion, repulsion, and elastic tissue deformation over minutes) and longer time scales (plastic tissue relaxation over hours) can explain a broad range of behaviors of micrometastases, without the need for complex molecular-scale signaling. These interactions may arrest the growth of micrometastases in a dormant state and prevent newly arriving cancer cells from establishing successful metastatic foci. Moreover, the simulations indicate ways in which dormant tumors could "reawaken" after changes in parenchymal tissue mechanical properties, as may arise during aging or following acute liver illness or injury. We conclude that the proposed modeling approach yields insight into the role of tumor-parenchyma biomechanics in promoting liver metastatic growth, and advances the longer term goal of identifying conditions to clinically arrest and reverse the course of late-stage cancer.
Collapse
Affiliation(s)
- Yafei Wang
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Erik Brodin
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Kenichiro Nishii
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jessica L Sparks
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA.
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
9
|
Giverso C, Di Stefano S, Grillo A, Preziosi L. A three dimensional model of multicellular aggregate compression. SOFT MATTER 2019; 15:10005-10019. [PMID: 31761911 DOI: 10.1039/c9sm01628g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multicellular aggregates are an excellent model system to explore the role of tissue biomechanics, which has been demonstrated to play a crucial role in many physiological and pathological processes. In this paper, we propose a three-dimensional mechanical model and apply it to the uniaxial compression of a multicellular aggregate in a realistic biological setting. In particular, we consider an aggregate of initially spherical shape and describe both its elastic deformations and the reorganisation of the cells forming the spheroid. The latter phenomenon, understood as remodelling, is accounted for by assuming that the aggregate undergoes plastic-like distortions. The study of the compression of the spheroid, achieved by means of two parallel, compressive plates, needs the formulation of a contact problem between the living spheroid itself and the plates, and is solved with the aid of the augmented Lagrangian method. The results of the performed numerical simulations are in qualitative agreement with the biological observations reported in the literature and can also be used to estimate quantitatively some fundamental aggregate mechanical parameters.
Collapse
Affiliation(s)
- Chiara Giverso
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi, 24 - 10129 Torino, Italy.
| | | | | | | |
Collapse
|
10
|
Chen H, Cai Y, Chen Q, Li Z. Multiscale modeling of solid stress and tumor cell invasion in response to dynamic mechanical microenvironment. Biomech Model Mechanobiol 2019; 19:577-590. [PMID: 31571083 DOI: 10.1007/s10237-019-01231-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022]
Abstract
Mathematical models can provide a quantitatively sophisticated description of tumor cell (TC) behaviors under mechanical microenvironment and help us better understand the role of specific biophysical factors based on their influences on the TC behaviors. To this end, we propose an off-lattice cell-based multiscale mathematical model to describe the dynamic growth-induced solid stress during tumor progression and investigate the influence of the mechanical microenvironment on TC invasion. At the cellular level, cell-cell and cell-matrix interactive forces depend on the mechanical properties of the cells and the cancer-associated fibroblasts in the stroma, respectively. The constitutive relationship between the interactive forces and cell migrations obeys the Hooke's law and damping effects. At the tissue level, the integrated growth-induced forces caused by proliferating cells within the simulation region are balanced by the external forces applied by the surrounding host tissues. Then, the cell movements are calculated according to the Newton's second law of motion, and the morphology of TC invasion is updated. The simulation results reveal the continuous changes of the macroscopic mechanical forces due to the interactions among the structural components and the microscopic environmental factors. Moreover, the simulation results demonstrate the adverse effect of the stiffness of tumor tissue on tumor growth and invasion. A decrease in the stiffness of tumor and matrix can promote TCs to proliferate at a much faster rate and invade into the surrounding healthy tissue more easily, whereas an increase in the stiffness can lead to an aggressive morphology of tumor invasion. We envision that the proposed model can be served as a quantitative theoretical platform to study the underlying biophysical role of the mechanical microenvironmental factors during tumor invasion and metastasis.
Collapse
Affiliation(s)
- H Chen
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.,School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Y Cai
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Q Chen
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Z Li
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China. .,School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
| |
Collapse
|
11
|
Urdal J, Waldeland JO, Evje S. Enhanced cancer cell invasion caused by fibroblasts when fluid flow is present. Biomech Model Mechanobiol 2019; 18:1047-1078. [DOI: 10.1007/s10237-019-01128-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/09/2019] [Indexed: 12/15/2022]
|
12
|
Abi-Akl R, Abeyaratne R, Cohen T. Kinetics of surface growth with coupled diffusion and the emergence of a universal growth path. Proc Math Phys Eng Sci 2019; 475:20180465. [PMID: 30760954 PMCID: PMC6364605 DOI: 10.1098/rspa.2018.0465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 11/22/2018] [Indexed: 01/14/2023] Open
Abstract
Surface growth by association or dissociation of material on the boundary of a body is ubiquitous in both natural and engineering systems. It is the fundamental mechanism by which biological materials grow, starting from the level of a single cell, and is increasingly applied in engineering processes for fabrication and self-assembly. A significant challenge in modelling such processes arises due to the inherent coupled interaction between the growth kinetics, the local stresses and the diffusing constituents needed to sustain the growth. Moreover, the volume of the body changes not only due to surface growth but also by variation in solvent concentration within the bulk. In this paper, we present a general theoretical framework that captures these phenomena and describes the kinetics of surface growth while accounting for coupled diffusion. Then, by the combination of analytical and numerical tools, applied to a simple growth geometry, we show that the evolution of such growth processes tends towards a universal path that is independent of initial conditions. This path, on which surface growth and diffusion act harmoniously, can be extended to analytically portray the evolution of a body from inception up to a treadmilling state, in which addition and removal of material are balanced.
Collapse
Affiliation(s)
- Rami Abi-Akl
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rohan Abeyaratne
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tal Cohen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
13
|
Ng CF, Frieboes HB. Simulation of Multispecies Desmoplastic Cancer Growth via a Fully Adaptive Non-linear Full Multigrid Algorithm. Front Physiol 2018; 9:821. [PMID: 30050447 PMCID: PMC6052761 DOI: 10.3389/fphys.2018.00821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/12/2018] [Indexed: 12/28/2022] Open
Abstract
A fully adaptive non-linear full multigrid (FMG) algorithm is implemented to computationally simulate a model of multispecies desmoplastic tumor growth in three spatial dimensions. The algorithm solves a thermodynamic mixture model employing a diffuse interface approach with Cahn-Hilliard-type fourth-order equations that are coupled, non-linear, and numerically stiff. The tumor model includes extracellular matrix (ECM) as a major component with elastic energy contribution in its chemical potential term. Blood and lymphatic vasculatures are simulated via continuum representations. The model employs advection-reaction-diffusion partial differential equations (PDEs) for the cell, ECM, and vascular components, and reaction-diffusion PDEs for the elements diffusing from the vessels. This study provides the details of the numerical solution obtained by applying the fully adaptive non-linear FMG algorithm with finite difference method to solve this complex system of PDEs. The results indicate that this type of computational model can simulate the extracellular matrix-rich desmoplastic tumor microenvironment typical of fibrotic tumors, such as pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Chin F. Ng
- Department of Bioengineering, University of Louisville, Louisville, KY, United States
| | - Hermann B. Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, United States
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| |
Collapse
|
14
|
Voutouri C, Stylianopoulos T. Accumulation of mechanical forces in tumors is related to hyaluronan content and tissue stiffness. PLoS One 2018; 13:e0193801. [PMID: 29561855 PMCID: PMC5862434 DOI: 10.1371/journal.pone.0193801] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/20/2018] [Indexed: 11/30/2022] Open
Abstract
Hyaluronan is abundant in the extracellular matrix of many desmoplastic tumors and determines in large part the tumor biochemical and mechanical microenvironment. Additionally, it has been identified as one of the major physiological barriers to the effective delivery of drugs to solid tumors and its targeting with the use of pharmaceutical agents has shown to decompress tumor blood vessels, and thus improve tumor perfusion and efficacy of cytotoxic drugs. In this study, we investigated the contribution of hyaluronan to the accumulation of mechanical forces in tumors. Using experimental data from two orthotopic breast tumor models and treating tumors with two clinically approved anti-fibrotic drugs (tranilast and pirfenidone), we found that accumulation of growth-induced, residual forces in tumors are associated with hyaluronan content. Furthermore, mechanical characterization of the tumors revealed a good correlation of the accumulated forces with the elastic modulus of the tissue. Our results provide important insights on the mechano-pathology of solid tumors and can be used for the design of therapeutic strategies that target hyaluronan.
Collapse
Affiliation(s)
- Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
- * E-mail:
| |
Collapse
|
15
|
Santagiuliana R, Pereira RC, Schrefler BA, Decuzzi P. Predicting the role of microstructural and biomechanical cues in tumor growth and spreading. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2935. [PMID: 29083532 DOI: 10.1002/cnm.2935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/09/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
A continuum porous media model is developed for elucidating the role of the mechanical cues in regulating tumor growth and spreading. It is shown that stiffer matrices and higher cell-matrix adhesion limit tumor growth and spreading toward the surrounding tissue. Higher matrix porosities, conversely, favor the growth and the dissemination of tumor cells. This model could be used for predicting the response of malignant masses to novel therapeutic agents affecting directly the tumor microenvironment and its micromechanical cues.
Collapse
Affiliation(s)
- Raffaella Santagiuliana
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa, 16163, Italy
- Dipartimento di Ingegneria Civile Edile ed Ambientale, Università di Padova, Via Marzolo 9, 35131, Padova, Italy
| | - Rui C Pereira
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa, 16163, Italy
| | - Bernhard A Schrefler
- Dipartimento di Ingegneria Civile Edile ed Ambientale, Università di Padova, Via Marzolo 9, 35131, Padova, Italy
- Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa, 16163, Italy
| |
Collapse
|
16
|
Lejeune E, Linder C. Modeling mechanical inhomogeneities in small populations of proliferating monolayers and spheroids. Biomech Model Mechanobiol 2017; 17:727-743. [PMID: 29197990 DOI: 10.1007/s10237-017-0989-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/16/2017] [Indexed: 12/28/2022]
Abstract
Understanding the mechanical behavior of multicellular monolayers and spheroids is fundamental to tissue culture, organism development, and the early stages of tumor growth. Proliferating cells in monolayers and spheroids experience mechanical forces as they grow and divide and local inhomogeneities in the mechanical microenvironment can cause individual cells within the multicellular system to grow and divide at different rates. This differential growth, combined with cell division and reorganization, leads to residual stress. Multiple different modeling approaches have been taken to understand and predict the residual stresses that arise in growing multicellular systems, particularly tumor spheroids. Here, we show that by using a mechanically robust agent-based model constructed with the peridynamic framework, we gain a better understanding of residual stresses in multicellular systems as they grow from a single cell. In particular, we focus on small populations of cells (1-100 s) where population behavior is highly stochastic and prior investigation has been limited. We compare the average strain energy density of cells in monolayers and spheroids using different growth and division rules and find that, on average, cells in spheroids have a higher strain energy density than cells in monolayers. We also find that cells in the interior of a growing spheroid are, on average, in compression. Finally, we demonstrate the importance of accounting for stochastic fluctuations in the mechanical environment, particularly when the cellular response to mechanical cues is nonlinear. The results presented here serve as a starting point for both further investigation with agent-based models, and for the incorporation of major findings from agent-based models into continuum scale models when explicit representation of individual cells is not computationally feasible.
Collapse
Affiliation(s)
- Emma Lejeune
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Christian Linder
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
17
|
Ambrosi D, Pezzuto S, Riccobelli D, Stylianopoulos T, Ciarletta P. Solid tumors are poroelastic solids with a chemo-mechanical feedback on growth. JOURNAL OF ELASTICITY 2017; 129:107-124. [PMID: 28894347 PMCID: PMC5590729 DOI: 10.1007/s10659-016-9619-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The experimental evidence that a feedback exists between growth and stress in tumors poses challenging questions. First, the rheological properties (the "constitutive equations") of aggregates of malignant cells are still a matter of debate. Secondly, the feedback law (the "growth law") that relates stress and mitotic-apoptotic rate is far to be identified. We address these questions on the basis of a theoretical analysis of in vitro and in vivo experiments that involve the growth of tumor spheroids. We show that solid tumors exhibit several mechanical features of a poroelastic material, where the cellular component behaves like an elastic solid. When the solid component of the spheroid is loaded at the boundary, the cellular aggregate grows up to an asymptotic volume that depends on the exerted compression. Residual stress shows up when solid tumors are radially cut, highlighting a peculiar tensional pattern. By a novel numerical approach we correlate the measured opening angle and the underlying residual stress in a sphere. The features of the mechanobiological system can be explained in terms of a feedback of mechanics on the cell proliferation rate as modulated by the availability of nutrient, that is radially damped by the balance between diffusion and consumption. The volumetric growth profiles and the pattern of residual stress can be theoretically reproduced assuming a dependence of the target stress on the concentration of nutrient which is specific of the malignant tissue.
Collapse
Affiliation(s)
- D Ambrosi
- MOX-Dipartimento di Matematica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - S Pezzuto
- Universitá della Svizzera Italiana, Institute of Computational Science, Faculty of Informatics, Via Giuseppe Buffi 13, 6900 Lugano, Switzerland
| | - D Riccobelli
- MOX-Dipartimento di Matematica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - T Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, P.O. Box 20537 Nicosia 1678, Cyprus
| | - P Ciarletta
- MOX-Dipartimento di Matematica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
18
|
Ng CF, Frieboes HB. Model of vascular desmoplastic multispecies tumor growth. J Theor Biol 2017; 430:245-282. [PMID: 28529153 PMCID: PMC5614902 DOI: 10.1016/j.jtbi.2017.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 03/07/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022]
Abstract
We present a three-dimensional nonlinear tumor growth model composed of heterogeneous cell types in a multicomponent-multispecies system, including viable, dead, healthy host, and extra-cellular matrix (ECM) tissue species. The model includes the capability for abnormal ECM dynamics noted in tumor development, as exemplified by pancreatic ductal adenocarcinoma, including dense desmoplasia typically characterized by a significant increase of interstitial connective tissue. An elastic energy is implemented to provide elasticity to the connective tissue. Cancer-associated fibroblasts (myofibroblasts) are modeled as key contributors to this ECM remodeling. The tumor growth is driven by growth factors released by these stromal cells as well as by oxygen and glucose provided by blood vasculature which along with lymphatics are stimulated to proliferate in and around the tumor based on pro-angiogenic factors released by hypoxic tissue regions. Cellular metabolic processes are simulated, including respiration and glycolysis with lactate fermentation. The bicarbonate buffering system is included for cellular pH regulation. This model system may be of use to simulate the complex interactions between tumor and stromal cells as well as the associated ECM and vascular remodeling that typically characterize malignant cancers notorious for poor therapeutic response.
Collapse
Affiliation(s)
- Chin F Ng
- Department of Bioengineering, University of Louisville, Lutz Hall 419, KY 40208, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Lutz Hall 419, KY 40208, USA; James Graham Brown Cancer Center, University of Louisville, KY, USA.
| |
Collapse
|
19
|
Iranmanesh F, Nazari MA. Finite Element Modeling of Avascular Tumor Growth Using a Stress-Driven Model. J Biomech Eng 2017; 139:2633189. [PMID: 28614573 DOI: 10.1115/1.4037038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Indexed: 11/08/2022]
Abstract
Tumor growth being a multistage process has been investigated from different aspects. In the present study, an attempt is made to represent a constitutive-structure-based model of avascular tumor growth in which the effects of tensile stresses caused by collagen fibers are considered. Collagen fibers as a source of anisotropy in the structure of tissue are taken into account using a continuous fiber distribution formulation. To this end, a finite element modeling is implemented in which a neo-Hookean hyperelastic material is assigned to the tumor and its surrounding host. The tumor is supplied with a growth term. The growth term includes the effect of parameters such as nutrient concentration on the tumor growth and the tumor's solid phase content in the formulation. Results of the study revealed that decrease of solid phase is indicative of decrease in growth rate and the final steady-state value of tumor's radius. Moreover, fiber distribution affects the final shape of the tumor, and it could be used to control the shape and geometry of the tumor in complex morphologies. Finally, the findings demonstrated that the exerted stresses on the tumor increase as time passes. Compression of tumor cells leads to the reduction of tumor growth rate until it gradually reaches an equilibrium radius. This finding is in accordance with experimental data. Hence, this formulation can be deployed to evaluate both the residual stresses induced by growth and the mechanical interactions with the host tissue.
Collapse
Affiliation(s)
- Faezeh Iranmanesh
- Department of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 1439955961, Iran e-mail:
| | - Mohammad Ali Nazari
- Department of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 1439955961, Iran e-mail:
| |
Collapse
|
20
|
Evje S. An integrative multiphase model for cancer cell migration under influence of physical cues from the microenvironment. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.02.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Lejeune E, Linder C. Quantifying the relationship between cell division angle and morphogenesis through computational modeling. J Theor Biol 2017; 418:1-7. [PMID: 28119022 DOI: 10.1016/j.jtbi.2017.01.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/17/2017] [Indexed: 11/24/2022]
Abstract
When biological cells divide, they divide on a given angle. It has been shown experimentally that the orientation of cell division angle for a single cell can be described by a probability density function. However, the way in which the probability density function underlying cell division orientation influences population or tissue scale morphogenesis is unknown. Here we show that a computational approach, with thousands of stochastic simulations modeling growth and division of a population of cells, can be used to investigate this unknown. In this paper we examine two potential forms of the probability density function: a wrapped normal distribution and a binomial distribution. Our results demonstrate that for the wrapped normal distribution the standard deviation of the division angle, potentially interpreted as biological noise, controls the degree of tissue scale anisotropy. For the binomial distribution, we demonstrate a mechanism by which direction and degree of tissue scale anisotropy can be tuned via the probability of each division angle. We anticipate that the method presented in this paper and the results of these simulations will be a starting point for further investigation of this topic.
Collapse
Affiliation(s)
- Emma Lejeune
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| | - Christian Linder
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
22
|
Stylianopoulos T. The Solid Mechanics of Cancer and Strategies for Improved Therapy. J Biomech Eng 2017; 139:2571659. [PMID: 27760260 PMCID: PMC5248974 DOI: 10.1115/1.4034991] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 12/18/2022]
Abstract
Tumor progression and response to treatment is determined in large part by the generation of mechanical stresses that stem from both the solid and the fluid phase of the tumor. Furthermore, elevated solid stress levels can regulate fluid stresses by compressing intratumoral blood and lymphatic vessels. Blood vessel compression reduces tumor perfusion, while compression of lymphatic vessels hinders the ability of the tumor to drain excessive fluid from its interstitial space contributing to the uniform elevation of the interstitial fluid pressure. Hypoperfusion and interstitial hypertension pose major barriers to the systemic administration of chemotherapeutic agents and nanomedicines to tumors, reducing treatment efficacies. Hypoperfusion can also create a hypoxic and acidic tumor microenvironment that promotes tumor progression and metastasis. Hence, alleviation of intratumoral solid stress levels can decompress tumor vessels and restore perfusion and interstitial fluid pressure. In this review, three major types of tissue level solid stresses involved in tumor growth, namely stress exerted externally on the tumor by the host tissue, swelling stress, and residual stress, are discussed separately and details are provided regarding their causes, magnitudes, and remedies. Subsequently, evidence of how stress-alleviating drugs could be used in combination with chemotherapy to improve treatment efficacy is presented, highlighting the potential of stress-alleviation strategies to enhance cancer therapy. Finally, a continuum-level, mathematical framework to incorporate these types of solid stress is outlined.
Collapse
Affiliation(s)
- Triantafyllos Stylianopoulos
- Mem. ASME Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, 1678, Cyprus e-mail:
| |
Collapse
|
23
|
Modeling tumor growth with peridynamics. Biomech Model Mechanobiol 2017; 16:1141-1157. [DOI: 10.1007/s10237-017-0876-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/11/2017] [Indexed: 12/30/2022]
|
24
|
Giverso C, Ciarletta P. On the morphological stability of multicellular tumour spheroids growing in porous media. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:92. [PMID: 27726037 DOI: 10.1140/epje/i2016-16092-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
Multicellular tumour spheroids (MCTSs) are extensively used as in vitro system models for investigating the avascular growth phase of solid tumours. In this work, we propose a continuous growth model of heterogeneous MCTSs within a porous material, taking into account a diffusing nutrient from the surrounding material directing both the proliferation rate and the mobility of tumour cells. At the time scale of interest, the MCTS behaves as an incompressible viscous fluid expanding inside a porous medium. The cell motion and proliferation rate are modelled using a non-convective chemotactic mass flux, driving the cell expansion in the direction of the external nutrients' source. At the early stages, the growth dynamics is derived by solving the quasi-stationary problem, obtaining an initial exponential growth followed by an almost linear regime, in accordance with experimental observations. We also perform a linear-stability analysis of the quasi-static solution in order to investigate the morphological stability of the radially symmetric growth pattern. We show that mechano-biological cues, as well as geometric effects related to the size of the MCTS subdomains with respect to the diffusion length of the nutrient, can drive a morphological transition to fingered structures, thus triggering the formation of complex shapes that might promote tumour invasiveness. The results also point out the formation of a retrograde flow in the MCTS close to the regions where protrusions form, that could describe the initial dynamics of metastasis detachment from the in vivo tumour mass. In conclusion, the results of the proposed model demonstrate that the integration of mathematical tools in biological research could be crucial for better understanding the tumour's ability to invade its host environment.
Collapse
Affiliation(s)
- Chiara Giverso
- Dipartimento di Matematica, MOX, Politecnico di Milano, Piazza Leonardo da Vinci, 32 - 20133, Milano, Italy
| | - Pasquale Ciarletta
- Dipartimento di Matematica, MOX, Politecnico di Milano, Piazza Leonardo da Vinci, 32 - 20133, Milano, Italy.
- UMR 7190, Institut Jean le Rond d'Alembert, CNRS and Sorbonne Universités, UPMC Univ Paris 06, 4 place Jussieu case 162, 75005, Paris, France.
| |
Collapse
|
25
|
Dey B, Sekhar GPR. Hydrodynamics and convection enhanced macromolecular fluid transport in soft biological tissues: Application to solid tumor. J Theor Biol 2016; 395:62-86. [PMID: 26851443 DOI: 10.1016/j.jtbi.2016.01.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 01/16/2023]
Abstract
This work addresses a theoretical framework for transvascular exchange and extravascular transport of solute macromolecules through soft interstitial space inside a solid tumor. Most of the soft biological tissues show materialistic properties similar to deformable porous material. They exhibit mechanical behavior towards the fluid motion since the solid phase of the tumor tissue gets compressed by the drag force that is associated with the extracellular fluid flow. This paper presents a general view about the transvascular and interstitial transport of solute nutrients inside a tumor in the macroscopic level. Modified Starling׳s equation is used to describe transvascular nutrient transport. On the macroscopic level, motion of extracellular fluid within the tumor interstitium is modeled with the help of biphasic mixture theory and a spherical symmetry solution is given as a simpler case. This present model describes the average interstitial fluid pressure (IFP), extracellular fluid velocity (EFV) and flow rate of extracellular fluid, as well as the deformation of the solid phase of the tumor tissue as an immediate cause of extracellular fluid flow. When the interstitial transport is diffusion dominated, an analytical treatment of advection-diffusion-reaction equation finds the overall nutrient distribution. We propose suitable criteria for the formation of necrosis within the tumor interstitium. This study introduces some parameters that represent the nutrient supply from tumor blood vessels into the tumor extracellular space. These transport parameters compete with the reversible nutrient metabolism of the tumor cells present in the interstitium. The present study also shows that the effectiveness factor corresponding to a first order nutrient metabolism may reach beyond unity if the strength of the distributive solute source assumes positive non-zero values.
Collapse
Affiliation(s)
- Bibaswan Dey
- Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
| | - G P Raja Sekhar
- Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| |
Collapse
|
26
|
Predicting the growth of glioblastoma multiforme spheroids using a multiphase porous media model. Biomech Model Mechanobiol 2016; 15:1215-28. [PMID: 26746883 DOI: 10.1007/s10237-015-0755-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/21/2015] [Indexed: 12/11/2022]
Abstract
Tumor spheroids constitute an effective in vitro tool to investigate the avascular stage of tumor growth. These three-dimensional cell aggregates reproduce the nutrient and proliferation gradients found in the early stages of cancer and can be grown with a strict control of their environmental conditions. In the last years, new experimental techniques have been developed to determine the effect of mechanical stress on the growth of tumor spheroids. These studies report a reduction in cell proliferation as a function of increasingly applied stress on the surface of the spheroids. This work presents a specialization for tumor spheroid growth of a previous more general multiphase model. The equations of the model are derived in the framework of porous media theory, and constitutive relations for the mass transfer terms and the stress are formulated on the basis of experimental observations. A set of experiments is performed, investigating the growth of U-87MG spheroids both freely growing in the culture medium and subjected to an external mechanical pressure induced by a Dextran solution. The growth curves of the model are compared to the experimental data, with good agreement for both the experimental settings. A new mathematical law regulating the inhibitory effect of mechanical compression on cancer cell proliferation is presented at the end of the paper. This new law is validated against experimental data and provides better results compared to other expressions in the literature.
Collapse
|
27
|
Computer Simulations of the Tumor Vasculature: Applications to Interstitial Fluid Flow, Drug Delivery, and Oxygen Supply. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 936:31-72. [PMID: 27739042 DOI: 10.1007/978-3-319-42023-3_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tumor vasculature, the blood vessel network supplying a growing tumor with nutrients such as oxygen or glucose, is in many respects different from the hierarchically organized arterio-venous blood vessel network in normal tissues. Angiogenesis (the formation of new blood vessels), vessel cooption (the integration of existing blood vessels into the tumor vasculature), and vessel regression remodel the healthy vascular network into a tumor-specific vasculature. Integrative models, based on detailed experimental data and physical laws, implement, in silico, the complex interplay of molecular pathways, cell proliferation, migration, and death, tissue microenvironment, mechanical and hydrodynamic forces, and the fine structure of the host tissue vasculature. With the help of computer simulations high-precision information about blood flow patterns, interstitial fluid flow, drug distribution, oxygen and nutrient distribution can be obtained and a plethora of therapeutic protocols can be tested before clinical trials. This chapter provides an overview over the current status of computer simulations of vascular remodeling during tumor growth including interstitial fluid flow, drug delivery, and oxygen supply within the tumor. The model predictions are compared with experimental and clinical data and a number of longstanding physiological paradigms about tumor vasculature and intratumoral solute transport are critically scrutinized.
Collapse
|
28
|
Wijeratne PA, Vavourakis V, Hipwell JH, Voutouri C, Papageorgis P, Stylianopoulos T, Evans A, Hawkes DJ. Multiscale modelling of solid tumour growth: the effect of collagen micromechanics. Biomech Model Mechanobiol 2015; 15:1079-90. [PMID: 26564173 DOI: 10.1007/s10237-015-0745-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/02/2015] [Indexed: 01/16/2023]
Abstract
Here we introduce a model of solid tumour growth coupled with a multiscale biomechanical description of the tumour microenvironment, which facilitates the explicit simulation of fibre-fibre and tumour-fibre interactions. We hypothesise that such a model, which provides a purely mechanical description of tumour-host interactions, can be used to explain experimental observations of the effect of collagen micromechanics on solid tumour growth. The model was specified to mouse tumour data, and numerical simulations were performed. The multiscale model produced lower stresses than an equivalent continuum-like approach, due to a more realistic remodelling of the collagen microstructure. Furthermore, solid tumour growth was found to cause a passive mechanical realignment of fibres at the tumour boundary from a random to a circumferential orientation. This is in accordance with experimental observations, thus demonstrating that such a response can be explained as purely mechanical. Finally, peritumoural fibre network anisotropy was found to produce anisotropic tumour morphology. The dependency of tumour morphology on the peritumoural microstructure was reduced by adding a load-bearing non-collagenous component to the fibre network constitutive equation.
Collapse
Affiliation(s)
- Peter A Wijeratne
- Department of Medical Physics and Bioengineering, Centre for Medical Image Computing, University College London, Engineering Front Building, Malet Place, London, WC1E 6BT, UK.
| | - Vasileios Vavourakis
- Department of Medical Physics and Bioengineering, Centre for Medical Image Computing, University College London, Engineering Front Building, Malet Place, London, WC1E 6BT, UK
| | - John H Hipwell
- Department of Medical Physics and Bioengineering, Centre for Medical Image Computing, University College London, Engineering Front Building, Malet Place, London, WC1E 6BT, UK
| | - Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678, Nicosia, Cyprus
| | - Panagiotis Papageorgis
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678, Nicosia, Cyprus
| | | | - David J Hawkes
- Department of Medical Physics and Bioengineering, Centre for Medical Image Computing, University College London, Engineering Front Building, Malet Place, London, WC1E 6BT, UK
| |
Collapse
|
29
|
Modeling of cell adhesion and deformation mediated by receptor–ligand interactions. Biomech Model Mechanobiol 2015; 15:371-87. [DOI: 10.1007/s10237-015-0694-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/07/2015] [Indexed: 11/30/2022]
|
30
|
Mpekris F, Angeli S, Pirentis AP, Stylianopoulos T. Stress-mediated progression of solid tumors: effect of mechanical stress on tissue oxygenation, cancer cell proliferation, and drug delivery. Biomech Model Mechanobiol 2015; 14:1391-402. [PMID: 25968141 DOI: 10.1007/s10237-015-0682-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/04/2015] [Indexed: 12/18/2022]
Abstract
Oxygen supply plays a central role in cancer cell proliferation. While vascular density increases at the early stages of carcinogenesis, mechanical solid stresses developed during growth compress tumor blood vessels and, thus, drastically reduce not only the supply of oxygen, but also the delivery of drugs at inner tumor regions. Among other effects, hypoxia and reduced drug delivery compromise the efficacy of radiation and chemo/nanotherapy, respectively. In the present study, we developed a mathematical model of tumor growth to investigate the interconnections among tumor oxygenation that supports cancer cell proliferation, the heterogeneous accumulation of mechanical stresses owing to tumor growth, the non-uniform compression of intratumoral blood vessels due to the mechanical stresses, and the insufficient delivery of oxygen and therapeutic agents because of vessel compression. We found that the high vascular density and increased cancer cell proliferation often observed in the periphery compared to the interior of a tumor can be attributed to heterogeneous solid stress accumulation. Highly vascularized peripheral regions are also associated with greater oxygenation compared with the compressed, less vascularized inner regions. We also modeled the delivery of drugs of two distinct sizes, namely chemotherapy and nanomedicine. Model predictions suggest that drug delivery is affected negatively by vessel compression independently of the size of the therapeutic agent. Finally, we demonstrated the applicability of our model to actual geometries, employing a breast tumor model derived from MR images.
Collapse
Affiliation(s)
- Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - Stelios Angeli
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - Athanassios P Pirentis
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus.
| |
Collapse
|
31
|
Rieger H, Welter M. Integrative models of vascular remodeling during tumor growth. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2015; 7:113-29. [PMID: 25808551 PMCID: PMC4406149 DOI: 10.1002/wsbm.1295] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/05/2015] [Accepted: 02/19/2015] [Indexed: 02/02/2023]
Abstract
UNLABELLED Malignant solid tumors recruit the blood vessel network of the host tissue for nutrient supply, continuous growth, and gain of metastatic potential. Angiogenesis (the formation of new blood vessels), vessel cooption (the integration of existing blood vessels into the tumor vasculature), and vessel regression remodel the healthy vascular network into a tumor-specific vasculature that is in many respects different from the hierarchically organized arterio-venous blood vessel network of the host tissues. Integrative models based on detailed experimental data and physical laws implement in silico the complex interplay of molecular pathways, cell proliferation, migration, and death, tissue microenvironment, mechanical and hydrodynamic forces, and the fine structure of the host tissue vasculature. With the help of computer simulations high-precision information about blood flow patterns, interstitial fluid flow, drug distribution, oxygen and nutrient distribution can be obtained and a plethora of therapeutic protocols can be tested before clinical trials. In this review, we give an overview over the current status of integrative models describing tumor growth, vascular remodeling, blood and interstitial fluid flow, drug delivery, and concomitant transformations of the microenvironment. WIREs Syst Biol Med 2015, 7:113-129. doi: 10.1002/wsbm.1295 For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Heiko Rieger
- Department of Theoretical Physics, Saarland UniversitySaarbrücken, Germany
| | - Michael Welter
- Department of Theoretical Physics, Saarland UniversitySaarbrücken, Germany
| |
Collapse
|
32
|
Jain RK, Martin JD, Stylianopoulos T. The role of mechanical forces in tumor growth and therapy. Annu Rev Biomed Eng 2015; 16:321-46. [PMID: 25014786 DOI: 10.1146/annurev-bioeng-071813-105259] [Citation(s) in RCA: 603] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tumors generate physical forces during growth and progression. These physical forces are able to compress blood and lymphatic vessels, reducing perfusion rates and creating hypoxia. When exerted directly on cancer cells, they can increase cells' invasive and metastatic potential. Tumor vessels-while nourishing the tumor-are usually leaky and tortuous, which further decreases perfusion. Hypoperfusion and hypoxia contribute to immune evasion, promote malignant progression and metastasis, and reduce the efficacy of a number of therapies, including radiation. In parallel, vessel leakiness together with vessel compression causes a uniformly elevated interstitial fluid pressure that hinders delivery of blood-borne therapeutic agents, lowering the efficacy of chemo- and nanotherapies. In addition, shear stresses exerted by flowing blood and interstitial fluid modulate the behavior of cancer and a variety of host cells. Taming these physical forces can improve therapeutic outcomes in many cancers.
Collapse
Affiliation(s)
- Rakesh K Jain
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114;
| | | | | |
Collapse
|
33
|
Mazuel F, Reffay M, Du V, Bacri JC, Rieu JP, Wilhelm C. Magnetic flattening of stem-cell spheroids indicates a size-dependent elastocapillary transition. PHYSICAL REVIEW LETTERS 2015; 114:098105. [PMID: 25793856 DOI: 10.1103/physrevlett.114.098105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Indexed: 06/04/2023]
Abstract
Cellular aggregates (spheroids) are widely used in biophysics and tissue engineering as model systems for biological tissues. In this Letter we propose novel methods for molding stem-cell spheroids, deforming them, and measuring their interfacial and elastic properties with a single method based on cell tagging with magnetic nanoparticles and application of a magnetic field gradient. Magnetic molding yields spheroids of unprecedented sizes (up to a few mm in diameter) and preserves tissue integrity. On subjecting these spheroids to magnetic flattening (over 150g), we observed a size-dependent elastocapillary transition with two modes of deformation: liquid-drop-like behavior for small spheroids, and elastic-sphere-like behavior for larger spheroids, followed by relaxation to a liquidlike drop.
Collapse
Affiliation(s)
- Francois Mazuel
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS, Université Paris Diderot, 75013 Paris, France
| | - Myriam Reffay
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS, Université Paris Diderot, 75013 Paris, France
| | - Vicard Du
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS, Université Paris Diderot, 75013 Paris, France
| | - Jean-Claude Bacri
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS, Université Paris Diderot, 75013 Paris, France
| | - Jean-Paul Rieu
- Institut Lumière Matière, UMR 5306, Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex, France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS, Université Paris Diderot, 75013 Paris, France
| |
Collapse
|
34
|
Abstract
Existing tumor growth models based on fluid analogy for the cells do not generally include the extracellular matrix (ECM), or if present, take it as rigid. The three-fluid model originally proposed by the authors and comprising tumor cells (TC), host cells (HC), interstitial fluid (IF) and an ECM, considered up to now only a rigid ECM in the applications. This limitation is here relaxed and the deformability of the ECM is investigated in detail. The ECM is modeled as a porous solid matrix with Green-elastic and elasto-visco-plastic material behavior within a large strain approach. Jauman and Truesdell objective stress measures are adopted together with the deformation rate tensor. Numerical results are first compared with those of a reference experiment of a multicellular tumor spheroid (MTS) growing in vitro, then three different tumor cases are studied: growth of an MTS in a decellularized ECM, growth of a spheroid in the presence of host cells and growth of a melanoma. The influence of the stiffness of the ECM is evidenced and comparison with the case of a rigid ECM is made. The processes in a deformable ECM are more rapid than in a rigid ECM and the obtained growth pattern differs. The reasons for this are due to the changes in porosity induced by the tumor growth. These changes are inhibited in a rigid ECM. This enhanced computational model emphasizes the importance of properly characterizing the biomechanical behavior of the malignant mass in all its components to correctly predict its temporal and spatial pattern evolution.
Collapse
Affiliation(s)
- G Sciumè
- Department of Innovation Engineering, University of Salento, Lecce, Italy
| | | | | | | | | |
Collapse
|
35
|
Voutouri C, Mpekris F, Papageorgis P, Odysseos AD, Stylianopoulos T. Role of constitutive behavior and tumor-host mechanical interactions in the state of stress and growth of solid tumors. PLoS One 2014; 9:e104717. [PMID: 25111061 PMCID: PMC4128744 DOI: 10.1371/journal.pone.0104717] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/15/2014] [Indexed: 12/18/2022] Open
Abstract
Mechanical forces play a crucial role in tumor patho-physiology. Compression of cancer cells inhibits their proliferation rate, induces apoptosis and enhances their invasive and metastatic potential. Additionally, compression of intratumor blood vessels reduces the supply of oxygen, nutrients and drugs, affecting tumor progression and treatment. Despite the great importance of the mechanical microenvironment to the pathology of cancer, there are limited studies for the constitutive modeling and the mechanical properties of tumors and on how these parameters affect tumor growth. Also, the contribution of the host tissue to the growth and state of stress of the tumor remains unclear. To this end, we performed unconfined compression experiments in two tumor types and found that the experimental stress-strain response is better fitted to an exponential constitutive equation compared to the widely used neo-Hookean and Blatz-Ko models. Subsequently, we incorporated the constitutive equations along with the corresponding values of the mechanical properties - calculated by the fit - to a biomechanical model of tumor growth. Interestingly, we found that the evolution of stress and the growth rate of the tumor are independent from the selection of the constitutive equation, but depend strongly on the mechanical interactions with the surrounding host tissue. Particularly, model predictions - in agreement with experimental studies - suggest that the stiffness of solid tumors should exceed a critical value compared with that of the surrounding tissue in order to be able to displace the tissue and grow in size. With the use of the model, we estimated this critical value to be on the order of 1.5. Our results suggest that the direct effect of solid stress on tumor growth involves not only the inhibitory effect of stress on cancer cell proliferation and the induction of apoptosis, but also the resistance of the surrounding tissue to tumor expansion.
Collapse
Affiliation(s)
- Chrysovalantis Voutouri
- Cancer Biophysics laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Fotios Mpekris
- Cancer Biophysics laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Panagiotis Papageorgis
- Cancer Biophysics laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Andreani D. Odysseos
- EPOS-Iasis R&D, Division of Biomedical Research, Nicosia, Cyprus
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
- * E-mail:
| |
Collapse
|
36
|
Chen Y, Lowengrub JS. Tumor growth in complex, evolving microenvironmental geometries: a diffuse domain approach. J Theor Biol 2014; 361:14-30. [PMID: 25014472 DOI: 10.1016/j.jtbi.2014.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 06/10/2014] [Accepted: 06/20/2014] [Indexed: 12/21/2022]
Abstract
We develop a mathematical model of tumor growth in complex, dynamic microenvironments with active, deformable membranes. Using a diffuse domain approach, the complex domain is captured implicitly using an auxiliary function and the governing equations are appropriately modified, extended and solved in a larger, regular domain. The diffuse domain method enables us to develop an efficient numerical implementation that does not depend on the space dimension or the microenvironmental geometry. We model homotypic cell-cell adhesion and heterotypic cell-basement membrane (BM) adhesion with the latter being implemented via a membrane energy that models cell-BM interactions. We incorporate simple models of elastic forces and the degradation of the BM and ECM by tumor-secreted matrix degrading enzymes. We investigate tumor progression and BM response as a function of cell-BM adhesion and the stiffness of the BM. We find tumor sizes tend to be positively correlated with cell-BM adhesion since increasing cell-BM adhesion results in thinner, more elongated tumors. Prior to invasion of the tumor into the stroma, we find a negative correlation between tumor size and BM stiffness as the elastic restoring forces tend to inhibit tumor growth. In order to model tumor invasion of the stroma, we find it necessary to downregulate cell-BM adhesiveness, which is consistent with experimental observations. A stiff BM promotes invasiveness because at early stages the opening in the BM created by MDE degradation from tumor cells tends to be narrower when the BM is stiffer. This requires invading cells to squeeze through the narrow opening and thus promotes fragmentation that then leads to enhanced growth and invasion. In three dimensions, the opening in the BM was found to increase in size even when the BM is stiff because of pressure induced by growing tumor clusters. A larger opening in the BM can increase the potential for further invasiveness by increasing the possibility that additional tumor cells could invade the stroma.
Collapse
Affiliation(s)
- Ying Chen
- Department of Mathematics, University of California, Irvine, USA.
| | - John S Lowengrub
- Department of Mathematics, Department of Biomedical Engineering, Center for Complex Biological Systems, University of California, Irvine, USA.
| |
Collapse
|
37
|
Chen Y, Wise SM, Shenoy VB, Lowengrub JS. A stable scheme for a nonlinear, multiphase tumor growth model with an elastic membrane. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2014; 30:726-754. [PMID: 24443369 PMCID: PMC4149601 DOI: 10.1002/cnm.2624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 11/06/2014] [Accepted: 11/27/2014] [Indexed: 05/28/2023]
Abstract
In this paper, we extend the 3D multispecies diffuse-interface model of the tumor growth, which was derived in Wise et al. (Three-dimensional multispecies nonlinear tumor growth-I: model and numerical method, J. Theor. Biol. 253 (2008) 524-543), and incorporate the effect of a stiff membrane to model tumor growth in a confined microenvironment. We then develop accurate and efficient numerical methods to solve the model. When the membrane is endowed with a surface energy, the model is variational, and the numerical scheme, which involves adaptive mesh refinement and a nonlinear multigrid finite difference method, is demonstrably shown to be energy stable. Namely, in the absence of cell proliferation and death, the discrete energy is a nonincreasing function of time for any time and space steps. When a simplified model of membrane elastic energy is used, the resulting model is derived analogously to the surface energy case. However, the elastic energy model is actually nonvariational because certain coupling terms are neglected. Nevertheless, a very stable numerical scheme is developed following the strategy used in the surface energy case. 2D and 3D simulations are performed that demonstrate the accuracy of the algorithm and illustrate the shape instabilities and nonlinear effects of membrane elastic forces that may resist or enhance growth of the tumor. Compared with the standard Crank-Nicholson method, the time step can be up to 25 times larger using the new approach.
Collapse
Affiliation(s)
- Ying Chen
- Department of Mathematics, University of California, Irvine, CA, USA
| | | | | | | |
Collapse
|
38
|
On a new model for inhomogeneous volume growth of elastic bodies. J Mech Behav Biomed Mater 2014; 29:582-93. [DOI: 10.1016/j.jmbbm.2013.01.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/31/2013] [Indexed: 01/16/2023]
|
39
|
Scianna M, Bell C, Preziosi L. A review of mathematical models for the formation of vascular networks. J Theor Biol 2013; 333:174-209. [DOI: 10.1016/j.jtbi.2013.04.037] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 02/15/2013] [Accepted: 04/30/2013] [Indexed: 02/08/2023]
|
40
|
Muñoz JJ, Albo S. Physiology-based model of cell viscoelasticity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:012708. [PMID: 23944493 DOI: 10.1103/physreve.88.012708] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 06/08/2013] [Indexed: 06/02/2023]
Abstract
The measured viscoelastic properties of biological tissues is the result of the passive and active response of the cells. We propose an evolution law of the remodeling process in the cytoskeleton which is able to mimic the viscous properties of biological cellular tissues. Our model is based on dynamical changes of the resting length. We show that under the small strain regime, the linear rheology models are recovered, with the relaxation time being replaced by the cell resistance to remodel. We implement the one-dimensional model into network systems of two and three dimensions, and show that the same conclusions may be drawn for those systems.
Collapse
Affiliation(s)
- José J Muñoz
- Department of Applied Mathematics III, Laboratori de Càlcul Numèric (LaCàN) and Universitat Politècnica de Catalunya (UPC), 08036 Barcelona, Spain.
| | | |
Collapse
|
41
|
Stylianopoulos T, Martin JD, Snuderl M, Mpekris F, Jain SR, Jain RK. Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse. Cancer Res 2013; 73:3833-41. [PMID: 23633490 DOI: 10.1158/0008-5472.can-12-4521] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The stress harbored by the solid phase of tumors is known as solid stress. Solid stress can be either applied externally by the surrounding normal tissue or induced by the tumor itself due to its growth. Fluid pressure is the isotropic stress exerted by the fluid phase. We recently showed that growth-induced solid stress is on the order of 1.3 to 13.0 kPa (10-100 mmHg)--high enough to cause compression of fragile blood vessels, resulting in poor perfusion and hypoxia. However, the evolution of growth-induced stress with tumor progression and its effect on cancer cell proliferation in vivo is not understood. To this end, we developed a mathematical model for tumor growth that takes into account all three types of stresses: growth-induced stress, externally applied stress, and fluid pressure. First, we conducted in vivo experiments and found that growth-induced stress is related to tumor volume through a biexponential relationship. Then, we incorporated this information into our mathematical model and showed that due to the evolution of growth-induced stress, total solid stress levels are higher in the tumor interior and lower in the periphery. Elevated compressive solid stress in the interior of the tumor is sufficient to cause the collapse of blood vessels and results in a lower growth rate of cancer cells compared with the periphery, independently from that caused by the lack of nutrients due to vessel collapse. Furthermore, solid stress in the periphery of the tumor causes blood vessels in the surrounding normal tissue to deform to elliptical shapes. We present histologic sections of human cancers that show such vessel deformations. Finally, we found that fluid pressure increases with tumor growth due to increased vascular permeability and lymphatic impairment, and is governed by the microvascular pressure. Crucially, fluid pressure does not cause vessel compression of tumor vessels.
Collapse
|
42
|
Ciarletta P. Buckling instability in growing tumor spheroids. PHYSICAL REVIEW LETTERS 2013; 110:158102. [PMID: 25167314 DOI: 10.1103/physrevlett.110.158102] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Indexed: 05/28/2023]
Abstract
A growing tumor is subjected to intrinsic physical forces, arising from the cellular turnover in a spatially constrained environment. This work demonstrates that such residual solid stresses can provoke a buckling instability in heterogeneous tumor spheroids. The growth rate ratio between the outer shell of proliferative cells and the inner necrotic core is the control parameter of this instability. The buckled morphology is found to depend both on the elastic and the geometric properties of the tumor components, suggesting a key role of residual stresses for promoting tumor invasiveness.
Collapse
Affiliation(s)
- P Ciarletta
- CNRS and Institut Jean le Rond d'Alembert, UMR 7190, Université Paris 6, 4 place Jussieu case 162, 75005 Paris, France and MOX-Politecnico di Milano and Fondazione CEN, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
43
|
In vivo mathematical modeling of tumor growth from imaging data: soon to come in the future? Diagn Interv Imaging 2013; 94:593-600. [PMID: 23582413 DOI: 10.1016/j.diii.2013.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The future challenges in oncology imaging are to assess the response to treatment even earlier. As an addition to functional imaging, mathematical modeling based on the imaging is an alternative, cross-disciplinary area of development. Modeling was developed in oncology not only in order to understand and predict tumor growth, but also to anticipate the effects of targeted and untargeted therapies. A very wide range of these models exist, involving many stages in the progression of tumors. Few models, however, have been proposed to reproduce in vivo tumor growth because of the complexity of the mechanisms involved. Morphological imaging combined with "spatial" models appears to perform well although functioning imaging could still provide further information on metabolism and the micro-architecture. The combination of imaging and modeling can resolve complex problems and describe many facets of tumor growth or response to treatment. It is now possible to consider its clinical use in the medium term. This review describes the basic principles of mathematical modeling and describes the advantages, limitations and future prospects for this in vivo approach based on imaging data.
Collapse
|
44
|
Ciarletta P, Ambrosi D, Maugin GA, Preziosi L. Mechano-transduction in tumour growth modelling. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:23. [PMID: 23504484 DOI: 10.1140/epje/i2013-13023-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 12/19/2012] [Accepted: 02/11/2013] [Indexed: 06/01/2023]
Abstract
The evolution of biological systems is strongly influenced by physical factors, such as applied forces, geometry or the stiffness of the micro-environment. Mechanical changes are particularly important in solid tumour development, as altered stromal-epithelial interactions can provoke a persistent increase in cytoskeletal tension, driving the gene expression of a malignant phenotype. In this work, we propose a novel multi-scale treatment of mechano-transduction in cancer growth. The avascular tumour is modelled as an expanding elastic spheroid, whilst growth may occur both as a volume increase and as a mass production within a cell rim. Considering the physical constraints of an outer healthy tissue, we derive the thermo-dynamical requirements for coupling growth rate, solid stress and diffusing biomolecules inside a heterogeneous tumour. The theoretical predictions successfully reproduce the stress-dependent growth curves observed by in vitro experiments on multicellular spheroids.
Collapse
Affiliation(s)
- P Ciarletta
- Institut Jean le Rond d'Alembert, UMR CNRS 7190, Universitè Pierre et Marie Curie, Paris 6, 4 place Jussieu, Case 162, 75005 Paris, France.
| | | | | | | |
Collapse
|
45
|
Hubbard M, Byrne H. Multiphase modelling of vascular tumour growth in two spatial dimensions. J Theor Biol 2013; 316:70-89. [DOI: 10.1016/j.jtbi.2012.09.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 12/27/2022]
|
46
|
Gonzalez-Rodriguez D, Guevorkian K, Douezan S, Brochard-Wyart F. Soft matter models of developing tissues and tumors. Science 2012; 338:910-7. [PMID: 23161991 DOI: 10.1126/science.1226418] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Analogies with inert soft condensed matter--such as viscoelastic liquids, pastes, foams, emulsions, colloids, and polymers--can be used to investigate the mechanical response of soft biological tissues to forces. A variety of experimental techniques and biophysical models have exploited these analogies allowing the quantitative characterization of the mechanical properties of model tissues, such as surface tension, elasticity, and viscosity. The framework of soft matter has been successful in explaining a number of dynamical tissue behaviors observed in physiology and development, such as cell sorting, tissue spreading, or the escape of individual cells from a tumor. However, living tissues also exhibit active responses, such as rigidity sensing or cell pulsation, that are absent in inert soft materials. The soft matter models reviewed here have provided valuable insight in understanding morphogenesis and cancer invasion and have set bases for using tissue engineering within medicine.
Collapse
Affiliation(s)
- David Gonzalez-Rodriguez
- Laboratoire d'Hydrodynamique (LadHyX), CNRS UMR 7646, Ecole Polytechnique, 91128 Palaiseau, France
| | | | | | | |
Collapse
|
47
|
Ranft J, Prost J, Jülicher F, Joanny JF. Tissue dynamics with permeation. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2012; 35:46. [PMID: 22699388 DOI: 10.1140/epje/i2012-12046-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 05/25/2012] [Indexed: 06/01/2023]
Abstract
Animal tissues are complex assemblies of cells, extracellular matrix (ECM), and permeating interstitial fluid. Whereas key aspects of the multicellular dynamics can be captured by a one-component continuum description, cell division and apoptosis imply material turnover between different components that can lead to additional mechanical conditions on the tissue dynamics. We extend our previous description of tissues in order to account for a cell/ECM phase and the permeating interstitial fluid independently. In line with our earlier work, we consider the cell/ECM phase to behave as an elastic solid in the absence of cell division and apoptosis. In addition, we consider the interstitial fluid as ideal on the relevant length scales, i.e., we ignore viscous stresses in the interstitial fluid. Friction between the fluid and the cell/ECM phase leads to a Darcy-like relation for the interstitial fluid velocity and introduces a new characteristic length scale. We discuss the dynamics of a tissue confined in a chamber with a permeable piston close to the homeostatic state where cell division and apoptosis balance, and we calculate the rescaled effective diffusion coefficient for cells. For different mass densities of the cell/ECM component and the interstitial fluid, a treadmilling steady state due to gravitational forces can be found.
Collapse
Affiliation(s)
- J Ranft
- Institut Curie (UMR 168: Institut Curie, CNRS, Université Paris VI), Paris, France
| | | | | | | |
Collapse
|
48
|
Chauviere A, Hatzikirou H, Kevrekidis IG, Lowengrub JS, Cristini V. Dynamic density functional theory of solid tumor growth: Preliminary models. AIP ADVANCES 2012; 2:11210. [PMID: 22489279 PMCID: PMC3321520 DOI: 10.1063/1.3699065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 02/11/2012] [Indexed: 05/31/2023]
Abstract
Cancer is a disease that can be seen as a complex system whose dynamics and growth result from nonlinear processes coupled across wide ranges of spatio-temporal scales. The current mathematical modeling literature addresses issues at various scales but the development of theoretical methodologies capable of bridging gaps across scales needs further study. We present a new theoretical framework based on Dynamic Density Functional Theory (DDFT) extended, for the first time, to the dynamics of living tissues by accounting for cell density correlations, different cell types, phenotypes and cell birth/death processes, in order to provide a biophysically consistent description of processes across the scales. We present an application of this approach to tumor growth.
Collapse
|
49
|
Szabó A, Varga K, Garay T, Hegedus B, Czirók A. Invasion from a cell aggregate--the roles of active cell motion and mechanical equilibrium. Phys Biol 2012; 9:016010. [PMID: 22313673 DOI: 10.1088/1478-3975/9/1/016010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell invasion from an aggregate into a surrounding extracellular matrix (ECM) is an important process during development disease, e.g., vascular network assembly or tumor progression. To describe the behavior emerging from autonomous cell motility, cell-cell adhesion and contact guidance by ECM filaments, we propose a suitably modified cellular Potts model. We consider an active cell motility process in which internal polarity is governed by a positive feedback from cell displacements, a mechanism that can result in highly persistent motion when constrained by an oriented ECM structure. The model allows us to explore the interplay between haptotaxis, matrix degradation and active cell movement. We show that for certain conditions the cells are able to both invade the ECM and follow the ECM tracks. Furthermore, we argue that enforcing mechanical equilibrium within a bulk cell mass is of key importance in multicellular simulations.
Collapse
Affiliation(s)
- A Szabó
- Department of Biological Physics, Eotvos University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
50
|
Toley BJ, Park J, Kim BJ, Venkatasubramanian R, Maharbiz MM, Forbes NS. Micrometer-scale oxygen delivery rearranges cells and prevents necrosis in tumor tissue in vitro. Biotechnol Prog 2012; 28:515-25. [PMID: 22228537 DOI: 10.1002/btpr.1510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 11/01/2011] [Indexed: 01/12/2023]
Abstract
Oxygen availability plays a critical role in cancer progression and is correlated with poor prognosis. Despite this connection, the independent effects of oxygen gradients on tumor tissues have not been measured. To address this, we developed an oxygen delivery device that uses microelectrodes to generate oxygen directly underneath three-dimensional tumor cylindroids composed of colon carcinoma cells. The extent of cell death was measured using fluorescence staining. Supplying oxygen for 60 h eliminated the necrotic region typically found in the center of cylindroids despite the continued presence of other nutrient gradients. A mathematical model of cylindroid growth showed that the rate of cell death was more sensitive to oxygen than the growth rate. After oxygenation, a ring of dead cells was observed at the outside edge of cylindroids, and dead cells were observed moving outward from cylindroid centers. This movement suggests that dead cells were pushed by viable cells migrating in response to oxygen gradients, a mechanism that may connect transient oxygen gradients to metastasis formation. These measurements show that oxygen gradients are a primary factor governing cell viability and rearrange cells in tumors.
Collapse
Affiliation(s)
- Bhushan J Toley
- Dept. of Chemical Engineering University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | |
Collapse
|